JPH11145019A - Structure of semiconductor substrate and method for manufacturing it - Google Patents

Structure of semiconductor substrate and method for manufacturing it

Info

Publication number
JPH11145019A
JPH11145019A JP31224597A JP31224597A JPH11145019A JP H11145019 A JPH11145019 A JP H11145019A JP 31224597 A JP31224597 A JP 31224597A JP 31224597 A JP31224597 A JP 31224597A JP H11145019 A JPH11145019 A JP H11145019A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
bonding
semiconductor
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31224597A
Other languages
Japanese (ja)
Other versions
JP2993484B2 (en
Inventor
Tomohiro Hamashima
智宏 濱嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9312245A priority Critical patent/JP2993484B2/en
Publication of JPH11145019A publication Critical patent/JPH11145019A/en
Application granted granted Critical
Publication of JP2993484B2 publication Critical patent/JP2993484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure of a partial SOI substrate, together with its manufacturing method, wherein no void takes place at a joint surface of a vertical power element formation region, which affects on device characteristics of a power IC, while a good joint interface is provided across the entire substrate surface. SOLUTION: Related to the structure of a semiconductor substrate wherein secular polish surfaces of a pair of two semiconductor substrates are tightly jointed each other, an insulating layer 3 is formed at a part of a main surface which is to be a joint surface of one semiconductor substrate, at least one notch 6 acting as a tight-joint end point is formed at a peripheral part of at least one semiconductor substrate, and related to the shape of the notch 6, the length in substrate's radius direction is preferred to be equal to that in substrate's circumferential direction or longer, with a wedge-like notch also preferred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、対をなす2枚の半
導体基板の各鏡面研磨面を互いに密着接合して成る半導
体基板基板の構造およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor substrate formed by closely bonding mirror-polished surfaces of two pairs of semiconductor substrates to each other and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図3(a),(b),(c),(d)お
よび(e)は、第1の従来例の製造工程を順に示す断面
図、図4は、第2の従来例の基板の接合直前状態を示す
断面図である。
3 (a), 3 (b), 3 (c), 3 (d) and 3 (e) are cross-sectional views showing the manufacturing steps of a first conventional example, and FIG. 4 is a second conventional example. It is sectional drawing which shows the state just before joining of the board | substrate of an example.

【0003】基板貼り合わせ法は、多層膜構造基板、特
にSOI基板の作製方法として近年注目され、開発が進
んでいる。SOI(Silicon On Insulator)基板は、電
力制御用の高耐圧デバイスにおいて実用化され、低電圧
動作の次世代CMOS用の基板としても研究開発が盛ん
になってきた。その中で、パワー素子の分野において高
耐圧デバイスが実用化された実績を基に、高機能化、高
集積化、高信頼性をめざしたインテリジェントパワーデ
バイス(IPD:Intelligent Power Devices)用基板
への貼り合わせSOI基板の応用が活発化してきてい
る。
[0003] The substrate bonding method has recently attracted attention as a method for manufacturing a multilayer film structure substrate, particularly an SOI substrate, and is being developed. SOI (Silicon On Insulator) substrates have been put to practical use in high-voltage devices for power control, and research and development have been active as substrates for next-generation CMOS operating at low voltage. Among them, based on the track record of high-voltage devices in the field of power devices, we have developed substrates for intelligent power devices (IPDs) aiming for higher functionality, higher integration, and higher reliability. The application of the bonded SOI substrate has been activated.

【0004】IPDにおいては、大電流を制御する高耐
圧のパワーデバイスと、それを制御する周辺回路のデバ
イスを同一チップ上に混載することが必要となってく
る。このパワーデバイスと周辺回路部のデバイスとを同
一チップ上に形成し、それらを電気的に完全に絶縁する
ために部分SOI基板が用いられる。
In the IPD, it is necessary to mix a high-voltage power device for controlling a large current and a peripheral circuit device for controlling the power device on the same chip. A partial SOI substrate is used to form the power device and the device of the peripheral circuit portion on the same chip and electrically insulate them completely.

【0005】以下、図3(a)〜(e)に示す第1の従
来例、特開平4−29353号公報にて開示されたSO
I基板の製造方法を示す工程順断面図により説明する。
A first conventional example shown in FIGS. 3 (a) to 3 (e) will now be described.
The method will be described with reference to the cross-sectional views in the order of steps showing the method of manufacturing the I-board.

【0006】まず、n+ 型単結晶シリコン基板21の一
主面上に酸化膜、続いて窒化膜を形成し、フォトリソグ
ラフィ法により所定のパターンのフォトレジストを形成
し、所定の箇所を開口する。次にフォトレジストをマス
クにしてイオンエッチング法等により浅い段差を形成す
る。熱酸化またはCVD(Chemical Vapor Depositio
n)法等により、前記浅い段差の領域にSiO2 の絶縁
膜23を部分的に複数形成する(図3(a))。次に、
基板21の単結晶シリコン露出面と絶縁膜23の表面が
平坦になるように、例えば機械的化学的研磨(CMP)
によって、あるいは弗酸系の化学的エッチングにより絶
縁膜23を除去する(図3(b))。
First, an oxide film and then a nitride film are formed on one main surface of an n + -type single crystal silicon substrate 21, a photoresist having a predetermined pattern is formed by photolithography, and a predetermined location is opened. . Next, a shallow step is formed by ion etching or the like using the photoresist as a mask. Thermal oxidation or CVD (Chemical Vapor Depositio
A plurality of SiO 2 insulating films 23 are partially formed in the shallow step region by the n) method or the like (FIG. 3A). next,
For example, mechanical and chemical polishing (CMP) so that the exposed surface of the single crystal silicon of the substrate 21 and the surface of the insulating film 23 become flat.
Or the insulating film 23 is removed by hydrofluoric acid chemical etching (FIG. 3B).

【0007】以上のようにして得られた単結晶シリコン
と部分的に形成された絶縁膜23を含む平坦面と、他方
のn- 型単結晶シリコン基板22の一方の主面とを対向
して保持し、室温下の清浄な雰囲気で静かに貼り合わせ
る。この後、800〜1100℃の熱処理を行うことに
より、強固に接合された一枚の複合基板を得る(図3
(c))。
The flat surface including the single-crystal silicon obtained as described above and the insulating film 23 partially formed is opposed to one main surface of the other n -type single-crystal silicon substrate 22. Hold and glue gently in a clean atmosphere at room temperature. Thereafter, a heat treatment at 800 to 1100 ° C. is performed to obtain one strongly bonded composite substrate (FIG. 3).
(C)).

【0008】次に、図3(c)のY−Y’面まで基板2
2を研削・研磨加工で薄膜化することにより、シリコン
基板22を所望の厚さとするとともにその表面を平坦化
し、単結晶シリコン薄膜からなるデバイス活性層22a
を形成する(図3(d))。
Next, the substrate 2 is moved to the YY ′ plane in FIG.
2 is thinned by grinding and polishing to make the silicon substrate 22 a desired thickness and flatten the surface thereof, thereby forming a device active layer 22a made of a single crystal silicon thin film.
Is formed (FIG. 3D).

【0009】デバイス活性層22a上にアルカリエッチ
ングにより素子分離用の分離溝26を形成して、縦型パ
ワー素子形成領域と制御回路素子形成領域とを分離する
とともに、制御回路素子形成領域の単結晶シリコン活性
層を単結晶シリコン島に分割する(図3(e))。
Separation grooves 26 for element isolation are formed on the device active layer 22a by alkali etching to separate a vertical power element formation region and a control circuit element formation region, and a single crystal of the control circuit element formation region. The silicon active layer is divided into single crystal silicon islands (FIG. 3E).

【0010】次に、熱酸化またはCVD等によりデバイ
ス活性層22aおよび分離溝26の表面にSiO2 等か
らなる絶縁膜を形成し、続いてCVD法により多結晶シ
リコン層を形成する。その後、研削・研磨加工あるいは
エッチングにより基板表面の多結晶シリコン層および絶
縁膜を除去して分離溝26を多結晶シリコンによって埋
め込み、素子形成領域間が絶縁分離されたSOI基板を
得る。この後、絶縁膜23と分離溝26で囲まれた領域
は低耐圧のCMOS回路などが形成され、デバイス活性
層22aとシリコン基板21が直接接合している領域は
高耐圧の縦形MOSFET素子が形成される。
Next, an insulating film made of SiO 2 or the like is formed on the surfaces of the device active layer 22a and the isolation groove 26 by thermal oxidation or CVD, and then a polycrystalline silicon layer is formed by CVD. After that, the polycrystalline silicon layer and the insulating film on the substrate surface are removed by grinding / polishing or etching, and the isolation groove 26 is filled with polycrystalline silicon to obtain an SOI substrate in which the element formation regions are insulated and separated. Thereafter, a region surrounded by the insulating film 23 and the isolation groove 26 is formed with a low breakdown voltage CMOS circuit or the like, and a region where the device active layer 22a and the silicon substrate 21 are directly bonded is formed with a high breakdown voltage vertical MOSFET element. Is done.

【0011】また、2枚の単結晶Si基板を貼り合わせ
る方法に関して、例えば、図4に示す第2の従来例、特
開平5−152549号公報によって開示された方法が
ある。以下、図4を用いて製造方法を説明する。
As for a method of bonding two single-crystal Si substrates, there is, for example, a method disclosed in Japanese Patent Application Laid-Open No. 5-152549, which is a second conventional example shown in FIG. Hereinafter, the manufacturing method will be described with reference to FIG.

【0012】第1のシリコン基板41と第2のシリコン
基板42のそれぞれの全面に熱酸化により酸化膜43を
形成する。次に、常温で清浄な雰囲気において、第1の
基板41を真空吸着台(図示なし)のほぼ水平に吸着固
定させる。第2の基板42のOF(Orientation Flat)
部44の近傍部分を真空ピンセット47によって吸着さ
せる。真空ピンセット47の操作により、第2の基板4
2のOF部44がやや下がり気味になるように第2の基
板42を傾けて保持する。その状態で第2の基板42を
第1の基板41の上方位置から徐々に下降させて行き、
双方の基板のOF部44の接合面の縁が軽く接触するよ
うにする。
An oxide film 43 is formed on the entire surface of each of the first silicon substrate 41 and the second silicon substrate 42 by thermal oxidation. Next, in a clean atmosphere at room temperature, the first substrate 41 is suction-fixed substantially horizontally on a vacuum suction table (not shown). OF (Orientation Flat) of the second substrate 42
A portion in the vicinity of the portion 44 is sucked by vacuum tweezers 47. The operation of the vacuum tweezers 47 causes the second substrate 4
The second substrate 42 is tilted and held such that the second OF section 44 is slightly lowered. In this state, the second substrate 42 is gradually lowered from the position above the first substrate 41,
The edges of the joint surfaces of the OF portions 44 of both substrates are lightly contacted.

【0013】次に、双方の基板のOF部44とは反対側
の端部45同士の間隔が約1mmになるまで接近させ、
その後、真空ピンセットによる第2の基板42の吸着を
止める。第2の基板42は、第1の基板41と接触して
いるOF部44の接合面の縁を支点として、自重により
回転し、第1の基板41の全面と第2の基板42の全面
とが接触し、OF部44の側から徐々にOFと反対側の
端部45へ向けて接合が進行して行く。
Next, the two substrates are brought close to each other until the distance between the ends 45 opposite to the OF portion 44 becomes about 1 mm.
After that, the suction of the second substrate 42 by the vacuum tweezers is stopped. The second substrate 42 rotates by its own weight with the edge of the joint surface of the OF section 44 in contact with the first substrate 41 as a fulcrum, and the entire surface of the first substrate 41 and the entire surface of the second substrate 42 Are brought into contact with each other, and the joining proceeds gradually from the side of the OF section 44 toward the end 45 opposite to the OF.

【0014】このようにして、第1の基板21(または
41)と、第2の基板22(または42)は、密着接合
され、一体化した基板が得られる。
In this manner, the first substrate 21 (or 41) and the second substrate 22 (or 42) are tightly joined to obtain an integrated substrate.

【0015】[0015]

【発明が解決しようとする課題】前述の第1の従来例、
特開平3−29353号公報における部分SOI基板
は、単結晶シリコン基板21上の絶縁膜23のパターン
を含む混在面の研磨によって、単結晶シリコン表面、絶
縁膜表面のいずれか一方が研磨過多となって微小な段差
が形成されることが不可避である。そこで、混在面の平
坦度が不足するので、2枚の基板の接合面にボイド(未
接合部分)が発生する。その結果、その後のデバイス作
製時にボイド部分から剥離が起こり、例えば、縦型パワ
ー素子が機能しなくなるという不都合が起こる。
The above-mentioned first conventional example,
In the partial SOI substrate disclosed in JP-A-3-29353, one of the single-crystal silicon surface and the insulating film surface is excessively polished by polishing the mixed surface including the pattern of the insulating film 23 on the single-crystal silicon substrate 21. It is inevitable that a minute step is formed. Therefore, the flatness of the mixed surface is insufficient, so that a void (unbonded portion) is generated on the bonded surface of the two substrates. As a result, peeling occurs from the void portion at the time of subsequent device fabrication, and for example, there occurs a disadvantage that the vertical power element does not function.

【0016】その理由は、単結晶シリコンと部分的に形
成された絶縁膜との混在した表面を平坦化する場合、今
日の研磨技術あるいはエッチング技術では、単結晶シリ
コン表面と絶縁膜表面との段差を残さないよう平坦化す
ることが極めて困難であるためである。
The reason is that, when planarizing a mixed surface of single-crystal silicon and a partially formed insulating film, a step between the single-crystal silicon surface and the insulating film surface is reduced by today's polishing technique or etching technique. This is because it is extremely difficult to planarize so as not to leave any.

【0017】また、発明者らが行った実験から、従来技
術で説明したような基板端部から接合する方法を前記の
基板の貼り合わせに適用すると、酸化膜を基板全面に一
様に形成した場合と比べて、酸化膜パターンを形成した
基板の場合、基板の自重による接着の進行が遅く、OF
の反対側の端部にボイドが残存しやすい傾向がある。発
明者らは、縦約1mm、横約2mmの矩形の酸化膜を周
期的に基板全面にパターニングされた基板を用いて、O
Fを接着起点とした貼り合わせの実験を行った。基板の
作製方法、および貼り合わせ方法は従来例に準ずる。ボ
イドは超音波探傷法を用いて観察を行った。その結果、
OF部(接着起点)と反対側の基板周縁部(接着終点)
に大きさが1mm〜数mmのボイドが残存することが判
った。
Also, from experiments conducted by the inventors, when the method of bonding from the substrate end as described in the prior art is applied to the bonding of the substrates, an oxide film is uniformly formed on the entire surface of the substrate. In the case of a substrate on which an oxide film pattern is formed, the progress of adhesion due to the weight of the substrate is slower than in the case
There is a tendency that voids tend to remain at the opposite end. The present inventors have proposed a method in which a rectangular oxide film having a length of about 1 mm and a width of about 2 mm is periodically patterned on the entire surface of a substrate, and the O.D.
An experiment of bonding using F as an adhesion starting point was performed. The method for manufacturing the substrate and the method for bonding are the same as in the conventional example. The voids were observed using ultrasonic flaw detection. as a result,
Peripheral edge of substrate (adhesion end point) opposite to OF section (adhesion start point)
It was found that voids having a size of 1 mm to several mm remained.

【0018】ボイドの発生する理由は、通常の酸化膜を
全面に形成した場合に比べて、酸化膜パターンが基板間
に挟まれた空気の層の排出を妨げるように作用し、特に
接着の終点付近では接着領域から掃き出された空気の層
がスムーズに未接着領域の方向に排出されにくくなり、
最終的に接着終点付近にボイドが残存すると考えられる
からである。
The reason why voids are generated is that the oxide film pattern acts to prevent the air layer sandwiched between the substrates from being discharged, as compared with the case where an ordinary oxide film is formed on the entire surface, and particularly the end point of the adhesion. In the vicinity, it is difficult for the layer of air swept out of the bonded area to be smoothly discharged in the direction of the unbonded area,
This is because it is considered that voids finally remain near the bonding end point.

【0019】そこで、本発明の目的は、インテリジェン
トパワーICのデバイス特性に影響を及ぼす縦型パワー
素子形成領域の接合面にボイドの発生がなく、基板全面
に亘り良好な接合界面を有する部分SOI基板の構造、
およびその製造方法を提供することである。
Accordingly, an object of the present invention is to provide a partial SOI substrate which has no voids on the bonding surface of the vertical power element forming region which affects the device characteristics of the intelligent power IC and has a good bonding interface over the entire surface of the substrate. The structure of the
And a method for producing the same.

【0020】[0020]

【課題を解決するための手段】本発明の半導体基板の構
造は、対をなす2枚の半導体基板の各鏡面研磨面を互い
に密着接合して成る半導体基板の構造において、対をな
す一方の半導体基板の接合面となる主表面上の一部に
は、絶縁層が形成され、対をなす2枚の半導体基板の周
縁部には、密着接合開始点および密着接合終了点が定め
られ、少なくとも一方の半導体基板の周縁部には、密着
接合終了点とするための少なくとも一つの切欠きが形成
されている、ことを特徴としている。
According to the structure of the semiconductor substrate of the present invention, in the structure of a semiconductor substrate in which mirror-polished surfaces of two paired semiconductor substrates are closely bonded to each other, one of the paired semiconductor substrates is formed. An insulating layer is formed on a part of the main surface serving as a bonding surface of the substrate, and a close bonding start point and a close bonding end point are defined on the periphery of the pair of two semiconductor substrates. The semiconductor device is characterized in that at least one notch is formed in the peripheral portion of the semiconductor substrate to serve as an end point of close bonding.

【0021】なお、切欠きの形状は、基板半径方向の長
さが基板円周方向の長さ以上に形成されていることが好
ましく、また、切欠きは楔形状であるものも好ましい。
The shape of the notch is preferably such that the length in the radial direction of the substrate is equal to or greater than the length in the circumferential direction of the substrate, and the notch is also preferably wedge-shaped.

【0022】そして、本発明の半導体基板の製造方法
は、対をなす2枚の半導体基板の、各鏡面研磨面を互い
に密着接合して成る半導体基板の製造方法において、室
温下の清浄な雰囲気において、半導体基板の各密着接合
開始点たるOFを一致させるように固定する工程と、O
Fの部分から接触させる工程と、各半導体基板を保持し
ながら切欠き部に向かって徐々に接着させていく工程
と、切欠き部で接着が終了させる工程を含むことを特徴
としている。
The method of manufacturing a semiconductor substrate according to the present invention is a method of manufacturing a semiconductor substrate in which mirror-polished surfaces of two semiconductor substrates forming a pair are closely bonded to each other, in a clean atmosphere at room temperature. Fixing the semiconductor substrate so that the OFs, which are the starting points of the close bonding of the semiconductor substrate, coincide with each other;
The method is characterized by including a step of contacting from a portion F, a step of gradually bonding the semiconductor substrates toward the notch while holding each semiconductor substrate, and a step of terminating the bonding at the notch.

【0023】なお、半導体基板の接着は、大気中、ある
いは酸化性雰囲気中、あるいは真空中において行われる
ことが好ましく、また、請求項6の製造方法は、対をな
す2枚の半導体基板の、各鏡面研磨面を互いに密着接合
して成る半導体基板の製造方法において、対をなす一方
の半導体基板の一主表面に複数の絶縁膜を部分的に形成
する絶縁層形成工程と、絶縁層の表面が、絶縁層のない
表面に対して低くなるように加工する絶縁膜後退処理工
程と、絶縁層が埋め込まれた一方の半導体基板の一主表
面と、他の半導体基板の鏡面研磨面とを接合する密着接
合工程と、接合された半導体基板を1000℃以上の温
度で熱処理する熱処理工程と、接合された半導体基板の
外周部分を除去する基板外周面取り工程と、接合された
半導体基板のうち、一方の半導体基板の接合されていな
い主表面を研削研磨して薄膜化することにより、デバイ
ス活性層を形成する研削研磨工程と、を有することを特
徴としている。
Preferably, the bonding of the semiconductor substrates is performed in the air, in an oxidizing atmosphere, or in a vacuum. In a method of manufacturing a semiconductor substrate in which mirror-polished surfaces are closely bonded to each other, an insulating layer forming step of partially forming a plurality of insulating films on one main surface of one of the paired semiconductor substrates; Is an insulating film retreating process in which processing is performed so as to be lower than the surface without the insulating layer, and one main surface of one semiconductor substrate in which the insulating layer is embedded and a mirror-polished surface of another semiconductor substrate are joined. An adhesive bonding step, a heat treatment step of heat-treating the bonded semiconductor substrate at a temperature of 1000 ° C. or more, a substrate outer peripheral chamfering step of removing an outer peripheral portion of the bonded semiconductor substrate, By thinning the main surface which are not joined in one semiconductor substrate by grinding and polishing, it is characterized by having a grinding and polishing process for forming the device active layer.

【0024】[0024]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0025】図1は、本発明の半導体基板の構造の一実
施形態例に用いられる基板の接合面の切欠きの位置を示
す平面図、図2(a)は、本実施形態例の接合されるべ
き2枚の半導体基板の概略斜視図、(b)および(c)
は、本実施形態例の製造工程を順に示す断面図である。
FIG. 1 is a plan view showing the position of a notch on a bonding surface of a substrate used in an embodiment of the structure of a semiconductor substrate according to the present invention, and FIG. Schematic perspective views of two semiconductor substrates to be formed, (b) and (c)
4A to 4C are cross-sectional views sequentially showing manufacturing steps of the embodiment.

【0026】本実施形態例の半導体基板は、基本的構成
として対をなす2枚の半導体基板の各鏡面研磨面を接合
面として密着接合してなる半導体基板であって、対をな
す一方の半導体基板が、前記接合面となる主表面上の一
部に絶縁層を有するものであり、前記絶縁層は、前記半
導体基板の主表面から後退した位置に設けられている。
The semiconductor substrate of this embodiment is a semiconductor substrate formed by closely bonding two mirror-polished surfaces of two semiconductor substrates forming a pair with each other as a bonding surface. The substrate has an insulating layer on a part of the main surface serving as the bonding surface, and the insulating layer is provided at a position recessed from the main surface of the semiconductor substrate.

【0027】本発明に係る半導体基板の製造方法は、基
本的構成として、絶縁膜形成工程と、絶縁膜後退処理
と、接着工程と、熱処理工程と、基板外周の面取り工程
および研削研磨工程を有している。各工程の処理内容は
前述の通りである。
The method of manufacturing a semiconductor substrate according to the present invention comprises, as a basic configuration, an insulating film forming step, an insulating film retreating process, a bonding step, a heat treatment step, a chamfering step on the outer periphery of the substrate, and a grinding and polishing step. doing. The processing content of each step is as described above.

【0028】次に縦型パワー素子と制御回路素子とをモ
ノシリックに集積化するのに最適な貼り合わせ部分SO
I基板を例にとって、まず図1の平面図および図2の断
面図により、本発明の製造方法を工程順に説明する。
Next, a bonding portion SO optimal for monolithically integrating the vertical power element and the control circuit element.
First, the manufacturing method of the present invention will be described in the order of steps with reference to the plan view of FIG. 1 and the cross-sectional view of FIG.

【0029】まず、径約125mm(5インチ)、抵抗
率約1Ωcmのn- 型単結晶シリコン基板2を用意す
る。図1はシリコン基板2の接合面となる主表面を表に
して表した平面図である。シリコン基板2は、約45m
mのオリエンテーションフラット(以下、OFと記す)
4を持ち、OFと反対側の端部5には例えば円周方向長
さ約2mm、半径方向長さ約5mmの切欠き6が形成さ
れている。切欠き6の切削面および、切削面と基板の主
表面との境界は、例えば弗硝酸系のエッチング溶液に浸
漬することにより丸め処理が施されており、滑面となっ
ている。シリコン基板2の主表面には、選択酸化法(L
OCOS)によって短辺約1mm、長辺約2mm、厚さ
約2マイクロメートルの絶縁膜2が複数形成されてい
る。なお、図の絶縁膜3は説明のため一部省略して描か
れており、基板に対するパターンの大きさや数は正確で
はない。次に、弗酸系のエッチング溶液で絶縁膜3を厚
さ900ナノメートルまで薄膜化し、絶縁膜3の表面を
シリコン基板2の単結晶シリコン表面よりも低くなるよ
うにする。
First, an n -type single crystal silicon substrate 2 having a diameter of about 125 mm (5 inches) and a resistivity of about 1 Ωcm is prepared. FIG. 1 is a plan view showing a main surface to be a bonding surface of the silicon substrate 2 in a table. The silicon substrate 2 is about 45 m
m orientation flat (hereinafter referred to as OF)
A notch 6 having a length in the circumferential direction of about 2 mm and a length in the radial direction of about 5 mm is formed in the end 5 opposite to the OF. The cut surface of the notch 6 and the boundary between the cut surface and the main surface of the substrate are subjected to a rounding process, for example, by immersion in a hydrofluoric acid-based etching solution, so that a smooth surface is obtained. The main surface of the silicon substrate 2 is selectively oxidized (L
A plurality of insulating films 2 each having a short side of about 1 mm, a long side of about 2 mm, and a thickness of about 2 μm are formed by OCOS. It should be noted that the insulating film 3 in the figure is partially omitted for the sake of explanation, and the size and number of patterns on the substrate are not accurate. Next, the insulating film 3 is thinned to a thickness of 900 nanometers with a hydrofluoric acid-based etching solution so that the surface of the insulating film 3 is lower than the single crystal silicon surface of the silicon substrate 2.

【0030】次に、径約125mm、厚さ約600μ
m、抵抗率約0.01〜0.02Ωcmのn+ 型単結晶
シリコン基板1を用意する。シリコン基板1は、シリコ
ン基板2と同じ長さのOFが形成されている。シリコン
基板1の主表面と、シリコン基板2の絶縁膜3が部分的
に形成されている主表面とを、大気中、室温環境で対向
させて保持する。このとき、双方のOFを一致させるよ
うにする。図2(a)はこのときの2枚の基板の相対的
な位置関係がわかるように図示したものである。図2
(b)に具体的な保持方法を説明するために横から見た
断面図を示す。シリコン基板1は、水平に設置された真
空吸着台8上に静かに設置し、真空ポンプなどによって
吸引固着させておく。また、シリコン基板2は、OF部
4の近くを真空ピンセット7で吸着保持する。
Next, a diameter of about 125 mm and a thickness of about 600 μm
An n + -type single-crystal silicon substrate 1 having m and a resistivity of about 0.01 to 0.02 Ωcm is prepared. The silicon substrate 1 has an OF having the same length as the silicon substrate 2. The main surface of the silicon substrate 1 and the main surface of the silicon substrate 2 on which the insulating film 3 is partially formed are held facing each other in the atmosphere at room temperature. At this time, both OFs are matched. FIG. 2A shows the relative positional relationship between the two substrates at this time. FIG.
(B) is a cross-sectional view seen from the side for explaining a specific holding method. The silicon substrate 1 is gently set on a horizontally mounted vacuum suction table 8, and is fixed by suction using a vacuum pump or the like. Further, the silicon substrate 2 sucks and holds the vicinity of the OF section 4 with vacuum tweezers 7.

【0031】次に、2枚の基板のOF部を一致させるよ
うにシリコン基板2をシリコン基板1の上方より接近さ
せる。OF部の端面を一致させるように静かに接触さ
せ、続いて真空ピンセット7をシリコン基板2から離し
て、自重で接着が進行するようにする。このようにし
て、2枚の基板はOF部を起点に前記した切欠き6の方
向へ接着が進行して行く。このとき、接着領域と未接着
領域の境界線(以下、接着波面という)は絶縁膜3の列
と平行に進行し、基板間に挟まれた空気が未接着領域へ
掃き出される。これは、たとえばシリコン基板を透過す
る波長の赤外線による実体観察により接着の進行状況を
確認することができる。接着波面は切欠き6にかかる
と、切欠き部分を取り囲むように接着し、未接着領域に
掃き出された空気は切欠き6を通して基板外に放出され
る。このようにして、切欠き6の部分を接着終点とし
て、2枚の基板が接着される。
Next, the silicon substrate 2 is brought closer from above the silicon substrate 1 so that the OF portions of the two substrates coincide with each other. The end portions of the OF portion are gently brought into contact so as to match, and then the vacuum tweezers 7 are separated from the silicon substrate 2 so that the adhesion proceeds by its own weight. In this way, the adhesion of the two substrates proceeds in the direction of the notch 6 starting from the OF portion. At this time, the boundary line between the bonded region and the non-bonded region (hereinafter referred to as a bonding wavefront) advances in parallel with the row of the insulating films 3, and the air sandwiched between the substrates is swept out to the non-bonded region. For example, the progress of the adhesion can be confirmed by observing the substance with infrared rays having a wavelength transmitted through the silicon substrate. When the adhesive wavefront is applied to the notch 6, the adhesive wavefront is bonded so as to surround the notch portion, and the air swept out to the non-adhered area is discharged outside the substrate through the notch 6. In this manner, the two substrates are bonded with the notch 6 as the bonding end point.

【0032】基板の接着が完了したら、接合を強固にす
るため1000〜1200℃、約2時間程度の熱処理を
行う。
After the bonding of the substrates is completed, heat treatment is performed at 1000 to 1200 ° C. for about 2 hours to strengthen the bonding.

【0033】次に、シリコン基板2の周縁部を研削また
はアルカリエッチング溶液などにより除去し、基板周縁
部の未接合領域を除去する。最後に、図2(c)に示す
ようにシリコン基板2の接合されていない主表面の側か
ら研削・研磨加工により所望の厚さとするとともにその
表面を平坦化し、シリコン基板1の上に単結晶シリコン
のデバイス活性層2aを形成する。
Next, the peripheral portion of the silicon substrate 2 is removed by grinding or an alkaline etching solution or the like, and an unbonded region at the peripheral portion of the substrate is removed. Finally, as shown in FIG. 2 (c), the silicon substrate 2 is ground to a desired thickness by grinding and polishing from the side of the unbonded main surface, and the surface is flattened. A silicon device active layer 2a is formed.

【0034】この接着工程はパーティクルの浮遊しない
十分に清浄な環境で行われるのが望ましい。また、接着
雰囲気は特に大気中に限定されるものではなく、たとえ
ば酸素雰囲気中、あるいは真空中で行ってもよい。
This bonding step is desirably performed in a sufficiently clean environment in which particles do not float. Further, the bonding atmosphere is not particularly limited to the air, and may be performed in an oxygen atmosphere or in a vacuum, for example.

【0035】接着起点となるOFの反対側に形成する切
欠き6の基板半径方向の長さは前記切欠きの基板接線方
向の長さ以上の長さに形成する。これは、接着終点付近
で基板間に挟まれた空気の掃き出しを効率よく行うため
である。本実施形態例では基板半径方向に長辺をもつ矩
形の切欠きを示したが、デバイスのチップデザイン等に
余裕があれば、例えば楔形状(V字型)、あるいは台形
の切欠きを用いても同様の効果が得られる。
The length of the notch 6 formed on the side opposite to the OF serving as the bonding starting point in the radial direction of the substrate is equal to or greater than the length of the notch in the tangential direction of the substrate. This is for the purpose of efficiently sweeping out the air sandwiched between the substrates near the end point of the adhesion. In the present embodiment, a rectangular notch having a long side in the substrate radial direction is shown. However, if there is room in the chip design or the like of the device, for example, a wedge-shaped (V-shaped) or trapezoidal notch is used. Has the same effect.

【0036】[0036]

【発明の効果】以上説明したように本発明は、基板周縁
部に切欠きを形成し、2枚の基板の接着終点において基
板間に挟まれた空気を切欠きを通して掃き出させること
により、ボイドを残存させることなく接着できるので、
基板の接合面にボイドの発生がなく、デバイス製造工程
におけるデバイス活性層の割れ、剥がれなどが生じなく
なり、またボイドに起因するデバイス特性の劣化のない
高い信頼性を持つインテリジェントパワーICに好適な
半導体装置の構造および製造方法を提供できる効果があ
る。
As described above, according to the present invention, a notch is formed in the peripheral portion of a substrate, and air interposed between the substrates is swept through the notch at the end point of adhesion of the two substrates, thereby forming a void. Can be bonded without leaving
A semiconductor suitable for intelligent power ICs with high reliability without generation of voids on the bonding surface of the substrate, no cracking or peeling of the device active layer in the device manufacturing process, and no deterioration of device characteristics due to voids There is an effect that the structure and manufacturing method of the device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体基板の構造の一実施形態例に用
いられる基板の接合面の切欠きの位置を示す平面図であ
る。
FIG. 1 is a plan view showing the position of a notch in a bonding surface of a substrate used in an embodiment of the structure of a semiconductor substrate of the present invention.

【図2】(a)は、本実施形態例の接合されるべき2枚
の半導体基板の概略斜視図、(b)および(c)は、本
実施形態例の製造工程を順に示す断面図である。
FIG. 2A is a schematic perspective view of two semiconductor substrates to be joined according to the embodiment, and FIGS. 2B and 2C are cross-sectional views sequentially illustrating manufacturing steps of the embodiment. is there.

【図3】(a),(b)(c),(d)および(e)
は、第1の従来例の製造工程を順に示す断面図である。
FIG. 3 (a), (b), (c), (d) and (e)
3A to 3C are cross-sectional views sequentially showing manufacturing steps of a first conventional example.

【図4】第2の従来例の基板の接合直前状態を示す断面
図である。
FIG. 4 is a cross-sectional view showing a state immediately before bonding of a substrate of a second conventional example.

【符号の説明】[Explanation of symbols]

1,21,41 n+ 型単結晶シリコン基板 2,22,42 n- 型単結晶シリコン基板 2a,22a デバイス活性層 3,23,43 絶縁膜 4,24,44 OF部 5,45 OF部と反対側の端部 6 切欠き 7,47 真空ピンセット 8,48 吸着台 26 分離溝1,21,41 n + -type single-crystal silicon substrate 2,22,42 n -- type single-crystal silicon substrate 2a, 22a Device active layer 3,23,43 Insulating film 4,24,44 OF section 5,45 OF section Opposite end 6 Notch 7,47 Vacuum tweezers 8,48 Suction table 26 Separation groove

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対をなす2枚の半導体基板の各鏡面研磨
面を互いに密着接合して成る半導体基板の構造におい
て、 前記対をなす一方の半導体基板の接合面となる主表面上
の一部には、絶縁層が形成され、 前記対をなす2枚の半導体基板の周縁部には、密着接合
開始点および密着接合終了点が定められ、少なくとも一
方の前記半導体基板の周縁部には、前記密着接合終了点
とするための少なくとも一つの切欠きが形成されてい
る、 ことを特徴とする半導体基板の構造。
In a semiconductor substrate structure in which mirror-polished surfaces of two semiconductor substrates forming a pair are closely bonded to each other, a part of a main surface to be a bonding surface of one of the paired semiconductor substrates is provided. An insulating layer is formed, and a bonding start point and a bonding end point are defined at the peripheral edge of the pair of two semiconductor substrates, and at least one of the peripheral edges of the semiconductor substrate is A structure of a semiconductor substrate, wherein at least one notch for forming a close bonding end point is formed.
【請求項2】 前記切欠きの形状は、基板半径方向の長
さが基板円周方向の長さ以上に形成されている、請求項
1記載の半導体基板の構造。
2. The structure of a semiconductor substrate according to claim 1, wherein the shape of the notch is such that a length in a radial direction of the substrate is longer than a length in a circumferential direction of the substrate.
【請求項3】 前記切欠きは楔形状である、請求項1記
載の半導体基板の構造。
3. The structure of a semiconductor substrate according to claim 1, wherein said notch has a wedge shape.
【請求項4】 対をなす2枚の半導体基板の、各鏡面研
磨面を互いに密着接合して成る半導体基板の製造方法に
おいて、 室温下の清浄な雰囲気において、前記半導体基板の前記
各密着接合開始点たるオリエンテーションフラットを一
致させるように固定する工程と、 前記オリエンテーションフラットの部分から接触させる
工程と、 各半導体基板を保持しながら前記切欠き部に向かって徐
々に接着させていく工程と、 切欠き部で接着が終了させる工程を含むことを特徴とす
る、半導体基板の製造方法。
4. A method of manufacturing a semiconductor substrate, comprising bonding two mirror-polished surfaces of two paired semiconductor substrates in close contact with each other, comprising: starting said close bonding of said semiconductor substrates in a clean atmosphere at room temperature. Fixing a point orientation flat so as to match; contacting from the orientation flat portion; gradually bonding the semiconductor substrate toward the notch while holding each semiconductor substrate; A method for manufacturing a semiconductor substrate, comprising a step of terminating bonding at a portion.
【請求項5】 前記半導体基板の接着は、大気中、ある
いは酸化性雰囲気中、あるいは真空中において行われ
る、請求項4記載の半導体基板の製造方法。
5. The method according to claim 4, wherein the bonding of the semiconductor substrate is performed in the air, in an oxidizing atmosphere, or in a vacuum.
【請求項6】 対をなす2枚の半導体基板の、各鏡面研
磨面を互いに密着接合して成る半導体基板の製造方法に
おいて、 対をなす一方の半導体基板の一主表面に複数の絶縁膜を
部分的に形成する絶縁層形成工程と、 前記絶縁層の表面が、前記の絶縁層のない表面に対して
低くなるように加工する絶縁膜後退処理工程と、 前記絶縁層が埋め込まれた一方の半導体基板の一主表面
と、他の半導体基板の鏡面研磨面とを接合する密着接合
工程と、 前記の接合された半導体基板を1000℃以上の温度で
熱処理する熱処理工程と、 前記接合された半導体基板の外周部分を除去する基板外
周面取り工程と、 前記接合された半導体基板のうち、一方の半導体基板の
接合されていない主表面を研削研磨して薄膜化すること
により、デバイス活性層を形成する研削研磨工程と、を
有することを特徴とする半導体基板の製造方法。
6. A method of manufacturing a semiconductor substrate comprising two mirror-polished surfaces of two semiconductor substrates forming a pair, the plurality of insulating films being formed on one main surface of one of the paired semiconductor substrates. An insulating layer forming step of partially forming, an insulating film retreating step of processing the surface of the insulating layer to be lower than a surface without the insulating layer, and one of the insulating layers embedded therein. An adhesion bonding step of bonding one main surface of the semiconductor substrate to a mirror-polished surface of another semiconductor substrate; a heat treatment step of heat-treating the bonded semiconductor substrate at a temperature of 1000 ° C. or higher; A substrate outer peripheral chamfering step of removing an outer peripheral portion of the substrate; and forming a device active layer by grinding and polishing a non-bonded main surface of one of the bonded semiconductor substrates to form a thin film. And a grinding and polishing step.
JP9312245A 1997-11-13 1997-11-13 Semiconductor substrate structure and method of manufacturing the same Expired - Lifetime JP2993484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312245A JP2993484B2 (en) 1997-11-13 1997-11-13 Semiconductor substrate structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312245A JP2993484B2 (en) 1997-11-13 1997-11-13 Semiconductor substrate structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11145019A true JPH11145019A (en) 1999-05-28
JP2993484B2 JP2993484B2 (en) 1999-12-20

Family

ID=18026921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312245A Expired - Lifetime JP2993484B2 (en) 1997-11-13 1997-11-13 Semiconductor substrate structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2993484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142667A (en) * 2001-08-24 2003-05-16 Seiko Epson Corp Method for manufacturing semiconductor substrate, semiconductor substrate, electrooptic device and electronic apparatus
JP2016115868A (en) * 2014-12-17 2016-06-23 富士電機株式会社 Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142667A (en) * 2001-08-24 2003-05-16 Seiko Epson Corp Method for manufacturing semiconductor substrate, semiconductor substrate, electrooptic device and electronic apparatus
JP2016115868A (en) * 2014-12-17 2016-06-23 富士電機株式会社 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2993484B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP3114643B2 (en) Semiconductor substrate structure and manufacturing method
US5238865A (en) Process for producing laminated semiconductor substrate
JP4277469B2 (en) Method for producing bonded wafer and bonded wafer
KR20070086316A (en) Method for transferring a circuit to a grounding plane
US5844294A (en) Semiconductor substrate with SOI structure
JP3948035B2 (en) Method for creating bonded SOI substrate
JP2000348992A (en) Manufacture of semiconductor substrate
JP2993484B2 (en) Semiconductor substrate structure and method of manufacturing the same
JPH0613456A (en) Manufacture of semiconductor device
JPH09260620A (en) Manufacture of coupled wafer and coupled wafer manufactured by this method
JP2770808B2 (en) Semiconductor substrate and method of manufacturing the same
US5946584A (en) Method for manufacturing a dielectric isolation substrate
JPH11330437A (en) Soi substrate and manufacture thereof
JP2678218B2 (en) Bonded substrate and manufacturing method thereof
JP3061021B2 (en) Partial SOI substrate and manufacturing method thereof
JP2004096044A (en) Substrate and manufacturing method thereof
JP3216535B2 (en) SOI substrate and manufacturing method thereof
JP3019830B2 (en) Semiconductor substrate manufacturing method and semiconductor device
JP3165735B2 (en) Semiconductor substrate manufacturing method
JPH03180070A (en) Semiconductor device and manufacture thereof
JP2000252354A (en) Production of substrate having buried insulation film
JP2520944B2 (en) Semiconductor substrate manufacturing method
JPH03104224A (en) Manufacture of semiconductor device
JPH07123136B2 (en) Method for manufacturing semiconductor substrate having embedded dielectric layer
JPH0382138A (en) Manufacture of semiconductor device