JP3775022B2 - Gel electrolyte and gel electrolyte battery - Google Patents

Gel electrolyte and gel electrolyte battery Download PDF

Info

Publication number
JP3775022B2
JP3775022B2 JP32014597A JP32014597A JP3775022B2 JP 3775022 B2 JP3775022 B2 JP 3775022B2 JP 32014597 A JP32014597 A JP 32014597A JP 32014597 A JP32014597 A JP 32014597A JP 3775022 B2 JP3775022 B2 JP 3775022B2
Authority
JP
Japan
Prior art keywords
gel electrolyte
plasticizer
weight
halogen
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32014597A
Other languages
Japanese (ja)
Other versions
JPH11154415A (en
Inventor
浩一郎 毛塚
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32014597A priority Critical patent/JP3775022B2/en
Publication of JPH11154415A publication Critical patent/JPH11154415A/en
Application granted granted Critical
Publication of JP3775022B2 publication Critical patent/JP3775022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭酸エステルを含有するゲル状電解質及びゲル状電解質電池に関する。
【0002】
【従来の技術】
近年、カメラ一体型ビデオテープレコーダ、携帯電話、携帯用コンピュータ等のポータブル電子機器が多く登場し、その小型軽量化が図られている。そしてこれらの電子機器のポータブル電源となる電池、特に二次電池、なかでもリチウムイオン電池について、薄型や折り曲げ可能な電池の研究開発が活発に進められている。このような電池の電解質として電解液を固体化した固体電解質の研究が盛んに行われており、特に、可塑剤を含んだゲル状の固体電解質(以下、ゲル状電解質と称する。)が注目を浴びている。
【0003】
リチウムイオン電池に使用するゲル状電解質の可塑剤として、炭酸プロピレンなどの炭酸エステル系非水溶媒にLiPF6のようなリチウム塩を溶解させた電解液を用いると、導電率の比較的高いゲル状電解質を得ることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、炭酸プロピレンなど一部の炭酸エステルは電気化学的に安定であるにもかかわらず、グラファイトなどを負極に用いた電池では、充電時に電解液の反応、分解が起こってしまう。電解液の反応、分解により充放電効率が著しく悪化するだけでなく、同時に放電容量など電池の諸特性にも悪影響を及ぼすという問題が生じる。このような問題は炭酸プロピレンなどを可塑剤として用いたゲル状電解質でも同様である。
【0005】
本発明は、上述した従来の実情に鑑みて提案されたものであり、充電時の可塑剤の反応、分解を防止し、電池の充放電効率を向上させるゲル状電解質、及びゲル状電解質電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るゲル状電解質は、可塑剤と、上記可塑剤を分散するマトリクス高分子とを含有し、上記可塑剤が、一般式(1)で表される炭酸エステル化合物を含有し、上記マトリクス高分子が、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体であることを特徴とする。
【0007】
【化3】

Figure 0003775022
【0008】
(式中、X1及びX2はハロゲン又は水素を表し、R1及びR2は同一又は異なるハロゲン化アルキル基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲン、Xbはハロゲン又は水素である。ただしX1,X2,R1,R2すべてがハロゲン又は水素である場合を除く。)
上述した本発明に係るゲル状電解質は、可塑剤が、一般式(1)で表される炭酸エステル化合物を含有し、電気化学的安定性を高めている。
【0009】
また、本発明のゲル状電解質電池は、負極と、正極と、ゲル状電解質とを有し、上記ゲル状電解質は、可塑剤がマトリクス高分子中に分散されてなり、上記可塑剤が、一般式(1)で表される炭酸エステル化合物を含有し、上記マトリクス高分子が、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体であることを特徴とする。
【0010】
【化4】
Figure 0003775022
【0011】
(式中、X1及びX2はハロゲン又は水素を表し、R1及びR2は同一又は異なるハロゲン化アルキル基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲン、Xbはハロゲン又は水素である。ただしX1,X2,R1,R2すべてがハロゲン又は水素である場合を除く。)
上述した本発明に係るゲル状電解質電池では、ゲル状電解質の可塑剤が一般式(1)で示される炭酸エステルを含有しており、電気化学的安定性が高く、充電時に負極上で可塑剤の分解が起こらない。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0013】
本発明のゲル状電解質は、リチウム塩を含有する可塑剤がマトリクス高分子中に溶解されてなる。
【0014】
上記可塑剤には、エステル類、エーテル類、炭酸エステル類などを、単独又は可塑剤の一成分として用いることができる。
【0015】
本発明のゲル状電解質の可塑剤は、一般式(1)で示される炭酸エステルを含有する。
【0016】
【化5】
Figure 0003775022
【0017】
(式中、X1及びX2はハロゲン又は水素を表し、R1及びR2は同一又は異なるハロゲン化アルキル基CnXa2n-m+1Xbm又は水素を表す。Xaはハロゲン、Xbはハロゲン又は水素である。ただしX1,X2,R1,R2すべてがハロゲン又は水素である場合を除く。)
好ましくは、あまり分子量が大きくなると導電率が下がるので、一般式(1)において、R1及びR2は、CF3、CF2CF3、CHF2など炭素群n=1〜3の群から選択されるハロゲン化アルキル基であることが好ましい。
【0018】
一般式(1)で示される炭酸エステルをゲル状電解質の可塑剤に含有させると、充電時に、グラファイト負極上で可塑剤の分解が起こらず、充放電効率が向上する。
【0019】
可塑剤は炭酸エチレンのような高誘電率溶媒と混合して用いるのが好ましいので、一般式(1)で示される炭酸エステルの含有量は、可塑剤の10重量%以上、80重量%以下が望ましい。炭酸エステルの含有量が可塑剤の10重量%より少ないと、グラファイト負極上で充電時の可塑剤の分解を抑制することができず、充放電効率を向上させることができない。また、炭酸エステルの含有量が可塑剤の80重量%より多いと、高誘電率溶媒の量が少なくなり、導電率が低下してしまう。
【0020】
また、上記可塑剤は、リチウム塩を含有する。本発明に係るゲル状電解質に用いられるリチウム塩として、通常、電池電解液に用いられる公知のリチウム塩を使用することができる。具体的には、LiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6などを挙げることができる。その中でも特にLiPF6、LiBF4が酸化安定性の点から望ましい。リチウム塩の濃度は、可塑剤の0.1mol/l以上、3.0mol/lが好ましく、より好ましくは、0.5mol/l以上、2.0mol/l以下である。
【0021】
上述したような可塑剤の含有量は、ゲル状電解質の30重量%以上、85重量%以下とすることが好ましい。可塑剤の含有量が85重量%より多ければイオン導電率は高いが、機械強度は保てない。可塑剤の含有量が30重量%より少ないと機械強度は大きいが、イオン導電率は低くなってしまう。可塑剤の含有量を、ゲル状電解質の30重量%以上、85重量%以下とすることで、イオン導電率と機械強度とを両立することができる。
【0022】
上述したような可塑剤をゲル化するマトリクス高分子としては、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体を用いる。フッ素系高分子であるビニリデンフルオライドとヘキサフルオロプロピレンを用いることで、酸化還元安定性を高めることができる。
【0023】
マトリクス高分子は、ゲル状電解質の10重量%以上、50重量%以下とすることが好ましい。
【0024】
上述したようなゲル状電解質を用いた、本発明に係るゲル状電解質電池1の一構成例を図1に示す。
【0025】
このゲル状電解質電池1は、集電体上に正極活物質層が形成された正極板2と、集電体上に負極活物質層が形成された負極板3と、セパレータ4と、正極板2を収容する正極外装材5と、負極板3を収容する負極外装材6とを有する。
【0026】
上記正極板2は、正極活物質と結着剤とを含有する正極合剤を集電体上に塗布、乾燥することにより作製される。集電体には例えばアルミニウム箔等の金属箔が用いられる。
【0027】
正極活物質には、目的とする電池の種類に応じて金属酸化物、金属硫化物又は特定の高分子を用いることができる。
【0028】
例えばリチウムイオン電池を構成する場合、正極活物質としては、TiS2、MoS2、NbSe2、V25等の金属硫化物あるいは酸化物を使用することができる。また、LiMx2(式中Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である。)を主体とするリチウム複合酸化物等を使用することができる。このリチウム複合酸化物を構成する遷移金属Mとしては、Co、Ni、Mn等が好ましい。このようなリチウム複合酸化物の具体例としてはLiCoO2、LiNiO2、LiNiyCo1-y2(式中、0<y<1である。)、LiMn24等を挙げることができる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度的に優れた正極活物質となる。正極には、これらの正極活物質の複数種をあわせて使用してもよい。
【0029】
また、上記正極合剤の結着剤としては、通常リチウムイオン電池の正極合剤に用いられている公知の結着剤を用いることができるほか、上記正極合剤に導電剤等、公知の添加剤を添加することができる。
【0030】
上記負極板3は、負極活物質と結着剤とを含有する負極合剤を、集電体上に塗布、乾燥することにより作製される。上記集電体には、例えば銅箔等の金属箔が用いられる。
【0031】
リチウムイオン電池を構成する場合、負極材料としては、リチウムをドープ、脱ドープできる材料を使用することが好ましい。リチウムをドープ、脱ドープできる材料として具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素繊維、活性炭等の炭素材料を使用することができる。上記コークス類には、ピッチコークス、ニートルコークス、石油コークス等がある。また、上記有機高分子化合物焼成体とは、フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したものを示す。
【0032】
上述した炭素材料のほか、リチウムをドープ、脱ドープできる材料として、ポリアセチレン、ポリピロール等の高分子やSnO2等の酸化物を使用することもできる。
【0033】
また、上記負極合剤の結着剤としては、通常リチウムイオン電池の負極合剤に用いられている公知の結着剤を用いることができるほか、上記負極合剤に公知の添加剤等を添加することができる。
【0034】
このゲル状電解質電池1では、可塑剤とマトリクス高分子とを含有する電解質溶液を正極活物質層又は負極活物質層上に塗布し、電解質溶液を正極活物質層又は負極活物質層中に浸透させた後に溶媒を除去して電解質をゲル化することにより、正極活物質層又は負極活物質層中にゲル状電解質を含浸させている。活物質層中にゲル状電解質を含浸させることで、ゲル状電解質電池1の内部抵抗を減少させ、かつ、活物質とゲル状電解質との接触状態を改善することができる。
【0035】
ゲル状電解質電池1は、例えば次のようにして製造される。
【0036】
正極板2は、正極活物質と結着剤とを含有する正極合剤を、集電体となる例えばアルミニウム箔等の金属箔上に均一に塗布、乾燥して正極活物質層を形成することにより作製される。
【0037】
負極板3は、負極活物質と結着剤とを含有する負極合剤を、集電体となる例えば銅箔等の金属箔上に均一に塗布、乾燥して負極活物質層を形成することにより作製される。
【0038】
電解質溶液は、リチウム塩を含有する可塑剤と、マトリクス高分子とを溶媒中に溶解させて調製される。本発明では、上記可塑剤が、一般式(1)で表される炭酸エステル化合物を含有する。
【0039】
まず、上記電解質溶液を、正極活物質層及び負極活物質層上に均一に塗布する。次に、電解質溶液を正極活物質層又は負極活物質層中に含浸させ、最後に溶媒を除去して電解質をゲル化させることにより、活物質中にゲル状電解質を含浸させる。
【0040】
最後に、以上のようにして作製された正極板2、負極板3をそれぞれ正極外装材5、負極外装材6に収容し、正極板2が収容された正極外装材5と、負極板3が収容された負極外装材5とを、セパレータ4を介して、正極板2と負極板3とが対向するように積層する。最後に正極外装材5、負極外装材6の外周縁部をホットメルト材7を介して熱融着することで接合、密閉してゲル状電解質電池1が完成する。
【0041】
本発明のゲル状電解質電池1は、円筒型、角型、コイン型、ボタン型等、その形状については特に限定されることはなく、また、薄型、大型等の種々の大きさにすることができる。
【0042】
【実施例】
図1に示すような平板型ゲル状電解質電池を作製した。
【0043】
〈実施例1〉
負極を次のように作製した。
【0044】
まず、粉砕した黒鉛粉末90重量部と、結着剤としてポリビニリデンフルオライド10重量部とを混合して負極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させスラリー状とした。
【0045】
そして、このスラリーを負極集電体である厚さ10μmの帯状銅箔の片面に均一に塗布し、乾燥後、ロールプレス機で圧縮成形し、負極を作製した。
【0046】
正極を次のように作製した。
【0047】
まず、正極活物質を得るために、炭酸リチウムと炭酸コバルトとを0.5mol対1molの比率で混合し、空気中900℃で5時間焼成した。次に、得られたLiCoO2を91重量部と、導電剤として黒鉛6重量部と、結着剤として、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体10重量部とを混合して正極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させスラリー状とした。
【0048】
そして、このスラリーを正極集電体である厚さ20μmのアルミニウム箔の片面に均一に塗布し、乾燥後、ロールプレス機で圧縮成形し、正極を作製した。
【0049】
ゲル状電解質を次のようにして得た。
【0050】
可塑剤を30gと、マトリクス高分子を10gと、テトラヒドロフラン(以下、THFと称する。)を60gとを混合溶解させてゲル状電解質溶液を調製した。
【0051】
ここで、上記可塑剤には、炭酸エチレン(以下、ECと称する。)を76.5重量%と、トリフルオロ化炭酸プロピレン(以下、TFPCと称する。)を8.5重量%と、LiPF6を15重量%との混合物を用いた。また、上記マトリクス高分子には、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体を用いた。
【0052】
正極上及び負極上に、上記ゲル状電解質溶液を均一に塗布し、常温で8時間放置してゲル状電解質溶液を正極中及び負極中に含浸させた。最後にTHFを気化させて除去した。
【0053】
ゲル状電解質を塗布した負極、及び正極をゲル状電解質側を合わせ、圧着することで面積2.5cm×4.0cm、厚さ0.3mmの平板型ゲル状電解質電池を作製した。
【0054】
〈実施例2〉
可塑剤の組成を、ECを68重量%と、TFPCを17重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0055】
〈実施例3〉
可塑剤の組成を、ECを51重量%と、炭酸プロピレン(以下、PCと称する)を8.5重量%と、TFPCを25.5重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0056】
〈実施例4〉
可塑剤の組成を、ECを42.5重量%と、PCを17重量%と、TFPCを25.5重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0057】
〈実施例5〉
可塑剤の組成を、ECを42.5重量%と、PCを8.5重量%と、TFPCを34重量%と、LiPF6を15重量%とし、可塑剤の量を3.3gとしたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0058】
〈実施例6〉
可塑剤の組成を、ECを42.5重量%と、PCを8.5重量%と、TFPCを34重量%と、LiPF6を15重量%とし、可塑剤の量を4.29gとしたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0059】
〈実施例7〉
可塑剤の組成を、ECを51重量%と、TFPCを34重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0060】
〈実施例8〉
可塑剤の組成を、ECを42.5重量%と、PCを8.5重量%と、TFPCを34重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0061】
〈実施例9〉
可塑剤の組成を、ECを34重量%と、PCを17重量%と、TFPCを34重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0062】
〈実施例10〉
可塑剤の組成を、ECを42.5重量%と、PCを8.5重量%と、TFPCを34重量%と、LiPF6を15重量%とし、可塑剤の量を56.7gとしたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0063】
〈実施例11〉
可塑剤の組成を、ECを42.5重量%と、PCを8.5重量%と、TFPCを34重量%と、LiPF6を15重量%とし、可塑剤の量を70gとしたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0064】
〈実施例12〉
可塑剤の組成を、ECを42.5重量%と、TFPCを42.5重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0065】
〈実施例13〉
可塑剤の組成を、ECを42.5重量%と、TFPCを42.5重量%と、LiPF6を15重量%とし、マトリクス高分子にポリビニリデンフルオライドを用いたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0066】
〈実施例14〉
可塑剤の組成を、ECを34重量%と、TFPCを51重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0067】
〈実施例15〉
可塑剤の組成を、ECを25.5重量%と、TFPCを59.5重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0068】
〈実施例16〉
可塑剤の組成を、ECを17重量%と、TFPCを68重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0069】
〈実施例17〉
可塑剤の組成を、ECを8.5重量%と、TFPCを76.5重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0070】
〈実施例18〉
可塑剤の組成を、TFPCを85重量%と、LiPF6を15重量%としたこと以外は、実施例1と同様にしてゲル状電解質電池を作製した。
【0071】
〈比較例〉
負極を次のように作製した。
【0072】
粉砕した黒鉛粉末90重量部と、結着剤としてポリビニリデンフルオライド10重量部とを混合して負極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させスラリー状とした。そして、このスラリーを負極集電体である厚さ10μmの帯状銅箔の片面に均一に塗布し、乾燥後、ロールプレス機で圧縮成形し、負極を作製した。
【0073】
正極を次のように作製した。
【0074】
正極活物質を得るために、炭酸リチウムと炭酸コバルトとを0.5mol対1molの比率で混合し、空気中900℃で5時間焼成した。次に、得られたLiCoO2を91重量部、導電剤として黒鉛6重量部、結着剤として、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体10重量部を混合して正極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させスラリー状とした。そして、このスラリーを正極集電体である厚さ20μmのアルミニウム箔の片面に均一に塗布し、乾燥後、ロールプレス機で圧縮成形し、正極を作製した。
【0075】
ゲル状電解質を次のようにして得た。
【0076】
可塑剤を30gと、マトリクス高分子を10gと、THFを60gとを混合溶解させてゲル状電解質溶液を調製した。
【0077】
ここで、上記可塑剤には、ECを42.5重量%と、PCを42.5重量%と、LiPF6を15重量%との混合物を用いた。また、上記マトリクス高分子には、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体を用いた。
【0078】
正極上及び負極上に、上記ゲル状電解質溶液を均一に塗布し、常温で8時間放置してゲル状電解質溶液を正極中及び負極中に含浸させた。最後にTHFを気化させて除去した。
【0079】
ゲル状電解質を塗布した負極、及び正極をゲル状電解質側を合わせ、圧着することで面積2.5cm×4.0cm、厚さ0.3mmの平板型ゲル状電解質電池を作製した。
【0080】
特性評価
上述のようにして作製された各電池について、初期放電容量、2サイクル目及び100サイクル目における充放電効率、30mA放電時容量と6mA放電時容量との比(以下、30mA放電時容量/6mA放電時容量と称する。)をそれぞれ評価した。
【0081】
初期放電容量は次のようにして評価した。まず、23℃の条件下で、6mAの定電流定電圧充電を上限4.2Vまで10時間行った。次に、6mAの定電流放電を終止電圧2.5V間で行った。
【0082】
充放電効率は次のようにして評価した。初期放電容量の評価実験と同じ条件で、充放電を100サイクル行った。2サイクル目と100サイクル目の充放電効率を決定した。
【0083】
30mA放電時容量/6mA放電時容量は次のようにして評価した。まず初期放電容量の評価実験と同じ条件で充放電を行った。つぎに、30mAの定電流で同様に充放電を行った。そして、30mA放電時と、6mA放電時での放電容量とを決定し、30mA放電時容量/6mA放電時容量を決定した。
【0084】
各電池についての初期容量、2サイクル目及び100サイクル目の充放電効率、及び30mA放電時容量/6mA放電時容量の評価結果を表1に示す。
【0085】
【表1】
Figure 0003775022
【0086】
表1から明らかなように、可塑剤中にTFPCを含有しない比較例1の電池に比べて、可塑剤中にTFPCを含有させた実施例1〜実施例18の電池では、初期容量、充放電効率、放電容量比のいずれも優れた特性を示した。
【0087】
そして、可塑剤中のTFPC濃度が10重量%以上、80重量%以下の範囲で初期容量、充放電効率が特に優れていることがわかった。
【0088】
また、実施例5〜実施例11では、ゲル状電解質中の可塑剤含有量をそれぞれ変化させたが、ゲル状電解質中の可塑剤含有量を25重量%とした実施例5では容量比が悪化してしまった。一方、ゲル状電解質中の可塑剤含有量を87.1重量%とした実施例11では容量比は優れているが、充放電効率が悪化してしまった。
【0089】
従って、ゲル状電解質中の可塑剤含有量を30重量%以上、85重量%以下とすることで、初期容量、充放電効率、容量比に優れたゲル状電解質電池を得られることがわかった。
【0090】
【発明の効果】
本発明のゲル状電解質は、可塑剤に炭酸エステル化合物を含有させることで、電気化学的安定性を高めることができる。
【0091】
また、本発明のゲル状電解質電池では、ゲル状電解質の可塑剤に炭酸エステル化合物を含有させることで、電気化学的安定性を高め、充電時に負極上での可塑剤の分解を防ぎ、充放電効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明のゲル状電解質電池の一構成例を示す断面図である。
【符号の説明】
1 ゲル状電解質電池、 2 正極板、 3 負極板、 4 セパレータ、 5 正極外装材、 6 負極外装材、 7 ホットメルト材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gel electrolyte containing a carbonate and a gel electrolyte battery.
[0002]
[Prior art]
In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a mobile phone, and a portable computer have appeared, and their size and weight have been reduced. Research and development of thin batteries and foldable batteries are being actively promoted for batteries serving as portable power sources for these electronic devices, particularly secondary batteries, especially lithium ion batteries. A solid electrolyte obtained by solidifying an electrolyte as an electrolyte of such a battery has been actively researched. In particular, a gel-like solid electrolyte containing a plasticizer (hereinafter referred to as a gel-like electrolyte) has attracted attention. I'm bathing.
[0003]
When an electrolyte solution in which a lithium salt such as LiPF 6 is dissolved in a carbonate ester-based non-aqueous solvent such as propylene carbonate is used as a plasticizer for a gel electrolyte used in a lithium ion battery, the gel state has a relatively high conductivity. An electrolyte can be obtained.
[0004]
[Problems to be solved by the invention]
However, although some carbonates such as propylene carbonate are electrochemically stable, in a battery using graphite or the like for the negative electrode, the reaction and decomposition of the electrolytic solution occur during charging. There is a problem that not only the charge and discharge efficiency is remarkably deteriorated due to the reaction and decomposition of the electrolytic solution, but also the battery characteristics such as discharge capacity are adversely affected. Such a problem also applies to a gel electrolyte using propylene carbonate or the like as a plasticizer.
[0005]
The present invention has been proposed in view of the above-described conventional situation, and provides a gel electrolyte and a gel electrolyte battery that prevent the reaction and decomposition of a plasticizer during charging and improve the charge / discharge efficiency of the battery. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The gel electrolyte according to the present invention contains a plasticizer and a matrix polymer in which the plasticizer is dispersed, the plasticizer contains a carbonate compound represented by the general formula (1), and the matrix The polymer is characterized by being a copolymer of vinylidene fluoride and hexafluoropropylene.
[0007]
[Chemical 3]
Figure 0003775022
[0008]
(Wherein, X1 and X2 represent a halogen or hydrogen, .Xa R1 and R2 represent the same or different halogenated alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen or hydrogen Yes, except when X1, X2, R1, and R2 are all halogen or hydrogen.)
In the gel electrolyte according to the present invention described above, the plasticizer contains a carbonate ester compound represented by the general formula (1), and the electrochemical stability is enhanced.
[0009]
The gel electrolyte battery of the present invention includes a negative electrode, a positive electrode, and a gel electrolyte. The gel electrolyte is formed by dispersing a plasticizer in a matrix polymer, and the plasticizer is generally The carbonic acid ester compound represented by the formula (1) is contained, and the matrix polymer is a copolymer of vinylidene fluoride and hexafluoropropylene.
[0010]
[Formula 4]
Figure 0003775022
[0011]
(Wherein, X1 and X2 represent a halogen or hydrogen, .Xa R1 and R2 represent the same or different halogenated alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen or hydrogen Yes, except when X1, X2, R1, and R2 are all halogen or hydrogen.)
In the above-described gel electrolyte battery according to the present invention, the plasticizer of the gel electrolyte contains the carbonate represented by the general formula (1), has high electrochemical stability, and is plasticized on the negative electrode during charging. Does not break down.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0013]
The gel electrolyte of the present invention is obtained by dissolving a plasticizer containing a lithium salt in a matrix polymer.
[0014]
As the plasticizer, esters, ethers, carbonates and the like can be used alone or as a component of the plasticizer.
[0015]
The plasticizer of the gel electrolyte of the present invention contains a carbonic acid ester represented by the general formula (1).
[0016]
[Chemical formula 5]
Figure 0003775022
[0017]
(Wherein, X1 and X2 represent a halogen or hydrogen, .Xa R1 and R2 represent the same or different halogenated alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen or hydrogen Yes, except when X1, X2, R1, and R2 are all halogen or hydrogen.)
Preferably, the conductivity decreases when the molecular weight becomes too large. Therefore, in general formula (1), R 1 and R 2 are selected from the group of carbon groups n = 1 to 3 such as CF 3 , CF 2 CF 3 , and CHF 2. The halogenated alkyl group is preferably used.
[0018]
When the carbonic acid ester represented by the general formula (1) is contained in the plasticizer of the gel electrolyte, the plasticizer is not decomposed on the graphite negative electrode during charging, and the charge / discharge efficiency is improved.
[0019]
Since the plasticizer is preferably mixed with a high dielectric constant solvent such as ethylene carbonate, the content of the carbonate represented by the general formula (1) is 10% by weight or more and 80% by weight or less of the plasticizer. desirable. If the carbonate ester content is less than 10% by weight of the plasticizer, decomposition of the plasticizer during charging on the graphite negative electrode cannot be suppressed, and charge / discharge efficiency cannot be improved. Moreover, when there is more content of carbonate ester than 80 weight% of a plasticizer, the quantity of a high dielectric constant solvent will decrease and electrical conductivity will fall.
[0020]
The plasticizer contains a lithium salt. As the lithium salt used in the gel electrolyte according to the present invention, a known lithium salt usually used in a battery electrolyte can be used. Specific examples include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 and LiSiF 6. it can. Of these, LiPF 6 and LiBF 4 are particularly desirable from the viewpoint of oxidation stability. The concentration of the lithium salt is preferably from 0.1 mol / l to 3.0 mol / l of the plasticizer, more preferably from 0.5 mol / l to 2.0 mol / l.
[0021]
The content of the plasticizer as described above is preferably 30% by weight or more and 85% by weight or less of the gel electrolyte. If the plasticizer content is more than 85% by weight, the ionic conductivity is high, but the mechanical strength cannot be maintained. If the plasticizer content is less than 30% by weight, the mechanical strength is high, but the ionic conductivity is low. By making the content of the plasticizer 30% by weight or more and 85% by weight or less of the gel electrolyte, it is possible to achieve both ionic conductivity and mechanical strength.
[0022]
A copolymer of vinylidene fluoride and hexafluoropropylene is used as the matrix polymer for gelling the plasticizer as described above. By using vinylidene fluoride and hexafluoropropylene which are fluorine-based polymers, redox stability can be enhanced.
[0023]
The matrix polymer is preferably 10% by weight or more and 50% by weight or less of the gel electrolyte.
[0024]
One structural example of the gel electrolyte battery 1 according to the present invention using the gel electrolyte as described above is shown in FIG.
[0025]
This gel electrolyte battery 1 includes a positive electrode plate 2 having a positive electrode active material layer formed on a current collector, a negative electrode plate 3 having a negative electrode active material layer formed on a current collector, a separator 4, and a positive electrode plate. 2, and a negative electrode exterior material 6 that accommodates the negative electrode plate 3.
[0026]
The positive electrode plate 2 is produced by applying and drying a positive electrode mixture containing a positive electrode active material and a binder on a current collector. For the current collector, for example, a metal foil such as an aluminum foil is used.
[0027]
As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the target battery.
[0028]
For example, when a lithium ion battery is configured, a metal sulfide or oxide such as TiS 2 , MoS 2 , NbSe 2 , and V 2 O 5 can be used as the positive electrode active material. Further, lithium composite oxidation mainly composed of LiM x O 2 (wherein M represents one or more transition metals, and x is usually 0.05 or more and 1.10 or less depending on the charge / discharge state of the battery). Things can be used. As the transition metal M constituting this lithium composite oxide, Co, Ni, Mn and the like are preferable. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiNiyCo 1-y O 2 (where 0 <y <1), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become a positive electrode active material excellent in energy density. A plurality of these positive electrode active materials may be used in combination for the positive electrode.
[0029]
Moreover, as the binder of the positive electrode mixture, a known binder usually used for a positive electrode mixture of a lithium ion battery can be used, and a known additive such as a conductive agent is added to the positive electrode mixture. An agent can be added.
[0030]
The negative electrode plate 3 is produced by applying and drying a negative electrode mixture containing a negative electrode active material and a binder on a current collector. For the current collector, for example, a metal foil such as a copper foil is used.
[0031]
When configuring a lithium ion battery, it is preferable to use a material capable of doping and dedoping lithium as the negative electrode material. Specific examples of materials that can be doped and dedoped with lithium include the use of carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, fired organic polymer compounds, carbon fibers, and activated carbon. it can. Examples of the coke include pitch coke, knee coke, and petroleum coke. In addition, the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
[0032]
In addition to the carbon material described above, a polymer such as polyacetylene or polypyrrole or an oxide such as SnO 2 can also be used as a material capable of doping and dedoping lithium.
[0033]
Moreover, as a binder of the said negative electrode mixture, the well-known binder normally used for the negative electrode mixture of a lithium ion battery can be used, and a well-known additive etc. are added to the said negative electrode mixture. can do.
[0034]
In this gel electrolyte battery 1, an electrolyte solution containing a plasticizer and a matrix polymer is applied on a positive electrode active material layer or a negative electrode active material layer, and the electrolyte solution penetrates into the positive electrode active material layer or the negative electrode active material layer. Then, the solvent is removed to gel the electrolyte, whereby the positive electrode active material layer or the negative electrode active material layer is impregnated with the gel electrolyte. By impregnating the gel electrolyte in the active material layer, the internal resistance of the gel electrolyte battery 1 can be reduced and the contact state between the active material and the gel electrolyte can be improved.
[0035]
The gel electrolyte battery 1 is manufactured as follows, for example.
[0036]
The positive electrode plate 2 is formed by uniformly applying and drying a positive electrode mixture containing a positive electrode active material and a binder on a metal foil such as an aluminum foil that serves as a current collector to form a positive electrode active material layer. It is produced by.
[0037]
The negative electrode plate 3 is formed by uniformly applying and drying a negative electrode mixture containing a negative electrode active material and a binder on a metal foil such as a copper foil as a current collector to form a negative electrode active material layer. It is produced by.
[0038]
The electrolyte solution is prepared by dissolving a plasticizer containing a lithium salt and a matrix polymer in a solvent. In the present invention, the plasticizer contains a carbonate ester compound represented by the general formula (1).
[0039]
First, the electrolyte solution is uniformly applied on the positive electrode active material layer and the negative electrode active material layer. Next, the electrolyte solution is impregnated in the positive electrode active material layer or the negative electrode active material layer, and finally the solvent is removed to gel the electrolyte, whereby the active material is impregnated with the gel electrolyte.
[0040]
Finally, the positive electrode plate 2 and the negative electrode plate 3 produced as described above are accommodated in the positive electrode exterior material 5 and the negative electrode exterior material 6, respectively. The positive electrode exterior material 5 in which the positive electrode plate 2 is accommodated and the negative electrode plate 3 The accommodated negative electrode exterior material 5 is laminated with the separator 4 interposed therebetween so that the positive electrode plate 2 and the negative electrode plate 3 face each other. Finally, the outer peripheral edge portions of the positive electrode outer packaging material 5 and the negative electrode outer packaging material 6 are heat-sealed through a hot melt material 7 to be joined and sealed to complete the gel electrolyte battery 1.
[0041]
The gel electrolyte battery 1 of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and the shape thereof is not particularly limited, and may be various sizes such as a thin shape and a large size. it can.
[0042]
【Example】
A flat gel electrolyte battery as shown in FIG. 1 was produced.
[0043]
<Example 1>
The negative electrode was produced as follows.
[0044]
First, 90 parts by weight of pulverized graphite powder and 10 parts by weight of polyvinylidene fluoride as a binder are mixed to prepare a negative electrode mixture, which is further dispersed in N-methyl-2-pyrrolidone to form a slurry. did.
[0045]
And this slurry was uniformly apply | coated to the single side | surface of 10-micrometer-thick strip | belt-shaped copper foil which is a negative electrode electrical power collector, after drying, it compression-molded with the roll press machine, and produced the negative electrode.
[0046]
The positive electrode was produced as follows.
[0047]
First, in order to obtain a positive electrode active material, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol and fired at 900 ° C. for 5 hours in air. Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of a copolymer of vinylidene fluoride and hexafluoropropylene as a binder were mixed to mix the positive electrode. An agent was prepared and further dispersed in N-methyl-2-pyrrolidone to form a slurry.
[0048]
And this slurry was uniformly apply | coated to the single side | surface of the 20-micrometer-thick aluminum foil which is a positive electrode electrical power collector, after drying, it compression-molded with the roll press machine, and produced the positive electrode.
[0049]
A gel electrolyte was obtained as follows.
[0050]
A gel electrolyte solution was prepared by mixing and dissolving 30 g of a plasticizer, 10 g of a matrix polymer, and 60 g of tetrahydrofuran (hereinafter referred to as THF).
[0051]
Here, the plasticizer includes 76.5% by weight of ethylene carbonate (hereinafter referred to as EC), 8.5% by weight of trifluoropropylene carbonate (hereinafter referred to as TFPC), and LiPF 6. Was used as a mixture with 15% by weight. The matrix polymer was a copolymer of vinylidene fluoride and hexafluoropropylene.
[0052]
The gel electrolyte solution was uniformly applied on the positive electrode and the negative electrode, and allowed to stand at room temperature for 8 hours to impregnate the gel electrolyte solution in the positive electrode and the negative electrode. Finally, THF was removed by evaporation.
[0053]
The negative electrode to which the gel electrolyte was applied and the positive electrode were joined to the gel electrolyte side and pressed together to produce a flat gel electrolyte battery having an area of 2.5 cm × 4.0 cm and a thickness of 0.3 mm.
[0054]
<Example 2>
A gel electrolyte battery was produced in the same manner as in Example 1 except that the plasticizer was composed of 68 wt% EC, 17 wt% TFPC, and 15 wt% LiPF 6 .
[0055]
<Example 3>
The composition of the plasticizer is except that EC is 51% by weight, propylene carbonate (hereinafter referred to as PC) is 8.5% by weight, TFPC is 25.5% by weight, and LiPF 6 is 15% by weight. A gel electrolyte battery was produced in the same manner as in Example 1.
[0056]
<Example 4>
The composition of the plasticizer was the same as in Example 1 except that EC was 42.5% by weight, PC was 17% by weight, TFPC was 25.5% by weight, and LiPF 6 was 15% by weight. A gel electrolyte battery was produced.
[0057]
<Example 5>
The composition of the plasticizer was 42.5% by weight of EC, 8.5% by weight of PC, 34% by weight of TFPC, 15% by weight of LiPF 6 and the amount of plasticizer was 3.3 g. A gel electrolyte battery was produced in the same manner as in Example 1 except for the above.
[0058]
<Example 6>
The composition of the plasticizer was 42.5% by weight of EC, 8.5% by weight of PC, 34% by weight of TFPC, 15% by weight of LiPF 6 and the amount of plasticizer was 4.29 g. A gel electrolyte battery was produced in the same manner as in Example 1 except for the above.
[0059]
<Example 7>
A gel electrolyte battery was prepared in the same manner as in Example 1 except that the plasticizer was 51 wt% EC, 34 wt% TFPC, and 15 wt% LiPF 6 .
[0060]
<Example 8>
The composition of the plasticizer was the same as in Example 1 except that EC was 42.5% by weight, PC was 8.5% by weight, TFPC was 34% by weight, and LiPF 6 was 15% by weight. A gel electrolyte battery was produced.
[0061]
<Example 9>
The gel electrolyte battery was the same as in Example 1 except that the plasticizer composition was 34% by weight of EC, 17% by weight of PC, 34% by weight of TFPC, and 15% by weight of LiPF 6. Was made.
[0062]
<Example 10>
The composition of the plasticizer was 42.5% by weight of EC, 8.5% by weight of PC, 34% by weight of TFPC, 15% by weight of LiPF 6 and the amount of plasticizer was 56.7 g. A gel electrolyte battery was produced in the same manner as in Example 1 except for the above.
[0063]
<Example 11>
The composition of the plasticizer is that EC is 42.5% by weight, PC is 8.5% by weight, TFPC is 34% by weight, LiPF 6 is 15% by weight, and the amount of the plasticizer is 70 g. A gel electrolyte battery was produced in the same manner as in Example 1.
[0064]
<Example 12>
A gel electrolyte battery was prepared in the same manner as in Example 1 except that the plasticizer was composed of 42.5 wt% EC, 42.5 wt% TFPC, and 15 wt% LiPF 6 . .
[0065]
<Example 13>
Example 1 except that the plasticizer was composed of 42.5% by weight of EC, 42.5% by weight of TFPC, 15% by weight of LiPF 6 and polyvinylidene fluoride was used as the matrix polymer. A gel electrolyte battery was produced in the same manner as described above.
[0066]
<Example 14>
A gel electrolyte battery was fabricated in the same manner as in Example 1 except that the plasticizer was 34 wt% EC, 51 wt% TFPC, and 15 wt% LiPF 6 .
[0067]
<Example 15>
A gel electrolyte battery was prepared in the same manner as in Example 1 except that the plasticizer was composed of 25.5 wt% EC, 59.5 wt% TFPC, and 15 wt% LiPF 6 . .
[0068]
<Example 16>
A gel electrolyte battery was produced in the same manner as in Example 1 except that the plasticizer was 17 wt% EC, 68 wt% TFPC, and 15 wt% LiPF 6 .
[0069]
<Example 17>
The composition of the plasticizer, and 8.5% by weight of EC, except that it has a 76.5% by weight of TFPC, the LiPF 6 and 15 wt%, to prepare a gel electrolyte battery in the same manner as in Example 1 .
[0070]
<Example 18>
A gel electrolyte battery was produced in the same manner as in Example 1 except that the plasticizer was 85% by weight of TFPC and 15% by weight of LiPF 6 .
[0071]
<Comparative example>
The negative electrode was produced as follows.
[0072]
90 parts by weight of pulverized graphite powder and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was further dispersed in N-methyl-2-pyrrolidone to form a slurry. And this slurry was uniformly apply | coated to the single side | surface of a 10-micrometer-thick strip | belt-shaped copper foil which is a negative electrode electrical power collector, after drying, it compression-molded with the roll press machine, and produced the negative electrode.
[0073]
The positive electrode was produced as follows.
[0074]
In order to obtain the positive electrode active material, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol and fired at 900 ° C. for 5 hours in the air. Next, 91 parts by weight of LiCoO 2 obtained, 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of a copolymer of vinylidene fluoride and hexafluoropropylene as a binder are mixed to prepare a positive electrode mixture. Further, this was dispersed in N-methyl-2-pyrrolidone to form a slurry. And this slurry was uniformly apply | coated to the single side | surface of the 20-micrometer-thick aluminum foil which is a positive electrode electrical power collector, after drying, it compression-molded with the roll press machine, and produced the positive electrode.
[0075]
A gel electrolyte was obtained as follows.
[0076]
A gel electrolyte solution was prepared by mixing and dissolving 30 g of a plasticizer, 10 g of a matrix polymer, and 60 g of THF.
[0077]
Here, as the plasticizer, a mixture of 42.5% by weight of EC, 42.5% by weight of PC, and 15% by weight of LiPF 6 was used. The matrix polymer was a copolymer of vinylidene fluoride and hexafluoropropylene.
[0078]
The gel electrolyte solution was uniformly applied on the positive electrode and the negative electrode, and allowed to stand at room temperature for 8 hours to impregnate the gel electrolyte solution in the positive electrode and the negative electrode. Finally, THF was removed by evaporation.
[0079]
The negative electrode to which the gel electrolyte was applied and the positive electrode were joined to the gel electrolyte side and pressed together to produce a flat gel electrolyte battery having an area of 2.5 cm × 4.0 cm and a thickness of 0.3 mm.
[0080]
Characteristic evaluation About each battery produced as mentioned above, initial discharge capacity, charge-discharge efficiency in the 2nd cycle and the 100th cycle, ratio of 30mA discharge capacity and 6mA discharge capacity (hereinafter, 30mA) Discharge capacity / 6 mA discharge capacity) was evaluated.
[0081]
The initial discharge capacity was evaluated as follows. First, under the condition of 23 ° C., 6 mA constant current and constant voltage charging was performed to an upper limit of 4.2 V for 10 hours. Next, a constant current discharge of 6 mA was performed at a final voltage of 2.5V.
[0082]
The charge / discharge efficiency was evaluated as follows. Under the same conditions as the initial discharge capacity evaluation experiment, 100 cycles of charge and discharge were performed. The charge / discharge efficiencies of the second and 100th cycles were determined.
[0083]
Capacity at 30 mA discharge / 6 capacity at 6 mA discharge was evaluated as follows. First, charging / discharging was performed under the same conditions as in the evaluation experiment of the initial discharge capacity. Next, charging / discharging was similarly performed with a constant current of 30 mA. Then, the discharge capacity at 30 mA discharge and 6 mA discharge were determined, and the capacity at 30 mA discharge / 6 mA discharge capacity was determined.
[0084]
Table 1 shows the evaluation results of the initial capacity, charge / discharge efficiency at the second and 100th cycles, and capacity at 30 mA discharge / 6 mA discharge capacity for each battery.
[0085]
[Table 1]
Figure 0003775022
[0086]
As is clear from Table 1, in the batteries of Examples 1 to 18 in which TFPC was contained in the plasticizer as compared with the battery of Comparative Example 1 that did not contain TFPC in the plasticizer, the initial capacity and charge / discharge were Both efficiency and discharge capacity ratio showed excellent characteristics.
[0087]
And it turned out that initial capacity and charge-and-discharge efficiency are especially excellent in the range whose TFPC density | concentration in a plasticizer is 10 to 80 weight%.
[0088]
In Examples 5 to 11, the plasticizer content in the gel electrolyte was changed. However, in Example 5 in which the plasticizer content in the gel electrolyte was 25% by weight, the capacity ratio was deteriorated. have done. On the other hand, in Example 11 in which the plasticizer content in the gel electrolyte was 87.1% by weight, the capacity ratio was excellent, but the charge / discharge efficiency was deteriorated.
[0089]
Therefore, it was found that a gel electrolyte battery excellent in initial capacity, charge / discharge efficiency, and capacity ratio can be obtained by setting the plasticizer content in the gel electrolyte to 30 wt% or more and 85 wt% or less.
[0090]
【The invention's effect】
The gel electrolyte of this invention can improve electrochemical stability by making a plasticizer contain a carbonate ester compound.
[0091]
Moreover, in the gel electrolyte battery of the present invention, by adding a carbonate ester compound to the plasticizer of the gel electrolyte, the electrochemical stability is improved, the decomposition of the plasticizer on the negative electrode during charging is prevented, and charge / discharge is performed. Efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structural example of a gel electrolyte battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gel electrolyte battery, 2 Positive electrode plate, 3 Negative electrode plate, 4 Separator, 5 Positive electrode exterior material, 6 Negative electrode exterior material, 7 Hot-melt material

Claims (10)

可塑剤と、
上記可塑剤を分散するマトリクス高分子とを含有し、
上記可塑剤が、一般式(1)で表される炭酸エステル化合物を含有し、上記マトリクス高分子が、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体であることを特徴とするゲル状電解質。
Figure 0003775022
(式中、X1及びX2はハロゲン又は水素を表し、R1及びR2は同一又は異なるハロゲンかアルキル基CXa2n−m+1Xb又は水素を表す。Xaはハロゲン、Xbはハロゲン又は水素である。ただしX1,X2,R1,R2すべてがハロゲン又は水素である場合を除く。)
A plasticizer,
Containing a matrix polymer in which the plasticizer is dispersed,
A gel electrolyte, wherein the plasticizer contains a carbonate compound represented by the general formula (1), and the matrix polymer is a copolymer of vinylidene fluoride and hexafluoropropylene .
Figure 0003775022
(Wherein, X1 and X2 represent a halogen or hydrogen, R1 and R2 are .Xa represent the same or different halogen or an alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen or hydrogen. (However, the case where X1, X2, R1, and R2 are all halogen or hydrogen is excluded.)
上記可塑剤は、上記炭酸エステル化合物を10重量%以上、80重量%以下の割合で含有することを特徴とする請求項1記載のゲル状電解質。  The gel electrolyte according to claim 1, wherein the plasticizer contains the carbonate compound in a proportion of 10 wt% to 80 wt%. 上記可塑剤を30重量%以上、85重量%以下の割合で含有することを特徴とする請求項1記載のゲル状電解質。  2. The gel electrolyte according to claim 1, wherein the plasticizer is contained in a proportion of 30% by weight to 85% by weight. 負極と、正極と、ゲル状電解質とを有し、
上記ゲル状電解質は、可塑剤がマトリクス高分子中に分散されてなり、上記可塑剤が、一般式(1)で表される炭酸エステル化合物を含有し、上記マトリクス高分子が、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体であることを特徴とするゲル状電解質電池。
Figure 0003775022
(式中、X1及びX2はハロゲン又は水素を表し、R1及びR2は同一又は異なるハロゲンかアルキル基CXa2n−m+1Xb又は水素を表す。Xaはハロゲン、Xbはハロゲン又は水素である。ただしX1,X2,R1,R2すべてがハロゲン又は水素である場合を除く。)
A negative electrode, a positive electrode, and a gel electrolyte;
In the gel electrolyte, a plasticizer is dispersed in a matrix polymer, the plasticizer contains a carbonate compound represented by the general formula (1), and the matrix polymer is composed of vinylidene fluoride and A gel electrolyte battery characterized by being a copolymer with hexafluoropropylene .
Figure 0003775022
(Wherein, X1 and X2 represent a halogen or hydrogen, R1 and R2 are .Xa represent the same or different halogen or an alkyl group C n Xa 2n-m + 1 Xb m or hydrogen halogen, Xb is halogen or hydrogen. (However, the case where X1, X2, R1, and R2 are all halogen or hydrogen is excluded.)
上記可塑剤は、上記炭酸エステル化合物を10重量%以上、80重量%以下の割合で含有することを特徴とする請求項4記載のゲル状電解質電池。  5. The gel electrolyte battery according to claim 4, wherein the plasticizer contains the carbonate compound in a proportion of 10 wt% or more and 80 wt% or less. 上記ゲル状電解質は、上記可塑剤を30重量%以上、85重量%以下の割合で含有することを特徴とする請求項4記載のゲル状電解質電池。  The gel electrolyte battery according to claim 4, wherein the gel electrolyte contains the plasticizer in a proportion of 30 wt% to 85 wt%. 上記負極が、リチウムをドープ及び/又は脱ドープできる材料を含有していることを特徴とする請求項4記載のゲル状電解質電池。  The gel electrolyte battery according to claim 4, wherein the negative electrode contains a material capable of doping and / or dedoping lithium. 上記リチウムをドープ及び/又は脱ドープできる材料が、炭素材料であることを特徴とする請求項7記載のゲル状電解質電池。  The gel electrolyte battery according to claim 7, wherein the material capable of doping and / or dedoping lithium is a carbon material. 上記炭素材料が、黒鉛であることを特徴とする請求項8記載のゲル状電解質電池。  The gel electrolyte battery according to claim 8, wherein the carbon material is graphite. 上記正極が、リチウムと遷移金属との複合酸化物を含有していることを特徴とする請求項4記載のゲル状電解質電池。  The gel electrolyte battery according to claim 4, wherein the positive electrode contains a composite oxide of lithium and a transition metal.
JP32014597A 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery Expired - Lifetime JP3775022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32014597A JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32014597A JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11154415A JPH11154415A (en) 1999-06-08
JP3775022B2 true JP3775022B2 (en) 2006-05-17

Family

ID=18118219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32014597A Expired - Lifetime JP3775022B2 (en) 1997-11-20 1997-11-20 Gel electrolyte and gel electrolyte battery

Country Status (1)

Country Link
JP (1) JP3775022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100280705B1 (en) * 1998-11-05 2001-03-02 김순택 Electrode active material composition for lithium ion polymer battery and manufacturing method of electrode plate for lithium ion polymer battery using same
CN117384330B (en) * 2023-12-12 2024-02-23 蓝固(淄博)新能源科技有限公司 Preparation method of fluoro-1, 3-dioxolane heterocyclic compound, in-situ solid electrolyte, preparation method and application thereof

Also Published As

Publication number Publication date
JPH11154415A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
US6919143B2 (en) Positive active material composition for lithium-sulfur battery and lithium-sulfur battery fabricated using same
JP4081895B2 (en) Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery
JP5376771B2 (en) Organic electrolyte and lithium battery using the same
KR100624059B1 (en) Solid state electrolyte cell and method for producing same
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
JP2000285929A (en) Solid electrolyte battery
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
CN100444458C (en) Battery
JP2004192896A (en) Cathode active substance, its manufacturing method and nonaqueous electrolyte secondary battery
JP4797577B2 (en) battery
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
KR20040078587A (en) Battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP2002042785A (en) Lithium battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH08138649A (en) Non-aqueous secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP2007134245A (en) Electrolyte solution and battery
JPH11185773A (en) Gelled electrolyte cell
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP3775022B2 (en) Gel electrolyte and gel electrolyte battery
JP4085481B2 (en) battery
JP2000299125A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371