JPH11154415A - Gel-like electrolyte and gel-like electrolyte battery - Google Patents

Gel-like electrolyte and gel-like electrolyte battery

Info

Publication number
JPH11154415A
JPH11154415A JP9320145A JP32014597A JPH11154415A JP H11154415 A JPH11154415 A JP H11154415A JP 9320145 A JP9320145 A JP 9320145A JP 32014597 A JP32014597 A JP 32014597A JP H11154415 A JPH11154415 A JP H11154415A
Authority
JP
Japan
Prior art keywords
gel electrolyte
plasticizer
weight
halogen
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9320145A
Other languages
Japanese (ja)
Other versions
JP3775022B2 (en
Inventor
Koichiro Kezuka
浩一郎 毛塚
Shigeru Fujita
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32014597A priority Critical patent/JP3775022B2/en
Publication of JPH11154415A publication Critical patent/JPH11154415A/en
Application granted granted Critical
Publication of JP3775022B2 publication Critical patent/JP3775022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent reaction/decomposition of a plasticizer at charging time, and to improve charge/discharge efficiency of a battery by including the plasticizer and a matrix high polymer by dispersing the plasticizer, and including a specific cabonic ester compound in this plasticizer. SOLUTION: A carbonic ester compound has a structure of the formula. In the formula, X1 and X2 represent halogen and Hj, and R1 and R2 represent halogenated alkyl CnXa2 n-m+s Xbm and Hj, and Xa represents halogen, and Xb represents halogen and H. Here, X1 , X2 , R1 and R2 are not wholly halogen or H. R1 and R2 of the formula are suitable to be halogenated alkyl having a carbon group (n=1 to 3) such as CF3 , CF2 CF3 and CHF2 . The content of a carbonic ester compound to a plasticizer is desirably 10 to 80 wt.%. A gel-like electrolyte desirably contains an improved plasticizer by 30 to 85 wt%. A matrix high polymer is suitable to be a fluorine high polymer, particularly, polyvinylidene fluoride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸エステルを含
有するゲル状電解質及びゲル状電解質電池に関する。
The present invention relates to a gel electrolyte containing a carbonate ester and a gel electrolyte battery.

【0002】[0002]

【従来の技術】近年、カメラ一体型ビデオテープレコー
ダ、携帯電話、携帯用コンピュータ等のポータブル電子
機器が多く登場し、その小型軽量化が図られている。そ
してこれらの電子機器のポータブル電源となる電池、特
に二次電池、なかでもリチウムイオン電池について、薄
型や折り曲げ可能な電池の研究開発が活発に進められて
いる。このような電池の電解質として電解液を固体化し
た固体電解質の研究が盛んに行われており、特に、可塑
剤を含んだゲル状の固体電解質(以下、ゲル状電解質と
称する。)が注目を浴びている。
2. Description of the Related Art In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a mobile phone, and a portable computer have appeared and their size and weight have been reduced. Research and development of thin and bendable batteries, which are portable batteries for these electronic devices, particularly secondary batteries, especially lithium ion batteries, are being actively pursued. Research on a solid electrolyte obtained by solidifying an electrolytic solution as an electrolyte for such a battery has been actively conducted. In particular, a gel solid electrolyte containing a plasticizer (hereinafter, referred to as a gel electrolyte) has attracted attention. I'm taking a bath.

【0003】リチウムイオン電池に使用するゲル状電解
質の可塑剤として、炭酸プロピレンなどの炭酸エステル
系非水溶媒にLiPF6のようなリチウム塩を溶解させ
た電解液を用いると、導電率の比較的高いゲル状電解質
を得ることができる。
When an electrolytic solution in which a lithium salt such as LiPF 6 is dissolved in a carbonate-based non-aqueous solvent such as propylene carbonate is used as a plasticizer for a gel electrolyte used in a lithium ion battery, the conductivity of the electrolyte is relatively low. A high gel electrolyte can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、炭酸プ
ロピレンなど一部の炭酸エステルは電気化学的に安定で
あるにもかかわらず、グラファイトなどを負極に用いた
電池では、充電時に電解液の反応、分解が起こってしま
う。電解液の反応、分解により充放電効率が著しく悪化
するだけでなく、同時に放電容量など電池の諸特性にも
悪影響を及ぼすという問題が生じる。このような問題は
炭酸プロピレンなどを可塑剤として用いたゲル状電解質
でも同様である。
However, in spite of the fact that some carbonates such as propylene carbonate are electrochemically stable, in a battery using graphite or the like for the negative electrode, the reaction and decomposition of the electrolytic solution during charging are not possible. Will happen. Not only does the charge and discharge efficiency deteriorate significantly due to the reaction and decomposition of the electrolytic solution, but also there is a problem that various characteristics of the battery such as the discharge capacity are adversely affected. Such a problem is the same in a gel electrolyte using propylene carbonate or the like as a plasticizer.

【0005】本発明は、上述した従来の実情に鑑みて提
案されたものであり、充電時の可塑剤の反応、分解を防
止し、電池の充放電効率を向上させるゲル状電解質、及
びゲル状電解質電池を提供することを目的とする。
[0005] The present invention has been proposed in view of the above-mentioned conventional circumstances, and a gel electrolyte and a gel electrolyte for preventing the reaction and decomposition of a plasticizer during charging and improving the charge and discharge efficiency of a battery. An object is to provide an electrolyte battery.

【0006】[0006]

【課題を解決するための手段】本発明のゲル状電解質
は、可塑剤と、上記可塑剤を分散するマトリクス高分子
とを含有し、上記可塑剤が、一般式(1)で表される炭
酸エステル化合物を含有することを特徴とする。
The gel electrolyte of the present invention contains a plasticizer and a matrix polymer in which the plasticizer is dispersed, and the plasticizer is a carbonate represented by the general formula (1). It is characterized by containing an ester compound.

【0007】[0007]

【化3】 Embedded image

【0008】(式中、X1及びX2はハロゲン又は水素を
表し、R1及びR2は同一又は異なるハロゲン化アルキル
基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲ
ン、Xbはハロゲン又は水素である。ただしX1,X2,
R1,R2すべてがハロゲン又は水素である場合を除
く。) 上述した本発明に係るゲル状電解質は、可塑剤が、一般
式(1)で表される炭酸エステル化合物を含有し、電気
化学的安定性を高めている。
(Wherein X1 and X2 represent halogen or hydrogen, R1 and R2 represent the same or different halogenated alkyl groups C n Xa 2n-m + 1 Xb m or hydrogen. Xa is halogen, Xb is halogen Or hydrogen, provided that X1, X2,
Except when all of R1 and R2 are halogen or hydrogen. In the above-mentioned gel electrolyte according to the present invention, the plasticizer contains a carbonate compound represented by the general formula (1), and has improved electrochemical stability.

【0009】また、本発明のゲル状電解質電池は、負極
と、正極と、ゲル状電解質とを有し、上記ゲル状電解質
は、可塑剤がマトリクス高分子中に分散されてなり、上
記可塑剤が、一般式(1)で表される炭酸エステル化合
物を含有することを特徴とする。
Further, the gel electrolyte battery of the present invention has a negative electrode, a positive electrode, and a gel electrolyte, wherein the gel electrolyte is obtained by dispersing a plasticizer in a matrix polymer. Contains a carbonate compound represented by the general formula (1).

【0010】[0010]

【化4】 Embedded image

【0011】(式中、X1及びX2はハロゲン又は水素を
表し、R1及びR2は同一又は異なるハロゲン化アルキル
基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲ
ン、Xbはハロゲン又は水素である。ただしX1,X2,
R1,R2すべてがハロゲン又は水素である場合を除
く。) 上述した本発明に係るゲル状電解質電池では、ゲル状電
解質の可塑剤が一般式(1)で示される炭酸エステルを
含有しており、電気化学的安定性が高く、充電時に負極
上で可塑剤の分解が起こらない。
(Wherein, X1 and X2 represent halogen or hydrogen, R1 and R2 represent the same or different halogenated alkyl groups C n Xa 2n-m + 1 Xb m or hydrogen. Xa is halogen, Xb is halogen Or hydrogen, provided that X1, X2,
Except when all of R1 and R2 are halogen or hydrogen. In the gel electrolyte battery according to the present invention described above, the plasticizer of the gel electrolyte contains the carbonate represented by the general formula (1), has high electrochemical stability, and has a high plasticity on the negative electrode during charging. No decomposition of the agent occurs.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0013】本発明のゲル状電解質は、リチウム塩を含
有する可塑剤がマトリクス高分子中に溶解されてなる。
The gel electrolyte of the present invention comprises a plasticizer containing a lithium salt dissolved in a matrix polymer.

【0014】上記可塑剤には、エステル類、エーテル
類、炭酸エステル類などを、単独又は可塑剤の一成分と
して用いることができる。
As the above-mentioned plasticizer, esters, ethers, carbonates and the like can be used alone or as one component of the plasticizer.

【0015】本発明のゲル状電解質の可塑剤は、一般式
(1)で示される炭酸エステルを含有する。
[0015] The plasticizer of the gel electrolyte of the present invention contains a carbonate represented by the general formula (1).

【0016】[0016]

【化5】 Embedded image

【0017】(式中、X1及びX2はハロゲン又は水素を
表し、R1及びR2は同一又は異なるハロゲン化アルキル
基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲ
ン、Xbはハロゲン又は水素である。ただしX1,X2,
R1,R2すべてがハロゲン又は水素である場合を除
く。) 好ましくは、あまり分子量が大きくなると導電率が下が
るので、一般式(1)において、R1及びR2は、C
3、CF2CF3、CHF2など炭素群n=1〜3の群か
ら選択されるハロゲン化アルキル基であることが好まし
い。
[0017] (wherein, X1 and X2 represent a halogen or hydrogen, .Xa R1 and R2 represent the same or different halogenated alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen Or hydrogen, provided that X1, X2,
Except when all of R1 and R2 are halogen or hydrogen. Preferably, when the molecular weight is too large, the conductivity decreases. Therefore, in the general formula (1), R 1 and R 2 are
It is preferably a halogenated alkyl group selected from the group of carbon groups n = 1 to 3 , such as F 3 , CF 2 CF 3 and CHF 2 .

【0018】一般式(1)で示される炭酸エステルをゲ
ル状電解質の可塑剤に含有させると、充電時に、グラフ
ァイト負極上で可塑剤の分解が起こらず、充放電効率が
向上する。
When the carbonate represented by the general formula (1) is contained in the plasticizer of the gel electrolyte, the plasticizer does not decompose on the graphite negative electrode during charging, and the charge / discharge efficiency is improved.

【0019】可塑剤は炭酸エチレンのような高誘電率溶
媒と混合して用いるのが好ましいので、一般式(1)で
示される炭酸エステルの含有量は、可塑剤の10重量%
以上、80重量%以下が望ましい。炭酸エステルの含有
量が可塑剤の10重量%より少ないと、グラファイト負
極上で充電時の可塑剤の分解を抑制することができず、
充放電効率を向上させることができない。また、炭酸エ
ステルの含有量が可塑剤の80重量%より多いと、高誘
電率溶媒の量が少なくなり、導電率が低下してしまう。
Since the plasticizer is preferably used in a mixture with a high dielectric constant solvent such as ethylene carbonate, the content of the carbonate represented by the general formula (1) is 10% by weight of the plasticizer.
At least 80% by weight is desirable. If the content of the carbonate is less than 10% by weight of the plasticizer, the decomposition of the plasticizer at the time of charging on the graphite negative electrode cannot be suppressed,
The charge / discharge efficiency cannot be improved. On the other hand, when the content of the carbonate is more than 80% by weight of the plasticizer, the amount of the high dielectric constant solvent is reduced, and the conductivity is reduced.

【0020】また、上記可塑剤は、リチウム塩を含有す
る。本発明に係るゲル状電解質に用いられるリチウム塩
として、通常、電池電解液に用いられる公知のリチウム
塩を使用することができる。具体的には、LiPF6
LiBF4、LiAsF6、LiClO4、LiCF3SO
3、LiN(SO2CF32、LiC(SO2CF33
LiAlCl4、LiSiF6などを挙げることができ
る。その中でも特にLiPF6、LiBF4が酸化安定性
の点から望ましい。リチウム塩の濃度は、可塑剤の0.
1mol/l以上、3.0mol/lが好ましく、より
好ましくは、0.5mol/l以上、2.0mol/l
以下である。
The plasticizer contains a lithium salt. As the lithium salt used in the gel electrolyte according to the present invention, a known lithium salt usually used in a battery electrolyte can be used. Specifically, LiPF 6 ,
LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO
3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 ,
LiAlCl 4 , LiSiF 6 and the like can be given. Among them, LiPF 6 and LiBF 4 are particularly desirable from the viewpoint of oxidation stability. The concentration of the lithium salt is 0.1% of the plasticizer.
1 mol / l or more, preferably 3.0 mol / l, more preferably 0.5 mol / l or more, 2.0 mol / l
It is as follows.

【0021】上述したような可塑剤の含有量は、ゲル状
電解質の30重量%以上、85重量%以下とすることが
好ましい。可塑剤の含有量が85重量%より多ければイ
オン導電率は高いが、機械強度は保てない。可塑剤の含
有量が30重量%より少ないと機械強度は大きいが、イ
オン導電率は低くなってしまう。可塑剤の含有量を、ゲ
ル状電解質の30重量%以上、85重量%以下とするこ
とで、イオン導電率と機械強度とを両立することができ
る。
The content of the above-mentioned plasticizer is preferably 30% by weight or more and 85% by weight or less of the gel electrolyte. If the content of the plasticizer is more than 85% by weight, the ionic conductivity is high, but the mechanical strength cannot be maintained. If the content of the plasticizer is less than 30% by weight, the mechanical strength is high, but the ionic conductivity is low. By setting the content of the plasticizer to 30% by weight or more and 85% by weight or less of the gel electrolyte, both ionic conductivity and mechanical strength can be achieved.

【0022】上述したような可塑剤をゲル化するマトリ
クス高分子としては、ゲル状電解質を構成するのに使用
されている種々の高分子が使用できる。具体的には、ポ
リビニリデンフルオライドや、ビニリデンフルオライド
とヘキサフルオロプロピレンとの共重合体などのフッ素
系高分子、ポリエチレンオキサイドや、ポリエチレンオ
キサイド架橋体などのエーテル系高分子、その他、ポリ
アクリロニトリルなどを単独、又は混合して使用でき
る。その中でも特に、フッ素系高分子を用いることが望
ましい。フッ素系高分子を用いることで、酸化還元安定
性を高めることができる。
As the matrix polymer for gelling the plasticizer as described above, various polymers used for forming a gel electrolyte can be used. Specifically, fluorine-based polymers such as polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropropylene, ether-based polymers such as polyethylene oxide and cross-linked polyethylene oxide, and other materials such as polyacrylonitrile Can be used alone or as a mixture. Among them, it is particularly desirable to use a fluoropolymer. By using a fluorine-based polymer, the redox stability can be increased.

【0023】マトリクス高分子は、ゲル状電解質の10
重量%以上、50重量%以下とすることが好ましい。
The matrix polymer is composed of 10
It is preferable that the content be not less than 50% by weight and not more than 50% by weight.

【0024】上述したようなゲル状電解質を用いた、本
発明に係るゲル状電解質電池1の一構成例を図1に示
す。
FIG. 1 shows a configuration example of the gel electrolyte battery 1 according to the present invention using the above-mentioned gel electrolyte.

【0025】このゲル状電解質電池1は、集電体上に正
極活物質層が形成された正極板2と、集電体上に負極活
物質層が形成された負極板3と、セパレータ4と、正極
板2を収容する正極外装材5と、負極板3を収容する負
極外装材6とを有する。
The gel electrolyte battery 1 has a positive electrode plate 2 having a positive electrode active material layer formed on a current collector, a negative electrode plate 3 having a negative electrode active material layer formed on a current collector, and a separator 4. And a positive electrode exterior material 5 that accommodates the positive electrode plate 2 and a negative electrode exterior material 6 that accommodates the negative electrode plate 3.

【0026】上記正極板2は、正極活物質と結着剤とを
含有する正極合剤を集電体上に塗布、乾燥することによ
り作製される。集電体には例えばアルミニウム箔等の金
属箔が用いられる。
The positive electrode plate 2 is manufactured by applying a positive electrode mixture containing a positive electrode active material and a binder on a current collector and drying the mixture. A metal foil such as an aluminum foil is used for the current collector.

【0027】正極活物質には、目的とする電池の種類に
応じて金属酸化物、金属硫化物又は特定の高分子を用い
ることができる。
As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the intended battery.

【0028】例えばリチウムイオン電池を構成する場
合、正極活物質としては、TiS2、MoS2、NbSe
2、V25等の金属硫化物あるいは酸化物を使用するこ
とができる。また、LiMx2(式中Mは一種以上の遷
移金属を表し、xは電池の充放電状態によって異なり、
通常0.05以上、1.10以下である。)を主体とす
るリチウム複合酸化物等を使用することができる。この
リチウム複合酸化物を構成する遷移金属Mとしては、C
o、Ni、Mn等が好ましい。このようなリチウム複合
酸化物の具体例としてはLiCoO2、LiNiO2、L
iNiyCo1-y2(式中、0<y<1である。)、L
iMn24等を挙げることができる。これらのリチウム
複合酸化物は、高電圧を発生でき、エネルギー密度的に
優れた正極活物質となる。正極には、これらの正極活物
質の複数種をあわせて使用してもよい。
For example, when forming a lithium ion battery, TiS 2 , MoS 2 , NbSe may be used as the positive electrode active material.
2 , metal sulfides or oxides such as V 2 O 5 can be used. LiM x O 2 (where M represents one or more transition metals, x varies depending on the charge / discharge state of the battery,
Usually, it is 0.05 or more and 1.10 or less. ) Can be used. As the transition metal M constituting this lithium composite oxide, C
o, Ni, Mn and the like are preferable. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , L
iNiyCo 1-y O 2 (where 0 <y <1), L
iMn 2 O 4 and the like can be mentioned. These lithium composite oxides can generate a high voltage and become positive electrode active materials excellent in energy density. A plurality of these positive electrode active materials may be used in combination for the positive electrode.

【0029】また、上記正極合剤の結着剤としては、通
常リチウムイオン電池の正極合剤に用いられている公知
の結着剤を用いることができるほか、上記正極合剤に導
電剤等、公知の添加剤を添加することができる。
As the binder for the positive electrode mixture, a known binder which is usually used for a positive electrode mixture of a lithium ion battery can be used. Known additives can be added.

【0030】上記負極板3は、負極活物質と結着剤とを
含有する負極合剤を、集電体上に塗布、乾燥することに
より作製される。上記集電体には、例えば銅箔等の金属
箔が用いられる。
The negative electrode plate 3 is manufactured by applying a negative electrode mixture containing a negative electrode active material and a binder on a current collector and drying the mixture. For the current collector, for example, a metal foil such as a copper foil is used.

【0031】リチウムイオン電池を構成する場合、負極
材料としては、リチウムをドープ、脱ドープできる材料
を使用することが好ましい。リチウムをドープ、脱ドー
プできる材料として具体的には、熱分解炭素類、コーク
ス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼
成体、炭素繊維、活性炭等の炭素材料を使用することが
できる。上記コークス類には、ピッチコークス、ニート
ルコークス、石油コークス等がある。また、上記有機高
分子化合物焼成体とは、フェノール樹脂、フラン樹脂等
を適当な温度で焼成し炭素化したものを示す。
In constructing a lithium ion battery, it is preferable to use a material capable of doping and undoping lithium as a negative electrode material. Specific examples of the material capable of doping and undoping lithium include carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, organic polymer compound fired bodies, carbon fibers, and activated carbon. it can. Examples of the coke include pitch coke, needle coke, and petroleum coke. The fired organic polymer compound is obtained by firing a phenol resin, a furan resin or the like at an appropriate temperature and carbonizing the same.

【0032】上述した炭素材料のほか、リチウムをドー
プ、脱ドープできる材料として、ポリアセチレン、ポリ
ピロール等の高分子やSnO2等の酸化物を使用するこ
ともできる。
In addition to the above-mentioned carbon materials, polymers such as polyacetylene and polypyrrole and oxides such as SnO 2 can also be used as materials capable of doping and undoping lithium.

【0033】また、上記負極合剤の結着剤としては、通
常リチウムイオン電池の負極合剤に用いられている公知
の結着剤を用いることができるほか、上記負極合剤に公
知の添加剤等を添加することができる。
As the binder for the negative electrode mixture, a known binder which is usually used for a negative electrode mixture of a lithium ion battery can be used, and a known additive for the negative electrode mixture can be used. Etc. can be added.

【0034】このゲル状電解質電池1では、可塑剤とマ
トリクス高分子とを含有する電解質溶液を正極活物質層
又は負極活物質層上に塗布し、電解質溶液を正極活物質
層又は負極活物質層中に浸透させた後に溶媒を除去して
電解質をゲル化することにより、正極活物質層又は負極
活物質層中にゲル状電解質を含浸させている。活物質層
中にゲル状電解質を含浸させることで、ゲル状電解質電
池1の内部抵抗を減少させ、かつ、活物質とゲル状電解
質との接触状態を改善することができる。
In the gel electrolyte battery 1, an electrolyte solution containing a plasticizer and a matrix polymer is applied on the positive electrode active material layer or the negative electrode active material layer, and the electrolyte solution is applied to the positive electrode active material layer or the negative electrode active material layer. The gel electrolyte is impregnated in the positive electrode active material layer or the negative electrode active material layer by gelling the electrolyte by removing the solvent after infiltrating into the inside. By impregnating the gel electrolyte in the active material layer, the internal resistance of the gel electrolyte battery 1 can be reduced, and the contact state between the active material and the gel electrolyte can be improved.

【0035】ゲル状電解質電池1は、例えば次のように
して製造される。
The gel electrolyte battery 1 is manufactured, for example, as follows.

【0036】正極板2は、正極活物質と結着剤とを含有
する正極合剤を、集電体となる例えばアルミニウム箔等
の金属箔上に均一に塗布、乾燥して正極活物質層を形成
することにより作製される。
The positive electrode plate 2 is uniformly coated with a positive electrode mixture containing a positive electrode active material and a binder on a metal foil such as an aluminum foil serving as a current collector, and dried to form a positive electrode active material layer. It is produced by forming.

【0037】負極板3は、負極活物質と結着剤とを含有
する負極合剤を、集電体となる例えば銅箔等の金属箔上
に均一に塗布、乾燥して負極活物質層を形成することに
より作製される。
The negative electrode plate 3 is uniformly coated with a negative electrode mixture containing a negative electrode active material and a binder on a metal foil such as a copper foil, which serves as a current collector, and dried to form a negative electrode active material layer. It is produced by forming.

【0038】電解質溶液は、リチウム塩を含有する可塑
剤と、マトリクス高分子とを溶媒中に溶解させて調製さ
れる。本発明では、上記可塑剤が、一般式(1)で表さ
れる炭酸エステル化合物を含有する。
The electrolyte solution is prepared by dissolving a plasticizer containing a lithium salt and a matrix polymer in a solvent. In the present invention, the plasticizer contains a carbonate compound represented by the general formula (1).

【0039】まず、上記電解質溶液を、正極活物質層及
び負極活物質層上に均一に塗布する。次に、電解質溶液
を正極活物質層又は負極活物質層中に含浸させ、最後に
溶媒を除去して電解質をゲル化させることにより、活物
質中にゲル状電解質を含浸させる。
First, the above-mentioned electrolyte solution is uniformly applied on the positive electrode active material layer and the negative electrode active material layer. Next, the electrolyte solution is impregnated into the positive electrode active material layer or the negative electrode active material layer, and finally, the solvent is removed to gel the electrolyte, whereby the active material is impregnated with the gel electrolyte.

【0040】最後に、以上のようにして作製された正極
板2、負極板3をそれぞれ正極外装材5、負極外装材6
に収容し、正極板2が収容された正極外装材5と、負極
板3が収容された負極外装材5とを、セパレータ4を介
して、正極板2と負極板3とが対向するように積層す
る。最後に正極外装材5、負極外装材6の外周縁部をホ
ットメルト材7を介して熱融着することで接合、密閉し
てゲル状電解質電池1が完成する。
Lastly, the positive electrode plate 2 and the negative electrode plate 3 manufactured as described above were respectively combined with the positive electrode sheath material 5 and the negative electrode sheath material 6.
The negative electrode package 5 containing the positive electrode plate 2 and the negative electrode package 3 containing the negative electrode plate 3 are placed such that the positive plate 2 and the negative plate 3 face each other with the separator 4 interposed therebetween. Laminate. Lastly, the outer peripheral edges of the positive electrode packaging material 5 and the negative electrode packaging material 6 are thermally fused via a hot melt material 7 to join and seal, thereby completing the gel electrolyte battery 1.

【0041】本発明のゲル状電解質電池1は、円筒型、
角型、コイン型、ボタン型等、その形状については特に
限定されることはなく、また、薄型、大型等の種々の大
きさにすることができる。
The gel electrolyte battery 1 of the present invention has a cylindrical shape,
The shape such as a square shape, a coin shape, and a button shape is not particularly limited, and the shape can be various sizes such as a thin shape and a large size.

【0042】[0042]

【実施例】図1に示すような平板型ゲル状電解質電池を
作製した。
EXAMPLE A flat gel electrolyte battery as shown in FIG. 1 was produced.

【0043】〈実施例1〉負極を次のように作製した。<Example 1> A negative electrode was produced as follows.

【0044】まず、粉砕した黒鉛粉末90重量部と、結
着剤としてポリビニリデンフルオライド10重量部とを
混合して負極合剤を調製し、さらにこれをN−メチル−
2−ピロリドンに分散させスラリー状とした。
First, 90 parts by weight of pulverized graphite powder and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture.
It was dispersed in 2-pyrrolidone to form a slurry.

【0045】そして、このスラリーを負極集電体である
厚さ10μmの帯状銅箔の片面に均一に塗布し、乾燥
後、ロールプレス機で圧縮成形し、負極を作製した。
This slurry was uniformly applied to one side of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector, dried, and then compression-molded with a roll press to produce a negative electrode.

【0046】正極を次のように作製した。A positive electrode was produced as follows.

【0047】まず、正極活物質を得るために、炭酸リチ
ウムと炭酸コバルトとを0.5mol対1molの比率
で混合し、空気中900℃で5時間焼成した。次に、得
られたLiCoO2を91重量部と、導電剤として黒鉛
6重量部と、結着剤として、ビニリデンフルオライドと
ヘキサフルオロプロピレンとの共重合体10重量部とを
混合して正極合剤を調製し、さらにこれをN−メチル−
2−ピロリドンに分散させスラリー状とした。
First, in order to obtain a positive electrode active material, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol, and fired in air at 900 ° C. for 5 hours. Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of a copolymer of vinylidene fluoride and hexafluoropropylene as a binder were mixed to form a positive electrode. And N-methyl-
It was dispersed in 2-pyrrolidone to form a slurry.

【0048】そして、このスラリーを正極集電体である
厚さ20μmのアルミニウム箔の片面に均一に塗布し、
乾燥後、ロールプレス機で圧縮成形し、正極を作製し
た。
Then, this slurry was uniformly applied to one side of a 20 μm thick aluminum foil as a positive electrode current collector,
After drying, compression molding was performed using a roll press machine to produce a positive electrode.

【0049】ゲル状電解質を次のようにして得た。A gel electrolyte was obtained as follows.

【0050】可塑剤を30gと、マトリクス高分子を1
0gと、テトラヒドロフラン(以下、THFと称す
る。)を60gとを混合溶解させてゲル状電解質溶液を
調製した。
30 g of plasticizer and 1 part of matrix polymer
0 g and 60 g of tetrahydrofuran (hereinafter, referred to as THF) were mixed and dissolved to prepare a gel electrolyte solution.

【0051】ここで、上記可塑剤には、炭酸エチレン
(以下、ECと称する。)を76.5重量%と、トリフ
ルオロ化炭酸プロピレン(以下、TFPCと称する。)
を8.5重量%と、LiPF6を15重量%との混合物
を用いた。また、上記マトリクス高分子には、ビニリデ
ンフルオライドとヘキサフルオロプロピレンとの共重合
体を用いた。
Here, the plasticizer contains 76.5% by weight of ethylene carbonate (hereinafter, referred to as EC) and trifluorocarbonized propylene carbonate (hereinafter, referred to as TFPC).
Was used, and a mixture of 8.5 wt% of LiPF 6 and 15 wt% of LiPF 6 was used. Further, as the matrix polymer, a copolymer of vinylidene fluoride and hexafluoropropylene was used.

【0052】正極上及び負極上に、上記ゲル状電解質溶
液を均一に塗布し、常温で8時間放置してゲル状電解質
溶液を正極中及び負極中に含浸させた。最後にTHFを
気化させて除去した。
The gel electrolyte solution was uniformly applied on the positive electrode and the negative electrode, and allowed to stand at room temperature for 8 hours to impregnate the gel electrolyte solution in the positive electrode and the negative electrode. Finally, the THF was vaporized and removed.

【0053】ゲル状電解質を塗布した負極、及び正極を
ゲル状電解質側を合わせ、圧着することで面積2.5c
m×4.0cm、厚さ0.3mmの平板型ゲル状電解質
電池を作製した。
The negative electrode coated with the gel electrolyte and the positive electrode were brought into contact with the gel electrolyte side and pressed to obtain an area of 2.5 c.
A flat gel electrolyte battery having a size of mx 4.0 cm and a thickness of 0.3 mm was prepared.

【0054】〈実施例2〉可塑剤の組成を、ECを68
重量%と、TFPCを17重量%と、LiPF6を15
重量%としたこと以外は、実施例1と同様にしてゲル状
電解質電池を作製した。
Example 2 The composition of the plasticizer was changed to an EC of 68.
And weight%, and 17% by weight of TFPC, the LiPF 6 15
A gel electrolyte battery was produced in the same manner as in Example 1, except that the content was changed to% by weight.

【0055】〈実施例3〉可塑剤の組成を、ECを51
重量%と、炭酸プロピレン(以下、PCと称する)を
8.5重量%と、TFPCを25.5重量%と、LiP
6を15重量%としたこと以外は、実施例1と同様に
してゲル状電解質電池を作製した。
Example 3 The composition of the plasticizer was changed to EC of 51.
% By weight, 8.5% by weight of propylene carbonate (hereinafter referred to as PC), 25.5% by weight of TFPC, LiP
A gel electrolyte battery was produced in the same manner as in Example 1, except that F 6 was 15% by weight.

【0056】〈実施例4〉可塑剤の組成を、ECを4
2.5重量%と、PCを17重量%と、TFPCを2
5.5重量%と、LiPF6を15重量%としたこと以
外は、実施例1と同様にしてゲル状電解質電池を作製し
た。
Example 4 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 17% by weight of PC and 2% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1 except that 5.5 wt% and LiPF 6 were 15 wt%.

【0057】〈実施例5〉可塑剤の組成を、ECを4
2.5重量%と、PCを8.5重量%と、TFPCを3
4重量%と、LiPF6を15重量%とし、可塑剤の量
を3.3gとしたこと以外は、実施例1と同様にしてゲ
ル状電解質電池を作製した。
Example 5 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 8.5% by weight of PC and 3% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1, except that 4 wt%, LiPF 6 was 15 wt%, and the amount of the plasticizer was 3.3 g.

【0058】〈実施例6〉可塑剤の組成を、ECを4
2.5重量%と、PCを8.5重量%と、TFPCを3
4重量%と、LiPF6を15重量%とし、可塑剤の量
を4.29gとしたこと以外は、実施例1と同様にして
ゲル状電解質電池を作製した。
Example 6 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 8.5% by weight of PC and 3% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1 except that 4 wt%, LiPF 6 was 15 wt%, and the amount of the plasticizer was 4.29 g.

【0059】〈実施例7〉可塑剤の組成を、ECを51
重量%と、TFPCを34重量%と、LiPF6を15
重量%としたこと以外は、実施例1と同様にしてゲル状
電解質電池を作製した。
Example 7 The composition of the plasticizer was changed to EC of 51.
And weight%, and a 34 wt% TFPC, the LiPF 6 15
A gel electrolyte battery was produced in the same manner as in Example 1, except that the content was changed to% by weight.

【0060】〈実施例8〉可塑剤の組成を、ECを4
2.5重量%と、PCを8.5重量%と、TFPCを3
4重量%と、LiPF6を15重量%としたこと以外
は、実施例1と同様にしてゲル状電解質電池を作製し
た。
Example 8 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 8.5% by weight of PC and 3% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1, except that 4 wt% and LiPF 6 were 15 wt%.

【0061】〈実施例9〉可塑剤の組成を、ECを34
重量%と、PCを17重量%と、TFPCを34重量%
と、LiPF6を15重量%としたこと以外は、実施例
1と同様にしてゲル状電解質電池を作製した。
Example 9 The composition of the plasticizer was changed to EC of 34.
% By weight, 17% by weight of PC and 34% by weight of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1, except that LiPF 6 was changed to 15% by weight.

【0062】〈実施例10〉可塑剤の組成を、ECを4
2.5重量%と、PCを8.5重量%と、TFPCを3
4重量%と、LiPF6を15重量%とし、可塑剤の量
を56.7gとしたこと以外は、実施例1と同様にして
ゲル状電解質電池を作製した。
Example 10 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 8.5% by weight of PC and 3% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1 except that 4 wt%, LiPF 6 was 15 wt%, and the amount of the plasticizer was 56.7 g.

【0063】〈実施例11〉可塑剤の組成を、ECを4
2.5重量%と、PCを8.5重量%と、TFPCを3
4重量%と、LiPF6を15重量%とし、可塑剤の量
を70gとしたこと以外は、実施例1と同様にしてゲル
状電解質電池を作製した。
Example 11 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 8.5% by weight of PC and 3% of TFPC
A gel electrolyte battery was produced in the same manner as in Example 1 except that 4 wt%, LiPF 6 was 15 wt%, and the amount of the plasticizer was 70 g.

【0064】〈実施例12〉可塑剤の組成を、ECを4
2.5重量%と、TFPCを42.5重量%と、LiP
6を15重量%としたこと以外は、実施例1と同様に
してゲル状電解質電池を作製した。
Example 12 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 42.5% by weight of TFPC, LiP
A gel electrolyte battery was produced in the same manner as in Example 1, except that F 6 was 15% by weight.

【0065】〈実施例13〉可塑剤の組成を、ECを4
2.5重量%と、TFPCを42.5重量%と、LiP
6を15重量%とし、マトリクス高分子にポリビニリ
デンフルオライドを用いたこと以外は、実施例1と同様
にしてゲル状電解質電池を作製した。
Example 13 The composition of the plasticizer was changed to EC of 4
2.5% by weight, 42.5% by weight of TFPC, LiP
A gel electrolyte battery was produced in the same manner as in Example 1 except that F 6 was 15% by weight and polyvinylidene fluoride was used as a matrix polymer.

【0066】〈実施例14〉可塑剤の組成を、ECを3
4重量%と、TFPCを51重量%と、LiPF6を1
5重量%としたこと以外は、実施例1と同様にしてゲル
状電解質電池を作製した。
Example 14 The composition of the plasticizer was changed to EC of 3
4% by weight, 51% by weight of TFPC, 1 part of LiPF 6
A gel electrolyte battery was produced in the same manner as in Example 1 except that the content was 5% by weight.

【0067】〈実施例15〉可塑剤の組成を、ECを2
5.5重量%と、TFPCを59.5重量%と、LiP
6を15重量%としたこと以外は、実施例1と同様に
してゲル状電解質電池を作製した。
Example 15 The composition of the plasticizer was changed to EC of 2
5.5% by weight, 59.5% by weight of TFPC, LiP
A gel electrolyte battery was produced in the same manner as in Example 1, except that F 6 was 15% by weight.

【0068】〈実施例16〉可塑剤の組成を、ECを1
7重量%と、TFPCを68重量%と、LiPF6を1
5重量%としたこと以外は、実施例1と同様にしてゲル
状電解質電池を作製した。
Example 16 The composition of the plasticizer was changed to 1 for EC.
7% by weight, 68% by weight of TFPC, 1 part of LiPF 6
A gel electrolyte battery was produced in the same manner as in Example 1 except that the content was 5% by weight.

【0069】〈実施例17〉可塑剤の組成を、ECを
8.5重量%と、TFPCを76.5重量%と、LiP
6を15重量%としたこと以外は、実施例1と同様に
してゲル状電解質電池を作製した。
Example 17 The composition of the plasticizer was 8.5% by weight of EC, 76.5% by weight of TFPC, LiP
A gel electrolyte battery was produced in the same manner as in Example 1, except that F 6 was 15% by weight.

【0070】〈実施例18〉可塑剤の組成を、TFPC
を85重量%と、LiPF6を15重量%としたこと以
外は、実施例1と同様にしてゲル状電解質電池を作製し
た。
Example 18 The composition of the plasticizer was TFPC
, And a gel electrolyte battery was produced in the same manner as in Example 1 except that LiPF 6 was 15% by weight.

【0071】〈比較例〉負極を次のように作製した。<Comparative Example> A negative electrode was manufactured as follows.

【0072】粉砕した黒鉛粉末90重量部と、結着剤と
してポリビニリデンフルオライド10重量部とを混合し
て負極合剤を調製し、さらにこれをN−メチル−2−ピ
ロリドンに分散させスラリー状とした。そして、このス
ラリーを負極集電体である厚さ10μmの帯状銅箔の片
面に均一に塗布し、乾燥後、ロールプレス機で圧縮成形
し、負極を作製した。
90 parts by weight of the ground graphite powder and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was further dispersed in N-methyl-2-pyrrolidone to form a slurry. And Then, this slurry was uniformly applied to one surface of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector, dried, and then compression-molded with a roll press to produce a negative electrode.

【0073】正極を次のように作製した。A positive electrode was produced as follows.

【0074】正極活物質を得るために、炭酸リチウムと
炭酸コバルトとを0.5mol対1molの比率で混合
し、空気中900℃で5時間焼成した。次に、得られた
LiCoO2を91重量部、導電剤として黒鉛6重量
部、結着剤として、ビニリデンフルオライドとヘキサフ
ルオロプロピレンとの共重合体10重量部を混合して正
極合剤を調製し、さらにこれをN−メチル−2−ピロリ
ドンに分散させスラリー状とした。そして、このスラリ
ーを正極集電体である厚さ20μmのアルミニウム箔の
片面に均一に塗布し、乾燥後、ロールプレス機で圧縮成
形し、正極を作製した。
To obtain a positive electrode active material, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol, and fired at 900 ° C. in air for 5 hours. Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of a copolymer of vinylidene fluoride and hexafluoropropylene as a binder were mixed to prepare a positive electrode mixture. This was further dispersed in N-methyl-2-pyrrolidone to form a slurry. Then, this slurry was uniformly applied on one side of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then compression-molded with a roll press to produce a positive electrode.

【0075】ゲル状電解質を次のようにして得た。A gel electrolyte was obtained as follows.

【0076】可塑剤を30gと、マトリクス高分子を1
0gと、THFを60gとを混合溶解させてゲル状電解
質溶液を調製した。
30 g of a plasticizer and 1 part of a matrix polymer
0 g and 60 g of THF were mixed and dissolved to prepare a gel electrolyte solution.

【0077】ここで、上記可塑剤には、ECを42.5
重量%と、PCを42.5重量%と、LiPF6を15
重量%との混合物を用いた。また、上記マトリクス高分
子には、ビニリデンフルオライドとヘキサフルオロプロ
ピレンとの共重合体を用いた。
Here, EC is 42.5 to the above plasticizer.
% Of PC, 42.5% by weight of PC, and 15% of LiPF 6 .
% By weight. Further, as the matrix polymer, a copolymer of vinylidene fluoride and hexafluoropropylene was used.

【0078】正極上及び負極上に、上記ゲル状電解質溶
液を均一に塗布し、常温で8時間放置してゲル状電解質
溶液を正極中及び負極中に含浸させた。最後にTHFを
気化させて除去した。
The gel electrolyte solution was uniformly applied on the positive electrode and the negative electrode, and allowed to stand at room temperature for 8 hours to impregnate the gel electrolyte solution in the positive electrode and the negative electrode. Finally, the THF was vaporized and removed.

【0079】ゲル状電解質を塗布した負極、及び正極を
ゲル状電解質側を合わせ、圧着することで面積2.5c
m×4.0cm、厚さ0.3mmの平板型ゲル状電解質
電池を作製した。
The negative electrode coated with the gel electrolyte and the positive electrode were brought into contact with the gel electrolyte side and pressed to obtain an area of 2.5 c.
A flat gel electrolyte battery having a size of mx 4.0 cm and a thickness of 0.3 mm was prepared.

【0080】特性評価 上述のようにして作製された各電池について、初期放電
容量、2サイクル目及び100サイクル目における充放
電効率、30mA放電時容量と6mA放電時容量との比
(以下、30mA放電時容量/6mA放電時容量と称す
る。)をそれぞれ評価した。
Evaluation of Characteristics For each of the batteries produced as described above, the initial discharge capacity, the charge / discharge efficiency at the second cycle and the 100th cycle, and the ratio of the capacity at 30 mA discharge to the capacity at 6 mA discharge (hereinafter referred to as 30 mA discharge) Hour capacity / 6 mA discharge capacity).

【0081】初期放電容量は次のようにして評価した。
まず、23℃の条件下で、6mAの定電流定電圧充電を
上限4.2Vまで10時間行った。次に、6mAの定電
流放電を終止電圧2.5V間で行った。
The initial discharge capacity was evaluated as follows.
First, under the condition of 23 ° C., a constant current and constant voltage charge of 6 mA was performed for 10 hours to an upper limit of 4.2 V. Next, a constant current discharge of 6 mA was performed at a final voltage of 2.5 V.

【0082】充放電効率は次のようにして評価した。初
期放電容量の評価実験と同じ条件で、充放電を100サ
イクル行った。2サイクル目と100サイクル目の充放
電効率を決定した。
The charge / discharge efficiency was evaluated as follows. Under the same conditions as in the initial discharge capacity evaluation experiment, charge and discharge were performed 100 cycles. The charge and discharge efficiencies at the second cycle and the 100th cycle were determined.

【0083】30mA放電時容量/6mA放電時容量は
次のようにして評価した。まず初期放電容量の評価実験
と同じ条件で充放電を行った。つぎに、30mAの定電
流で同様に充放電を行った。そして、30mA放電時
と、6mA放電時での放電容量とを決定し、30mA放
電時容量/6mA放電時容量を決定した。
The discharge capacity at 30 mA / 6 discharge capacity was evaluated as follows. First, charging and discharging were performed under the same conditions as in the initial discharge capacity evaluation experiment. Next, charging and discharging were similarly performed at a constant current of 30 mA. Then, the discharge capacity at the time of 30 mA discharge and the discharge capacity at the time of 6 mA discharge were determined, and the capacity at the time of 30 mA discharge / 6 mA discharge capacity was determined.

【0084】各電池についての初期容量、2サイクル目
及び100サイクル目の充放電効率、及び30mA放電
時容量/6mA放電時容量の評価結果を表1に示す。
Table 1 shows the evaluation results of the initial capacity, the charge / discharge efficiency at the second cycle and the 100th cycle, and the capacity at discharge of 30 mA / 6 mA at discharge of each battery.

【0085】[0085]

【表1】 [Table 1]

【0086】表1から明らかなように、可塑剤中にTF
PCを含有しない比較例1の電池に比べて、可塑剤中に
TFPCを含有させた実施例1〜実施例18の電池で
は、初期容量、充放電効率、放電容量比のいずれも優れ
た特性を示した。
As is clear from Table 1, TF was contained in the plasticizer.
Compared with the battery of Comparative Example 1 containing no PC, the batteries of Examples 1 to 18 in which TFPC was contained in the plasticizer exhibited excellent characteristics in all of the initial capacity, charge / discharge efficiency, and discharge capacity ratio. Indicated.

【0087】そして、可塑剤中のTFPC濃度が10重
量%以上、80重量%以下の範囲で初期容量、充放電効
率が特に優れていることがわかった。
It was found that the initial capacity and charge / discharge efficiency were particularly excellent when the TFPC concentration in the plasticizer was in the range of 10% by weight or more and 80% by weight or less.

【0088】また、実施例5〜実施例11では、ゲル状
電解質中の可塑剤含有量をそれぞれ変化させたが、ゲル
状電解質中の可塑剤含有量を25重量%とした実施例5
では容量比が悪化してしまった。一方、ゲル状電解質中
の可塑剤含有量を87.1重量%とした実施例11では
容量比は優れているが、充放電効率が悪化してしまっ
た。
In Examples 5 to 11, the content of the plasticizer in the gel electrolyte was changed, but the content of the plasticizer in the gel electrolyte was changed to 25% by weight.
Then the capacity ratio has deteriorated. On the other hand, in Example 11 in which the content of the plasticizer in the gel electrolyte was 87.1% by weight, the capacity ratio was excellent, but the charge / discharge efficiency was deteriorated.

【0089】従って、ゲル状電解質中の可塑剤含有量を
30重量%以上、85重量%以下とすることで、初期容
量、充放電効率、容量比に優れたゲル状電解質電池を得
られることがわかった。
Therefore, by setting the content of the plasticizer in the gel electrolyte to 30% by weight or more and 85% by weight or less, it is possible to obtain a gel electrolyte battery having excellent initial capacity, charge / discharge efficiency and capacity ratio. all right.

【0090】[0090]

【発明の効果】本発明のゲル状電解質は、可塑剤に炭酸
エステル化合物を含有させることで、電気化学的安定性
を高めることができる。
According to the gel electrolyte of the present invention, electrochemical stability can be enhanced by adding a carbonate compound to the plasticizer.

【0091】また、本発明のゲル状電解質電池では、ゲ
ル状電解質の可塑剤に炭酸エステル化合物を含有させる
ことで、電気化学的安定性を高め、充電時に負極上での
可塑剤の分解を防ぎ、充放電効率を向上させることがで
きる。
Further, in the gel electrolyte battery of the present invention, by adding a carbonate compound to the plasticizer of the gel electrolyte, the electrochemical stability is enhanced and the decomposition of the plasticizer on the negative electrode during charging is prevented. In addition, charging and discharging efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のゲル状電解質電池の一構成例を示す断
面図である。
FIG. 1 is a cross-sectional view showing one configuration example of a gel electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1 ゲル状電解質電池、 2 正極板、 3 負極板、
4 セパレータ、5 正極外装材、 6 負極外装
材、 7 ホットメルト材
1 gel electrolyte battery, 2 positive electrode plate, 3 negative electrode plate,
4 Separator, 5 cathode exterior material, 6 negative electrode exterior material, 7 hot melt material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 101/00 C08L 101/00 H01M 6/18 H01M 6/18 E 6/22 6/22 C 10/40 10/40 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 101/00 C08L 101/00 H01M 6/18 H01M 6/18 E 6/22 6/22 C 10/40 10/40 B

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 可塑剤と、 上記可塑剤を分散するマトリクス高分子とを含有し、 上記可塑剤が、一般式(1)で表される炭酸エステル化
合物を含有することを特徴とするゲル状電解質。 【化1】 (式中、X1及びX2はハロゲン又は水素を表し、R1及
びR2は同一又は異なるハロゲン化アルキル基CnXa
2n-m+1Xbm又は水素を表す。Xaはハロゲン、Xbは
ハロゲン又は水素である。ただしX1,X2,R1,R2す
べてがハロゲン又は水素である場合を除く。)
1. A gel comprising: a plasticizer; and a matrix polymer in which the plasticizer is dispersed, wherein the plasticizer contains a carbonate compound represented by the general formula (1). Electrolytes. Embedded image (Wherein X 1 and X 2 represent halogen or hydrogen, and R 1 and R 2 are the same or different halogenated alkyl groups C n Xa
Represents 2n-m + 1 Xb m or hydrogen. Xa is halogen, Xb is halogen or hydrogen. However, the case where X1, X2, R1, and R2 are all halogen or hydrogen is excluded. )
【請求項2】 上記可塑剤は、上記炭酸エステル化合物
を10重量%以上、80重量%以下の割合で含有するこ
とを特徴とする請求項1記載のゲル状電解質。
2. The gel electrolyte according to claim 1, wherein the plasticizer contains the carbonate compound at a ratio of 10% by weight or more and 80% by weight or less.
【請求項3】 上記可塑剤を30重量%以上、85重量
%以下の割合で含有することを特徴とする請求項1記載
のゲル状電解質。
3. The gel electrolyte according to claim 1, wherein the plasticizer is contained in a proportion of 30% by weight or more and 85% by weight or less.
【請求項4】 上記マトリクス高分子が、フッ素系高分
子であることを特徴とする請求項1記載のゲル状電解
質。
4. The gel electrolyte according to claim 1, wherein the matrix polymer is a fluorine-based polymer.
【請求項5】 上記フッ素系高分子が、ポリビニリデン
フルオライドであることを特徴とする請求項4記載のゲ
ル状電解質。
5. The gel electrolyte according to claim 4, wherein the fluorine-containing polymer is polyvinylidene fluoride.
【請求項6】 上記フッ素系高分子が、ビニリデンフル
オライドとヘキサフルオロプロピレンとの共重合体であ
ることを特徴とする請求項4記載のゲル状電解質。
6. The gel electrolyte according to claim 4, wherein said fluoropolymer is a copolymer of vinylidene fluoride and hexafluoropropylene.
【請求項7】 負極と、正極と、ゲル状電解質とを有
し、 上記ゲル状電解質は、可塑剤がマトリクス高分子中に分
散されてなり、上記可塑剤が、一般式(1)で表される
炭酸エステル化合物を含有することを特徴とするゲル状
電解質電池。 【化2】 (式中、X1及びX2はハロゲン又は水素を表し、R1及
びR2は同一又は異なるハロゲン化アルキル基CnXa
2n-m+1Xbm又は水素を表す。Xaはハロゲン、Xbは
ハロゲン又は水素である。ただしX1,X2,R1,R2す
べてがハロゲン又は水素である場合を除く。)
7. A gel electrolyte comprising a negative electrode, a positive electrode, and a gel electrolyte, wherein the plasticizer is dispersed in a matrix polymer, and the plasticizer is represented by the general formula (1). A gel electrolyte battery comprising a carbonate compound to be used. Embedded image (Wherein X 1 and X 2 represent halogen or hydrogen, and R 1 and R 2 are the same or different halogenated alkyl groups C n Xa
Represents 2n-m + 1 Xb m or hydrogen. Xa is halogen, Xb is halogen or hydrogen. However, the case where X1, X2, R1, and R2 are all halogen or hydrogen is excluded. )
【請求項8】 上記可塑剤は、一般式(1)で表される
炭酸エステル化合物を、10重量%以上、80重量%以
下の割合で含有することを特徴とする請求項7記載のゲ
ル状電解質電池。
8. The gel according to claim 7, wherein the plasticizer contains the carbonate compound represented by the general formula (1) at a ratio of 10% by weight or more and 80% by weight or less. Electrolyte battery.
【請求項9】 上記ゲル状電解質は、上記可塑剤を30
重量%以上、85重量%以下の割合で含有することを特
徴とする請求項7記載のゲル状電解質電池。
9. The gel electrolyte comprises 30 parts of the plasticizer.
The gel electrolyte battery according to claim 7, which is contained in a ratio of not less than 85% by weight and not more than 85% by weight.
【請求項10】 上記マトリクス高分子が、フッ素系高
分子であることを特徴とする請求項7記載のゲル状電解
質電池。
10. The gel electrolyte battery according to claim 7, wherein the matrix polymer is a fluorine-based polymer.
【請求項11】 上記フッ素系高分子が、ポリビニリデ
ンフルオライドであることを特徴とする請求項10記載
のゲル状電解質電池。
11. The gel electrolyte battery according to claim 10, wherein the fluorine-based polymer is polyvinylidene fluoride.
【請求項12】 上記フッ素系高分子が、ビニリデンフ
ルオライドとヘキサフルオロプロピレンとの共重合体で
あることを特徴とする請求項10記載のゲル状電解質。
12. The gel electrolyte according to claim 10, wherein the fluoropolymer is a copolymer of vinylidene fluoride and hexafluoropropylene.
【請求項13】 上記負極が、リチウムをドープ及び/
又は脱ドープできる材料を含有していること。を特徴と
する請求項7記載のゲル状電解質電池。
13. The method according to claim 13, wherein the negative electrode is doped with lithium and / or
Or contain a material that can be dedoped. The gel electrolyte battery according to claim 7, characterized in that:
【請求項14】 上記リチウムをドープ及び/又は脱ド
ープできる材料が、炭素材料であることを特徴とする請
求項13記載のゲル状電解質電池。
14. The gel electrolyte battery according to claim 13, wherein the material capable of doping and / or undoping lithium is a carbon material.
【請求項15】 上記炭素材料が、黒鉛であることを特
徴とする請求項14記載のゲル状電解質電池。
15. The gel electrolyte battery according to claim 14, wherein the carbon material is graphite.
【請求項16】 上記正極が、リチウムと遷移金属との
複合酸化物を含有していることを特徴とする請求項7記
載のゲル状電解質電池。
16. The gel electrolyte battery according to claim 7, wherein the positive electrode contains a composite oxide of lithium and a transition metal.
JP32014597A 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery Expired - Lifetime JP3775022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32014597A JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32014597A JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11154415A true JPH11154415A (en) 1999-06-08
JP3775022B2 JP3775022B2 (en) 2006-05-17

Family

ID=18118219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32014597A Expired - Lifetime JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Country Status (1)

Country Link
JP (1) JP3775022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372386B1 (en) * 1998-11-05 2002-04-16 Samsung Display Devices Co., Ltd. Electrode active material and polymer electrolyte matrix composition for lithium ion polymer battery
CN117384330A (en) * 2023-12-12 2024-01-12 蓝固(淄博)新能源科技有限公司 Preparation method of fluoro-1, 3-dioxolane heterocyclic compound, in-situ solid electrolyte, preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372386B1 (en) * 1998-11-05 2002-04-16 Samsung Display Devices Co., Ltd. Electrode active material and polymer electrolyte matrix composition for lithium ion polymer battery
CN117384330A (en) * 2023-12-12 2024-01-12 蓝固(淄博)新能源科技有限公司 Preparation method of fluoro-1, 3-dioxolane heterocyclic compound, in-situ solid electrolyte, preparation method and application thereof
CN117384330B (en) * 2023-12-12 2024-02-23 蓝固(淄博)新能源科技有限公司 Preparation method of fluoro-1, 3-dioxolane heterocyclic compound, in-situ solid electrolyte, preparation method and application thereof

Also Published As

Publication number Publication date
JP3775022B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
KR100627214B1 (en) Gel Eletrolyte and Gel-electrolyte Battery
US6355378B2 (en) Solid state electrolyte cell having at least one electrode impregnated with a solid electrolyte
JP2007207675A (en) Lithium secondary cell using ionic liquid
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
JP2001023687A (en) Nonaqueous electrolyte battery
JP2000285929A (en) Solid electrolyte battery
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
KR101017305B1 (en) Nonaqueous electrolyte battery
JP2004192896A (en) Cathode active substance, its manufacturing method and nonaqueous electrolyte secondary battery
CN1885610A (en) Battery
JPH07122262A (en) Electrode and its manufacture and secondary battery using the electrode
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP2002042785A (en) Lithium battery
JPH11185773A (en) Gelled electrolyte cell
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP4085481B2 (en) battery
JP2002015726A (en) Gel electrolyte secondary battery
JP3775022B2 (en) Gel electrolyte and gel electrolyte battery
JP2004186035A (en) Nonaqueous electrolytic solution battery
JP2000299125A (en) Nonaqueous electrolyte secondary battery
JP2003017126A (en) Solid electrolyte cell
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371