JPH11139809A - Both-side-cooled ozonizer - Google Patents

Both-side-cooled ozonizer

Info

Publication number
JPH11139809A
JPH11139809A JP30401097A JP30401097A JPH11139809A JP H11139809 A JPH11139809 A JP H11139809A JP 30401097 A JP30401097 A JP 30401097A JP 30401097 A JP30401097 A JP 30401097A JP H11139809 A JPH11139809 A JP H11139809A
Authority
JP
Japan
Prior art keywords
housing
cooling
ground electrode
cooling water
ozonizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30401097A
Other languages
Japanese (ja)
Other versions
JP3837878B2 (en
Inventor
Hisamichi Ishioka
久道 石岡
Hideaki Nishii
秀明 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30401097A priority Critical patent/JP3837878B2/en
Publication of JPH11139809A publication Critical patent/JPH11139809A/en
Application granted granted Critical
Publication of JP3837878B2 publication Critical patent/JP3837878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact and inexpensive both-side-cooled ozonizer which is suitable for the supply of a small amount of ozone. SOLUTION: In this ozonizer, a casing consists of a shell 1a that is made of stainless steel and provided with two flanges on the both sides respectively and two side plates 21b and 22b made of stainless steel and in the casing, one ozone generator consisting of a high-voltage electrode 6 and a grounding electrode 5 is housed. The grounding electrode 5 is fitted to the above flanges respectively and the grounding electrode 5 is airtightly fixed and held with the both side plates 21b and 22b and O-rings 83 and 84. Tubular connecting members 63 and 64 are welded to the high-voltage electrode 6 and airtightly held and fixed to the side plates 21b and 22b respectively by tightening the members 63 and 64 respectively with sockets 98 and 99 insulated with insulating members 65 and 66 respectively. A voltage to be applied to the high-voltage electrode 6 and cooling water and supplied through the socket 98 and the connecting member 63.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水処理などに用
いられるオゾンを生成するためのオゾナイザの内の、特
に高濃度オゾンを発生できる両面冷却オゾナイザに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozonizer for generating ozone used for water treatment and the like, particularly to a double-sided cooling ozonizer capable of generating high-concentration ozone.

【0002】[0002]

【従来の技術】オゾナイザは、オゾンのもつ殺菌・脱色
・脱臭力を利用するために、水処理施設などにおいて広
く使用されている。図8は、本出願人が出願している特
願平8-135608号に記載されている両面冷却オゾナイザの
構成をモデル化して示したもので、(a)は全体の断面
図、(b)はオゾン発生管の一部を拡大して示す部分断
面図である。
2. Description of the Related Art Ozonizers are widely used in water treatment facilities and the like in order to utilize the sterilizing, decoloring and deodorizing powers of ozone. FIGS. 8A and 8B show a model of the configuration of a double-sided cooling ozonizer described in Japanese Patent Application No. 8-135608 filed by the present applicant. FIG. 8A is an overall sectional view, and FIG. FIG. 2 is an enlarged partial cross-sectional view showing a part of the ozone generating tube.

【0003】オゾナイザの筐体は、両端が開口している
筒状をしたステンレス鋼からなる胴部1と、その両開口
端部に締め付けられている2つステンレス鋼からなる側
板21及び22とによって構成されている。2つの側板21及
び22と胴部1とは気密に結合される必要があるため、両
開口端部のそれぞれに平パッキン(図6では単にパッキ
ン)81及び82を介して、図示していないネジなどの締め
付け手段を用いて結合されている。胴部1の内面側に
は、多数のオゾン発生管を保持するための、少なくとも
一対のステンレス鋼からなる支持板41及び42が互いに適
当な間隔をおいて嵌め込まれている。胴部1の管壁に
は、側板21と側板21側の支持板41との中間の位置に、原
料ガスを供給するためのガス入口11があり、反対側の側
板22と側板22側の支持板42との中間の位置に、生成され
たオゾンを含むガスを取り出すためのガス出口12があ
る。更に、2つの支持板41及び42の中間の位置に、冷却
水を流入させるための冷却水入口13と、冷却水を排出す
る冷却水出口14とが、ほぼ対向して設けられている。通
常は、冷却水入口13が下部に、冷却水出口14が上部に設
けられる。また、胴部1の側板21に近い位置に、電圧導
入端子72が装着されている。
[0003] The housing of the ozonizer is composed of a cylindrical body 1 made of stainless steel having both ends opened, and two stainless steel side plates 21 and 22 fastened to both open ends. It is configured. Since the two side plates 21 and 22 and the body 1 need to be air-tightly connected, screws (not shown) are provided at both ends of the opening via flat packings (simply packing in FIG. 6) 81 and 82, respectively. It is connected using fastening means such as. At least one pair of support plates 41 and 42 made of stainless steel for holding a large number of ozone generating tubes are fitted on the inner side of the body 1 at appropriate intervals. The tube wall of the body 1 has a gas inlet 11 for supplying a raw material gas at an intermediate position between the side plate 21 and the support plate 41 on the side plate 21 side, and supports the side plate 22 and the side plate 22 on the opposite side. At a position intermediate the plate 42, there is a gas outlet 12 for taking out a gas containing the generated ozone. Further, a cooling water inlet 13 for flowing cooling water and a cooling water outlet 14 for discharging cooling water are provided substantially at an intermediate position between the two support plates 41 and 42. Usually, a cooling water inlet 13 is provided at a lower portion, and a cooling water outlet 14 is provided at an upper portion. Further, a voltage introduction terminal 72 is mounted at a position near the side plate 21 of the body 1.

【0004】支持板41及び42に支持されるオゾン発生管
は、両端が開口している円筒状の接地側のステンレス鋼
などからなる接地電極5と、接地電極5の内側にほぼ一
定のギャップ長をもつ放電ギャップ56を介して配置され
ている高電圧電極6とで構成されている。接地電極5
は、ステンレス鋼からなる金属管51と、この内面にライ
ニング(金属管51の内側にガラス管を挿入し、内圧を加
えた状態で誘導加熱によってガラスを軟化させ、金属管
51の内面にガラス層を形成する技術)によって形成され
たガラス誘電体層52とからなっている。高電圧電極6は
両端を塞がれた円筒状に形成され、一端面に2本の冷却
パイプが接続されている。この冷却パイプから冷却水が
高電圧電極6内に流通されて高電圧電極6を冷却する。
冷却水は胴部1の一端部の上下位置に設けられた1対の
マニホールド95及び96から分岐されて絶縁チューブ97に
よりそれぞれの高電圧電極6の冷却パイプに供給されて
いる。絶縁チューブ97が用いられるのは、高電圧電極6
と胴部1とを電気的に絶縁するためであり、冷却水系に
イオン交換器94が設置されているのは、冷却水の電気抵
抗値を高く保って、冷却水による絶縁不良を発生させな
いためである。高電圧電極6の外面下部の両端付近に
は、放電ギャップ56を保持するための突起体61が溶接に
よる肉盛りによって形成されている。このオゾン発生管
は、支持板41及び42に形成されている貫通孔に嵌め込ま
れて支持板41及び42に支持されており、その接触部は、
冷却水が漏れないように図示していないOリングによっ
てシールされている。
[0004] The ozone generating tube supported by the supporting plates 41 and 42 has a cylindrical ground electrode 5 made of stainless steel or the like on the ground side having open ends, and a substantially constant gap length inside the ground electrode 5. And a high-voltage electrode 6 disposed via a discharge gap 56 having Ground electrode 5
Is a metal tube 51 made of stainless steel, and a lining is inserted on the inner surface (a glass tube is inserted inside the metal tube 51, and the glass is softened by induction heating under an internal pressure.
And a glass dielectric layer 52 formed by a technique for forming a glass layer on the inner surface of the glass substrate 51. The high-voltage electrode 6 is formed in a cylindrical shape whose both ends are closed, and two cooling pipes are connected to one end surface. Cooling water flows from the cooling pipe into the high-voltage electrode 6 to cool the high-voltage electrode 6.
The cooling water is branched from a pair of manifolds 95 and 96 provided at the upper and lower positions at one end of the body 1 and supplied to the cooling pipes of the respective high-voltage electrodes 6 by the insulating tubes 97. The insulating tube 97 is used for the high voltage electrode 6.
The reason why the ion exchanger 94 is provided in the cooling water system is to keep the electric resistance value of the cooling water high and to prevent insulation failure caused by the cooling water. It is. Protrusions 61 for holding the discharge gap 56 are formed by welding on both sides of the lower portion of the outer surface of the high-voltage electrode 6 near both ends. The ozone generating tube is fitted in through holes formed in the support plates 41 and 42 and supported by the support plates 41 and 42, and the contact portion is
It is sealed by an O-ring (not shown) so that the cooling water does not leak.

【0005】筐体、オゾン発生管などにステンレス鋼を
使用しているのは、ステンレス鋼がオゾンの強い酸化作
用に対して耐性を有するからである。高周波電源73から
オゾン発生管に供給される高周波電圧の一方は、胴部1
に装着されている電圧導入端子72からリード線71を介し
て各オゾン発生管の高電圧電極6に供給される。高周波
電源73の高周波電圧の他方は、接地電位点に接続され、
同時に胴部1に接続されており、図示していないリード
線を介して接地電極5に接続されている。
[0005] The reason why stainless steel is used for the housing, the ozone generating tube, and the like is that stainless steel has resistance to the strong oxidizing action of ozone. One of the high-frequency voltages supplied from the high-frequency power supply 73 to the ozone generating tube is
Is supplied to the high-voltage electrode 6 of each ozone generating tube via a lead wire 71 from a voltage introducing terminal 72 mounted on the ozone generating tube. The other of the high-frequency voltage of the high-frequency power supply 73 is connected to the ground potential point,
At the same time, it is connected to the body 1 and to the ground electrode 5 via a lead wire (not shown).

【0006】オゾン発生管の接地電極5を冷却する冷却
水は、既述の高電圧電極6の冷却水と共通に熱交換器93
で冷却されてポンプ92で加圧され、冷却配管91を通って
冷却水入口13から水ジャケット3に供給されて接地電極
5を冷却し、冷却水出口14から冷却配管91を通って熱交
換器93に戻る。この冷却系は高電圧電極6の冷却をも兼
ねているため、高純度水を使った水供給系となってお
り、既述のようにイオン交換器94を備えている。接地電
極5の冷却には高抵抗の純水を必要とはしないが、冷却
システムを簡素化するために純水を用いている。
The cooling water for cooling the ground electrode 5 of the ozone generating tube is shared with the cooling water for the high-voltage electrode 6 described above by the heat exchanger 93.
The cooling water is pressurized by a pump 92 and supplied to a water jacket 3 from a cooling water inlet 13 through a cooling pipe 91 to cool the ground electrode 5, and is cooled from a cooling water outlet 14 through a cooling pipe 91 to a heat exchanger. Return to 93. Since this cooling system also serves to cool the high-voltage electrode 6, the cooling system is a water supply system using high-purity water, and includes the ion exchanger 94 as described above. Although cooling of the ground electrode 5 does not require high-resistance pure water, pure water is used to simplify the cooling system.

【0007】このような両面冷却オゾナイザにおいて、
ガス入口11から供給された酸素を含む原料ガス(空気あ
るいは酸素など)は、側板21側の接地電極5の開口部か
ら放電ギャップ56に流入し、放電ギャップ56における無
声放電によって酸素の一部がオゾン化され、オゾンを含
むガスとなってガス出口12から取り出される。ガス出口
12の後方には、図示していない圧力調整弁が装着されて
おり、ガスの圧力値を例えば1.7 気圧に調節して、オゾ
ンを含むガスを消費設備に供給する。
In such a double-sided cooling ozonizer,
The raw material gas (such as air or oxygen) containing oxygen supplied from the gas inlet 11 flows into the discharge gap 56 from the opening of the ground electrode 5 on the side plate 21 side, and a part of oxygen is discharged by the silent discharge in the discharge gap 56. It is ozonized and becomes gas containing ozone and is taken out from the gas outlet 12. Gas outlet
A pressure regulating valve (not shown) is attached to the rear of the pump 12 to adjust the gas pressure value to, for example, 1.7 atm, and to supply the gas containing ozone to the consuming equipment.

【0008】以上のような従来技術による両面冷却オゾ
ナイザには、通常、数十本から数百本のオゾン発生管が
装着されており、このようなオゾナイザは数十キログラ
ム/時間のレベルの大量のオゾンを供給するのに適して
いる。しかし、数十から数百グラム/時間という少量の
オゾン供給で十分な用途に対しては、必要なオゾン発生
管の数が1本から数本となり、1つの筐体に複数本を収
納する方式のオゾナイザでは、かえって大型となり価格
も高くなるという問題点をもっている。
[0008] The above-mentioned double-sided cooling ozonizer according to the prior art is usually equipped with tens to hundreds of ozone generating tubes, and such ozonizers have a large volume of several tens of kilograms / hour. Suitable for supplying ozone. However, for applications in which a small amount of ozone of several tens to several hundred grams / hour is sufficient, the number of required ozone generating tubes is reduced from one to several, and a plurality of tubes are housed in one housing. Ozonizers have the problem that they are rather large and their prices are high.

【0009】[0009]

【発明が解決しようとする課題】この発明の課題は、数
十から数百グラム/時間という少量のオゾン供給に適す
る小型で安価な両面冷却オゾナイザを提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small and inexpensive double-sided cooling ozonizer suitable for supplying a small amount of ozone of several tens to several hundreds grams / hour.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明においては、両端が開口し且つ内面に誘
電体層が形成されている筒状の接地電極及び接地電極の
内側に空隙を介して配置され且つ内部に導入された冷却
水によって冷却される両端閉止構造の筒状の高電圧電極
からなるオゾン発生管と、両端が開口している筒状の胴
部及び開口部を気密に塞ぐための2つの側板からなり且
つオゾン発生管を内蔵する筐体と、筐体と接地電極との
間に設けられ接地電極を冷却するための水ジャケット
と、オゾン発生管に電力を供給する電源とを備え、筐体
内に導入された酸素を含む原料ガスの放電によってオゾ
ンを生成する両面冷却オゾナイザにおいて、1つの筐体
に1つのオゾン発生管を内蔵している(請求項1の発
明)。
In order to solve the above-mentioned problems, according to the present invention, there is provided a cylindrical ground electrode having both ends opened and a dielectric layer formed on the inner surface, and a gap formed inside the ground electrode. An ozone generating tube composed of a cylindrical high-voltage electrode having a closed-end structure, which is arranged via a cooling water introduced therein, and a cylindrical body and an opening which are open at both ends are hermetically sealed. A housing including two side plates for closing the housing and containing the ozone generating tube, a water jacket provided between the housing and the ground electrode for cooling the ground electrode, and supplying power to the ozone generating tube In a double-sided cooling ozonizer that includes a power supply and generates ozone by discharging a source gas containing oxygen introduced into the housing, one housing includes one ozone generation tube (the invention of claim 1). .

【0011】1つのオゾン発生管を1つの筐体に収納す
るので、コンパクトな最適設計による標準化が可能であ
り、量産化ができる。1台で足りない場合には、必要に
応じて複数台を並列に運転すればよい。請求項1の発明
において、高電圧電極の両端に取り付けられて高電圧電
極と電源とを接続し冷却水を導入あるいは排出し且つ先
端部にネジを有する金属パイプと、この金属パイプの外
周部に側板を貫通し且つ金属パイプを貫通させている絶
縁部材とを備え、絶縁部材から突出している金属パイプ
のネジをソケットで気密に締め込まれている(請求項2
の発明)。高電圧電極への電圧導入用及び冷却水用の金
属パイプが側板中央の側面に引き出されるので、オゾナ
イザの長さ方向の側面には接地電極用の冷却水の接続部
のみが装着された構造となり、オゾナイザの太さが低減
する。
Since one ozone generating tube is housed in one case, standardization by compact and optimal design is possible, and mass production is possible. If one is insufficient, a plurality of units may be operated in parallel as needed. In the invention of claim 1, a metal pipe which is attached to both ends of the high voltage electrode, connects the high voltage electrode and a power source, introduces or discharges cooling water, and has a screw at a tip end, and a metal pipe having an outer peripheral portion. An insulating member penetrating the side plate and penetrating the metal pipe, wherein a screw of the metal pipe protruding from the insulating member is airtightly tightened by a socket.
Invention). Metal pipes for introducing voltage to the high-voltage electrode and for cooling water are drawn out to the side in the center of the side plate, so that only the connection for cooling water for the ground electrode is attached to the lengthwise side of the ozonizer. The thickness of the ozonizer is reduced.

【0012】請求項2の発明において、金属パイプに少
なくとも1つの環状溝を備え、且つその環状溝にOリン
グを嵌め込まれている(請求項3の発明)。このOリン
グによって金属パイプと絶縁部材との気密シールが完全
に確保される。請求項2あるいは請求項3の発明におい
て、絶縁部材につばを備えている(請求項4の発明)。
つばによって絶縁部材の沿面距離が大幅に大きくなり結
露しても電気絶縁性を確保することが可能となる。
In the invention of claim 2, the metal pipe has at least one annular groove, and an O-ring is fitted into the annular groove (the invention of claim 3). The O-ring completely secures the hermetic seal between the metal pipe and the insulating member. In the invention of claim 2 or claim 3, the insulating member is provided with a collar (the invention of claim 4).
The brim greatly increases the creepage distance of the insulating member, so that electrical insulation can be ensured even when dew condensation occurs.

【0013】接地電極への接続手段として、電源の接地
電位側に接続され、筐体に気密に貫通させられ、且つ接
地電極に接触させられている導電性のネジを備えている
(請求項5の発明)。筐体にネジを通して接地電極に接
触させるので、接地電極の電位を完全に接地電位に保持
することができる。水ジャケットの内部を、螺旋状の仕
切り部材によって螺旋状に連続している空間に仕切って
いる(請求項6の発明)。螺旋状の仕切り部材によって
冷却水が均一に循環し、かつ冷却水の流速が早くなる。
筐体の軸方向が垂直になるように筐体を配置し、冷却水
の入口を筐体の下部に、冷却水の出口を筐体の上部に設
けている(請求項7の発明)。垂直配置で冷却水が下か
ら上へ流されるので、冷却空間に気泡が残留することが
なくなる。
As means for connection to the ground electrode, there is provided a conductive screw connected to the ground potential side of the power supply, airtightly penetrated through the housing, and in contact with the ground electrode. Invention). Since the housing is brought into contact with the ground electrode through the screw, the potential of the ground electrode can be completely maintained at the ground potential. The inside of the water jacket is partitioned into a spirally continuous space by a spiral partition member (the invention of claim 6). The cooling water is circulated uniformly by the spiral partition member, and the flow rate of the cooling water is increased.
The housing is arranged so that the axial direction of the housing is vertical, the cooling water inlet is provided at the lower part of the housing, and the cooling water outlet is provided at the upper part of the housing. Since the cooling water flows vertically from the bottom, no air bubbles remain in the cooling space.

【0014】[0014]

【発明の実施の形態】この発明による両面冷却オゾナイ
ザの実施の形態について、実施例を用いて説明する。こ
の発明においても、基本的な構成は従来技術と同じであ
るので、従来技術と同じ機能をもつ部分については同じ
符号を用いている。 〔第1の実施例〕図1はこの発明による両面冷却オゾナ
イザの第1の実施例の構造を示す断面図であり、図2は
その高電圧電極の接続部の構成を示す部分拡大断面図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the double-sided cooling ozonizer according to the present invention will be described with reference to examples. Also in the present invention, since the basic configuration is the same as that of the conventional technology, the portions having the same functions as those of the conventional technology are denoted by the same reference numerals. [First Embodiment] FIG. 1 is a sectional view showing the structure of a first embodiment of a double-sided cooling ozonizer according to the present invention, and FIG. 2 is a partially enlarged sectional view showing the structure of a connection portion of a high-voltage electrode. is there.

【0015】まず、図1により全体の構成を説明する。
胴部1aと2つの側板21b 及び22b とで構成される筐体内
には、接地電極5及び高電圧電極6からなる一組の電極
が収納されており、これに加えて、高周波電源73と電気
供給系、接地電極5及び高電圧電極6を冷却水で冷却す
る冷却系、及び原料ガスの供給系が一体となって、1本
のオゾン発生管をもつ、いわゆる1本物の両面冷却オゾ
ナイザが構成されている。
First, the overall configuration will be described with reference to FIG.
A set of electrodes including a ground electrode 5 and a high-voltage electrode 6 is housed in a housing composed of the body 1a and the two side plates 21b and 22b. A supply system, a cooling system for cooling the ground electrode 5 and the high-voltage electrode 6 with cooling water, and a supply system for the source gas are integrated into a so-called single double-sided cooling ozonizer having one ozone generating tube. Have been.

【0016】ステンレス鋼からなる円筒状の胴部1aは、
その両端に、接地電極5が丁度嵌め込まれる大きさの孔
をもつフランジを備えており、その長さは接地電極5の
両端がフランジから幾らか突出する長さに設定されてい
る。この孔に接地電極5が嵌め込まれ、その両端が幾ら
かずつ突出した状態で、フランジの外側に突出した接地
電極5の両端部近傍に弗素ゴムからなるOリング83及び
84が嵌められ、外側から側板21a 及び22a が図示してい
ないネジなどの締め付け手段によって締め付けられるこ
とにより、胴部1aと接地電極5とは気密に一体化されて
両者の間に水ジャケット3が構成され、同時に胴部1aと
側板21a 及び22a とが一体化される。
The cylindrical body 1a made of stainless steel has
At both ends, a flange having a hole having a size into which the ground electrode 5 is just fitted is provided, and the length is set so that both ends of the ground electrode 5 protrude somewhat from the flange. The ground electrode 5 is fitted into this hole, and both ends of the ground electrode 5 project from the flange.
84, the side plates 21a and 22a are tightened from the outside by tightening means such as screws (not shown), whereby the body 1a and the ground electrode 5 are air-tightly integrated, and the water jacket 3 is formed therebetween. The body 1a and the side plates 21a and 22a are integrated at the same time.

【0017】胴部1aの両端近くには、水ジャケット3に
接地電極5を冷却するための冷却水を供給する冷却水入
口13及び冷却水出口14が設けられている。通常、両者は
ほぼ対角の位置に設けられる。側板21a 及び22a はステ
ンレス鋼からなる。その中央部には、高電圧電極6へ高
周波電圧と冷却水とを供給するための高電圧電極6の接
続部材63及び64が、絶縁部材65及び66によってそれぞれ
電気的に絶縁されて気密に貫通し、高電圧電極6を位置
決めして保持・固定している。また、側板21a には原料
ガスの供給口であるガス入口211 が設けられ、側板22a
にはオゾン化されたガスを取り出すためのガス出口221
が設けられている。
A cooling water inlet 13 and a cooling water outlet 14 for supplying cooling water for cooling the ground electrode 5 to the water jacket 3 are provided near both ends of the body 1a. Usually, both are provided at substantially diagonal positions. Side plates 21a and 22a are made of stainless steel. At the center thereof, connecting members 63 and 64 of the high-voltage electrode 6 for supplying high-frequency voltage and cooling water to the high-voltage electrode 6 are electrically insulated by insulating members 65 and 66, respectively, and penetrate airtightly. Then, the high-voltage electrode 6 is positioned and held / fixed. Further, the side plate 21a is provided with a gas inlet 211 which is a supply port of the raw material gas, and the side plate 22a
Gas outlet 221 for taking out ozonized gas
Is provided.

【0018】なお、この実施例においては、側板21a 及
び22a はステンレス鋼製であるが、弗素樹脂製とするこ
ともできる。接地電極5は、従来技術と同様に、ステン
レス鋼からなる金属管51の内面に、ライニングによって
ガラス誘電体層52が形成されている。高電圧電極6はス
テンレス鋼からなり、両端に蓋のある円筒状をしてお
り、接地電極5の内部に一様な放電ギャップ56を保持し
た状態で挿入されている。その両端の蓋の中央部にはそ
れぞれ上述の接続部材63及び64が溶接で取り付けられて
いる。また、一様な放電ギャップ56を保持するために、
高電圧電極6の下部には複数の突起体61が肉盛り溶接に
よって形成されている。
Although the side plates 21a and 22a are made of stainless steel in this embodiment, they may be made of fluorine resin. The ground electrode 5 has a glass dielectric layer 52 formed by lining on the inner surface of a metal tube 51 made of stainless steel, as in the prior art. The high-voltage electrode 6 is made of stainless steel, has a cylindrical shape with lids at both ends, and is inserted into the ground electrode 5 while maintaining a uniform discharge gap 56. The connecting members 63 and 64 described above are attached to the central portions of the lids at both ends by welding, respectively. Also, in order to maintain a uniform discharge gap 56,
A plurality of protrusions 61 are formed below the high-voltage electrode 6 by overlay welding.

【0019】次に、図2を併用して、高電圧電極6の接
続部材63近傍の構成方法について詳述する。高電圧電極
6の接続部材63及び64は、ステンレス鋼のパイプで作製
され、その一端は高電圧電極6の側面の蓋の中央部の孔
に位置合わせされてそれぞれ溶接されており、他端には
ネジが形成されている。
Next, a method of forming the high voltage electrode 6 near the connection member 63 will be described in detail with reference to FIG. The connecting members 63 and 64 of the high-voltage electrode 6 are made of stainless steel pipes, one end of which is aligned with and welded to the hole in the center of the lid on the side of the high-voltage electrode 6, and the other end is connected to the other end. Is formed with a screw.

【0020】接続部材63近傍の構成方法は以下の通りで
ある。 (1) 接地電極5を胴部1aに両端を少しずつ突出させて挿
入する。 (2) 接続部材63及び64付きの高電圧電極6を接地電極5
内に挿入する。 (3) 側板21b 及び22b を胴部1aの両側に図示していない
ボルトで固定する。この際、接続部材63及び64は側板21
b 及び22b のそれぞれの中央部に形成されている孔に挿
通される。この固定の際に、Oリング83及び84によって
側板21b 及び22bと胴部1aと接地電極5との間の気密シ
ールが確保される。 (4) 接続部材63の外側に絶縁部材65を通し、接続部材64
の外側に絶縁部材66を通し、絶縁部材65及び66を側板21
b 及び22b に形成されているそれぞれのネジにねじ込ん
で固定する。この固定の際にOリング85及び図示してい
ない86によって側板21b と絶縁部材65及び側板22b と絶
縁部材66のそれぞれの間の気密シールが確保される。 (5) 内面にネジが形成されているソケット98及び99を接
続部材63及び64のそれぞれのネジにねじ込み、高電圧電
極6を固定する。この際に、Oリング87及び図示してい
ない88によって、絶縁部材65と接続部材63及び絶縁部材
66と接続部材64のそれぞれの間の気密シールが確保され
る。
The construction method near the connecting member 63 is as follows. (1) Insert the ground electrode 5 into the body 1a with both ends slightly projecting. (2) Connect high voltage electrode 6 with connecting members 63 and 64 to ground electrode 5
Insert inside. (3) The side plates 21b and 22b are fixed to both sides of the body 1a with bolts (not shown). At this time, the connecting members 63 and 64 are
b and 22b are inserted through holes formed in the respective central portions. During this fixing, an air-tight seal between the side plates 21b and 22b, the body 1a and the ground electrode 5 is secured by the O-rings 83 and 84. (4) Pass the insulating member 65 outside the connecting member 63, and
The insulating member 66 is passed through the outside of the
Screw into and fix each screw formed in b and 22b. At this time, an air-tight seal is secured between the side plate 21b and the insulating member 65 and between the side plate 22b and the insulating member 66 by the O-ring 85 and the not-shown 86. (5) The sockets 98 and 99 each having a screw formed on the inner surface are screwed into the respective screws of the connection members 63 and 64 to fix the high-voltage electrode 6. At this time, the insulating member 65, the connecting member 63 and the insulating member
An airtight seal between each of the connection members 66 and the connection members 64 is ensured.

【0021】以上によって、図2に示す接続部材63近傍
の構成が完成する。絶縁部材65(または66)は弗素樹脂
のような耐オゾン性と絶縁性とを備えた材料で作製され
る。その形状は接続部材63を囲う円筒状であるが、接続
部材63に印加される高電圧に対する絶縁性を高めるため
に、大気側の面には沿面距離を長くする目的の溝が形成
されている。また、側板21b との気密シールのためのO
リング用溝が側板21b との接触面に形成されている。
With the above, the configuration near the connecting member 63 shown in FIG. 2 is completed. The insulating member 65 (or 66) is made of a material having ozone resistance and insulating properties, such as fluororesin. Although the shape is a cylindrical shape surrounding the connection member 63, a groove for increasing the creepage distance is formed on the surface on the atmosphere side in order to enhance insulation against a high voltage applied to the connection member 63. . Further, O for sealing hermetically with the side plate 21b is provided.
A ring groove is formed on the contact surface with the side plate 21b.

【0022】次いで、図5を用いて、接地電極5の接続
部材の構成例とその組み立てについて詳述する。接地電
極5の接続部材は、ステンレス鋼からなるネジ78として
作製される。このネジ78は、胴部1aに固定された側板21
b の、金属板51の端部に対応する位置に形成されたネジ
孔にねじ込まれて、金属板51の端部に接触させられ、ナ
ット79により固定される。ネジ78は図示されていないリ
ード線を介して高周波電源73の接地電位側に接続されて
いる。このネジ78は例えばM4サイズといった小形のも
のでよく、このネジ78と側板21b との気密性は図示され
ていないシールテープにより確保される。
Next, a configuration example of the connection member of the ground electrode 5 and its assembly will be described in detail with reference to FIG. The connection member of the ground electrode 5 is manufactured as a screw 78 made of stainless steel. The screw 78 is attached to the side plate 21 fixed to the body 1a.
b is screwed into a screw hole formed at a position corresponding to the end of the metal plate 51, is brought into contact with the end of the metal plate 51, and is fixed by the nut 79. The screw 78 is connected to the ground potential side of the high-frequency power supply 73 via a lead wire (not shown). The screw 78 may be of a small size, for example, M4 size, and the airtightness between the screw 78 and the side plate 21b is ensured by a seal tape (not shown).

【0023】このような確実な接触構造を採用している
のは、以下のような不安定な接触に伴う問題点を避ける
ためである。接地電極5は胴部1aのフランジに嵌め込ま
れているので、胴部1aのフランジに部分的に接触してい
る。したがって、接地電極5は接地電位を保っているよ
うに考えられる。しかし、その接触状態は不安定な接触
であり、接地電位が不安定となる。接地電位が不安定に
なると、放電状態も不安定になり、オゾン濃度を一定に
保つことが困難になる。更に、最悪の場合には、接触部
が発熱して溶融し、その結果、接地電極5が電位的に浮
遊状態となり、放電が維持できなくなる。
The reason why such a reliable contact structure is employed is to avoid the following problems caused by unstable contact. Since the ground electrode 5 is fitted into the flange of the body 1a, it partially contacts the flange of the body 1a. Therefore, it is considered that the ground electrode 5 maintains the ground potential. However, the contact state is an unstable contact, and the ground potential becomes unstable. When the ground potential becomes unstable, the discharge state also becomes unstable, and it becomes difficult to keep the ozone concentration constant. Further, in the worst case, the contact portion generates heat and melts, and as a result, the ground electrode 5 becomes a potential floating state, so that the discharge cannot be maintained.

【0024】図5においては、ネジ78は側板21b を貫通
して接地電極5に接触させられているが、胴部1aを貫通
して接地電極5に接触させることもできる。両面冷却オ
ゾナイザの場合には接地電極5だけではなく高電圧電極
6も冷却するので、冷却水の抵抗値が高いことが必要で
あり、そのため冷却水系にはイオン交換器94が備えられ
ている。実際の運転に際しては、初期に十分な高抵抗の
イオン交換水にしておくと、冷却水を常時イオン交換器
94に通す必要はなく、必要に応じて通すことで十分に必
要な抵抗値を維持することができる。また、図1におい
ては、イオン交換器94側とバイパスの両方にバルブを設
けた場合を示しているが、バイパス側のバルブを省略し
て一部の水のみをイオン交換器94に流通してもその機能
を十分に果たすことはできる。
In FIG. 5, the screw 78 penetrates through the side plate 21b and is in contact with the ground electrode 5, but it can also penetrate through the body 1a and contact the ground electrode 5. In the case of a double-sided cooling ozonizer, not only the ground electrode 5 but also the high-voltage electrode 6 is cooled, so that the resistance value of the cooling water needs to be high. Therefore, the cooling water system is provided with an ion exchanger 94. In the actual operation, if the ion-exchange water with a sufficiently high resistance is initially used, the cooling water will always be
It is not necessary to pass through 94, and if necessary, it is possible to sufficiently maintain the necessary resistance value. FIG. 1 shows a case where valves are provided on both the ion exchanger 94 side and the bypass. However, the valve on the bypass side is omitted and only a part of the water flows through the ion exchanger 94. Can perform its function well.

【0025】〔第2の実施例〕図3は第2の実施例を説
明するための接続部材63a 近傍の構成を示す部分拡大断
面図である。この実施例は接続部材と絶縁部材との間の
気密シールをより確実にするためのものである。第1の
実施例との違いは、接続部材63a の絶縁部材65との接触
面にOリング89用のリング溝が形成され、この溝にOリ
ング89がはめ込まれて、接続部材63a と絶縁部材65との
間が確実に気密シールされていることである。図2の構
成の場合においては、放電中などに高電圧電極6の温度
が上昇して、その寸法が膨張すると、接続部材63及びソ
ケット98が一体で外側へ移動するので、Oリング87の締
め付けが緩み、シール性能が低下する恐れがある。これ
に対して、図3のような接続部材63a と絶縁部材65との
接触面でのOリング89によるシールであれば、シール性
能を確実に維持することができる。
[Second Embodiment] FIG. 3 is a partially enlarged sectional view showing a structure near a connecting member 63a for explaining a second embodiment. This embodiment is intended to further ensure a hermetic seal between the connecting member and the insulating member. The difference from the first embodiment is that a ring groove for an O-ring 89 is formed on the contact surface of the connecting member 63a with the insulating member 65, and the O-ring 89 is fitted in this groove, so that the connecting member 63a and the insulating member The airtight seal between 65 and 65 is ensured. In the case of the configuration shown in FIG. 2, when the temperature of the high-voltage electrode 6 rises during discharge or the like and its size expands, the connecting member 63 and the socket 98 move outward as a unit. May be loosened and the sealing performance may be reduced. On the other hand, if the sealing is performed by the O-ring 89 on the contact surface between the connecting member 63a and the insulating member 65 as shown in FIG. 3, the sealing performance can be reliably maintained.

【0026】なお、より万全を期すためにはOリングの
数を増やすと良い。 〔第3の実施例〕図4は第3の実施例を説明するための
絶縁部材65a 近傍の構成を示す部分拡大図である。この
実施例は、図2におけるソケット98などの表面結露の場
合における絶縁性能の確保を目的とするものである。
It is preferable to increase the number of O-rings for more completeness. [Third Embodiment] FIG. 4 is a partially enlarged view showing a structure near an insulating member 65a for explaining a third embodiment. The purpose of this embodiment is to ensure insulation performance in the case of condensation on the surface of the socket 98 in FIG.

【0027】図2における絶縁部材65の溝にゴム板から
なるつば651 をはめ込んでいる。つば651 は、例えば厚
さ3mm、外側直径14cmのドーナツ状である。ソケット98
の内部には高電圧電極6の冷却水が流れているので、冷
却水温が低い場合にはソケット98の表面に結露すること
があり、その水滴が絶縁部材65の表面に拡がると絶縁破
壊を生ずる恐れがある。このような場合につば651 が水
滴を逃がす部材として働き、絶縁部材に水滴が大きく拡
がることを防止する。
A flange 651 made of a rubber plate is fitted in the groove of the insulating member 65 in FIG. The collar 651 is, for example, a donut having a thickness of 3 mm and an outer diameter of 14 cm. Socket 98
The cooling water of the high-voltage electrode 6 flows through the inside of the socket 98. If the cooling water temperature is low, dew may condense on the surface of the socket 98. If the water droplets spread on the surface of the insulating member 65, dielectric breakdown occurs. There is fear. In such a case, the collar 651 functions as a member for allowing water droplets to escape, and prevents the water droplets from spreading significantly on the insulating member.

【0028】〔第4の実施例〕第4の実施例は、図8に
示したような従来技術における水ジャケット3の冷却効
率を向上させるために考案されたものである。図6は、
第4の実施例における水ジャケット3aの構成を示し、
(a)は胴部1aの一部を破断した部分破断図、(b)は
部分断面図である。
[Fourth Embodiment] The fourth embodiment is designed to improve the cooling efficiency of the water jacket 3 in the prior art as shown in FIG. FIG.
The structure of a water jacket 3a in a fourth embodiment is shown,
(A) is a partial cutaway view in which a part of the trunk portion 1a is cut away, and (b) is a partial sectional view.

【0029】この実施例における水ジャケット3aは、胴
部1aと接地電極5とで囲まれている空間が螺旋状の連続
する空間に仕切られた構造になっている。この仕切り
は、接地電極5の外周に、例えば太さ3mmのステンレス
鋼の針金31を例えば5cmのピッチで螺旋状に巻き付けて
固定した後、胴部1aに挿入して形成される。この針金31
による仕切りによって、冷却水入口13から導入された冷
却水が螺旋状に針金31に沿って電極全面に均一に循環
し、しかも、流路面積が小さくなるため、その流速は仕
切りのない場合に比べて大幅に増加する。その結果、接
地電極5の冷却効率が大幅に向上する。
The water jacket 3a in this embodiment has a structure in which a space surrounded by the body 1a and the ground electrode 5 is partitioned into a spiral continuous space. This partition is formed by, for example, helically winding a stainless steel wire 31 having a thickness of, for example, 3 mm around the ground electrode 5 at a pitch of, for example, 5 cm, and then inserting the wire into the body 1a. This wire 31
The cooling water introduced from the cooling water inlet 13 is uniformly circulated spirally along the wire 31 over the entire surface of the electrode, and the flow area is reduced, so that the flow velocity is smaller than that without the partition. Significantly increase. As a result, the cooling efficiency of the ground electrode 5 is greatly improved.

【0030】〔第5の実施例〕第5の実施例は、水ジャ
ケット3あるいは3aの冷却効率を向上させるために考案
されたもので、オゾナイザの設置の向きに関する。図7
は第5の実施例を示し、(a)は正面図、(b)は側面
図である。この実施例においては、オゾナイザの筐体の
長さ方向が垂直に(縦向きに)配置される。従来技術の
オゾナイザの場合には、多数のオゾン発生管を配置する
ために、それらの設置や保持が容易である横向き構造が
採用されてきている。しかし、この発明の請求項1に記
載の両面冷却オゾナイザのように、1つの筐体に1つの
オゾン発生管を収容するオゾナイザの場合には、横向き
構造の必要性が少なく、接地電極及び高電圧電極の冷却
効率を高めて小形化できる図7に示した構成が有効とな
る。すなわち、接地電極は直接に側板に保持され、高電
圧電極は絶縁部材などを介して側板に保持されているの
で、オゾナイザの筐体を縦向きにして架台100 に設置す
ることができる。冷却水入口13及びソケット98を下側に
し冷却水出口14及びソケット99を上側にして筐体を縦向
きに配置することにより、冷却水は下から上に流され、
内部に入った気泡は上に移動して冷却水と一緒に排出さ
れ、接地電極及び高電圧電極が全面にわたって効率良く
冷却される。その結果、水ジャケット3を小さくするこ
とができ、オゾナイザ全体を細くすることができる。
[Fifth Embodiment] The fifth embodiment is designed to improve the cooling efficiency of the water jacket 3 or 3a, and relates to the installation direction of the ozonizer. FIG.
Shows a fifth embodiment, in which (a) is a front view and (b) is a side view. In this embodiment, the length direction of the housing of the ozonizer is arranged vertically (vertically). In the case of the ozonizer of the related art, in order to arrange a large number of ozone generating tubes, a horizontal structure in which the ozone generating tubes are easily installed and held has been adopted. However, in the case of an ozonizer that accommodates one ozone generating tube in one housing, as in the double-sided cooling ozonizer according to the first aspect of the present invention, the need for a horizontal structure is small, and the ground electrode and high voltage The configuration shown in FIG. 7 in which the cooling efficiency of the electrodes can be increased and the size can be reduced is effective. That is, since the ground electrode is directly held on the side plate, and the high-voltage electrode is held on the side plate via an insulating member or the like, the ozonizer can be installed on the gantry 100 with the housing of the ozonizer oriented vertically. By arranging the housing vertically with the cooling water inlet 13 and the socket 98 on the lower side and the cooling water outlet 14 and the socket 99 on the upper side, the cooling water flows from the bottom up,
The air bubbles that have entered inside move upward and are discharged together with the cooling water, and the ground electrode and the high-voltage electrode are efficiently cooled over the entire surface. As a result, the water jacket 3 can be made smaller, and the entire ozonizer can be made thinner.

【0031】なお、配置が完全に垂直であることは必ず
しも必要ではなく、少々の傾きは問題ではない。
Note that it is not always necessary that the arrangement is completely vertical, and slight inclination is not a problem.

【0032】[0032]

【発明の効果】この発明によれば、両面冷却オゾナイザ
において、1つのオゾン発生管を1つの筐体に収納する
ので、コンパクトな最適設計による標準化が可能であ
り、量産化ができる。1台で足りない場合には、必要に
応じて複数台を並列運転すればよい。したがって、数十
から数百グラム/時間という少量のオゾン供給に適した
小型で安価な両面冷却オゾナイザを提供することができ
る(請求項1の発明)。
According to the present invention, in the double-sided cooling ozonizer, since one ozone generating tube is housed in one housing, standardization by compact and optimal design is possible, and mass production is possible. If one is insufficient, a plurality of units may be operated in parallel as needed. Therefore, it is possible to provide a small and inexpensive double-sided cooled ozonizer suitable for supplying a small amount of ozone of several tens to several hundreds of grams / hour (the invention of claim 1).

【0033】請求項1の発明において、高電圧電極の両
端に取り付けられて高電圧電極と電源とを接続し冷却水
を導入あるいは排出し且つ先端部にネジを有する金属パ
イプと、この金属パイプの外周部に側板を貫通し且つ金
属パイプを貫通させている絶縁部材とを備え、絶縁部材
から突出している金属パイプのネジをソケットで気密に
締め込まれているので、マニホールド及び絶縁チューブ
が不要となり、オゾナイザの長さ方向の側面には接地電
極用の冷却水の接続部のみが装着された構造となり、オ
ゾナイザの太さが低減する。したがって、より安価でよ
り小型の両面冷却オゾナイザを提供することができる
(請求項2の発明)。
According to the first aspect of the present invention, a metal pipe which is attached to both ends of the high voltage electrode, connects the high voltage electrode to a power source, introduces or discharges cooling water, and has a screw at a tip end thereof; The outer peripheral part has an insulating member that penetrates the side plate and the metal pipe, and the screws of the metal pipe protruding from the insulating member are airtightly tightened with sockets, so the manifold and insulating tube are unnecessary. In addition, only the connecting portion of the cooling water for the ground electrode is mounted on the side surface in the length direction of the ozonizer, and the thickness of the ozonizer is reduced. Therefore, it is possible to provide a cheaper and smaller double-sided cooling ozonizer (the invention of claim 2).

【0034】請求項2の発明において、金属パイプに少
なくとも1つの環状溝を備え、且つその環状溝にOリン
グを嵌め込まれているので、高電圧電極が熱膨張しても
金属パイプと絶縁部材との気密シールが完全に確保され
る。したがって、安全性の高い両面冷却オゾナイザを提
供することができる(請求項3の発明)。請求項2ある
いは請求項3の発明において、絶縁部材につばを備えて
いるので、絶縁部材の沿面距離が大幅に大きくなり結露
しても電気絶縁性を確保することが可能となる。したが
って、絶縁不良に伴う誤動作の心配の少ない両面冷却オ
ゾナイザを提供することができる(請求項4の発明)。
According to the second aspect of the present invention, the metal pipe has at least one annular groove, and the O-ring is fitted into the annular groove. Airtight seal is completely secured. Therefore, it is possible to provide a safe double-sided cooling ozonizer (the invention of claim 3). According to the second or third aspect of the present invention, since the insulating member is provided with the collar, the creepage distance of the insulating member is significantly increased, so that it is possible to secure electrical insulation even if dew condensation occurs. Therefore, it is possible to provide a double-sided cooling ozonizer that is less likely to malfunction due to insulation failure (the invention of claim 4).

【0035】接地電極への接続手段として、電源の接地
電位側に接続され、筐体に気密に貫通させられ、かつ接
地電極に接触させられている導電性のネジを備えている
ので、接地電極の電位を完全に接地電位に保持すること
ができる。したがって、放電安定性に優れた両面冷却オ
ゾナイザを提供することができる(請求項5の発明)。
As means for connecting to the ground electrode, a conductive screw connected to the ground potential side of the power supply, airtightly penetrated through the housing, and brought into contact with the ground electrode is provided. Can be completely maintained at the ground potential. Therefore, it is possible to provide a double-sided cooling ozonizer having excellent discharge stability (the invention of claim 5).

【0036】水ジャケットの内部を、螺旋状の仕切り部
材によって螺旋状に連続している空間に仕切っているの
で、冷却水が均一に循環し、かつ冷却水の流速が早くな
る。したがって、接地電極の冷却効率が向上し、両面冷
却オゾナイザの特性が安定する(請求項6の発明)。筐
体の軸方向が垂直になるように筐体を配置し、冷却水の
入口を筐体の下部に、冷却水の出口を筐体の上部に設け
て、冷却水を下から上へ流すので、冷却空間に気泡が残
留することがなくなる。したがって、接地電極の冷却効
率を向上させることができる(請求項7の発明)。
Since the inside of the water jacket is partitioned into a spirally continuous space by the spiral partition member, the cooling water circulates uniformly and the flow velocity of the cooling water is increased. Therefore, the cooling efficiency of the ground electrode is improved, and the characteristics of the double-sided cooling ozonizer are stabilized (the invention of claim 6). Since the housing is arranged so that the axial direction of the housing is vertical, the cooling water inlet is provided at the bottom of the housing, the cooling water outlet is provided at the top of the housing, and the cooling water flows from bottom to top. Thus, no bubbles remain in the cooling space. Therefore, the cooling efficiency of the ground electrode can be improved (the invention of claim 7).

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による両面冷却オゾナイザの第1の実
施例の構造を示す断面図
FIG. 1 is a sectional view showing the structure of a first embodiment of a double-sided cooling ozonizer according to the present invention.

【図2】第1の実施例の接続部材近傍の構成を示す部分
拡大断面図
FIG. 2 is a partially enlarged cross-sectional view showing a configuration near a connection member according to the first embodiment.

【図3】第2の実施例の接続部材近傍の構成を示す部分
拡大断面図
FIG. 3 is a partially enlarged cross-sectional view showing a configuration near a connection member according to a second embodiment.

【図4】第3の実施例の絶縁部材近傍の構成を示す部分
拡大図
FIG. 4 is a partially enlarged view showing a configuration near an insulating member of a third embodiment.

【図5】第1の実施例の接地電極の接続部の構成を示す
部分拡大断面図
FIG. 5 is a partially enlarged cross-sectional view illustrating a configuration of a connection portion of a ground electrode according to the first embodiment.

【図6】第4の実施例の水ジャケットの構成を示し、
(a)は胴部の一部破断図、(b)は一部断面図
FIG. 6 shows a configuration of a water jacket according to a fourth embodiment,
(A) is a partially cutaway view of the trunk, and (b) is a partially sectional view.

【図7】第5の実施例を示し、(a)は正面図、(b)
は側面図
FIGS. 7A and 7B show a fifth embodiment, wherein FIG. 7A is a front view and FIG.
Is a side view

【図8】従来技術による両面冷却オゾナイザの構造を示
し、(a)は全体の断面図、(b)はオゾン発生管の一
部を拡大して示す部分断面図
8A and 8B show the structure of a double-sided cooling ozonizer according to the related art, in which FIG. 8A is an overall sectional view, and FIG. 8B is an enlarged partial sectional view showing a part of an ozone generating tube.

【符号の説明】[Explanation of symbols]

1, 1a 胴部 11 ガス入口 12 ガス出口 13 冷却水入口 14 冷却水出口 21, 22, 21b, 22b 側板 211 ガス入口 221 ガス出口 3, 3a 水ジャケット 31 針金 41, 42 支持板 5 接地電極 51 金属管 52 ガラス誘電体層 56 放電ギャップ 6 高電圧電極 61 突起体 65, 66 絶縁部材 63, 64, 63a, 64a 接続部材 71 リード線 72 電圧導入端子 73 高周波電源 78 ネジ 79 ナット 81, 82 パッキン 83, 84, 85, 86, 87, 88, 89, 90 Oリング 91 冷却配管 92 ポンプ 93 熱交換器 94 イオン交換器 95, 96 マニホールド 97 絶縁チューブ 98, 99 ソケット 100 架台 1, 1a Body 11 Gas inlet 12 Gas outlet 13 Cooling water inlet 14 Cooling water outlet 21, 22, 21b, 22b Side plate 211 Gas inlet 221 Gas outlet 3, 3a Water jacket 31 Wire 41, 42 Support plate 5 Ground electrode 51 Metal Tube 52 Glass dielectric layer 56 Discharge gap 6 High voltage electrode 61 Protrusion 65, 66 Insulation member 63, 64, 63a, 64a Connection member 71 Lead wire 72 Voltage introduction terminal 73 High frequency power supply 78 Screw 79 Nut 81, 82 Packing 83, 84, 85, 86, 87, 88, 89, 90 O-ring 91 Cooling pipe 92 Pump 93 Heat exchanger 94 Ion exchanger 95, 96 Manifold 97 Insulation tube 98, 99 Socket 100 Mount

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】両端が開口し且つ内面に誘電体層が形成さ
れている筒状の接地電極及び接地電極の内側に空隙を介
して配置され且つ内部に導入された冷却水によって冷却
される両端閉止構造の筒状の高電圧電極からなるオゾン
発生管と、両端が開口している筒状の胴部及び開口部を
気密に塞ぐための2つの側板からなり且つオゾン発生管
を内蔵する筐体と、筐体と接地電極との間に設けられ接
地電極を冷却するための水ジャケットと、オゾン発生管
に電力を供給する電源とを備え、筐体内に導入された酸
素を含む原料ガスの放電によってオゾンを生成する両面
冷却オゾナイザにおいて、 1つの筐体に1つのオゾン発生管を内蔵していることを
特徴とする両面冷却オゾナイザ。
1. A cylindrical ground electrode having both ends open and a dielectric layer formed on an inner surface, and both ends disposed through a gap inside the ground electrode and cooled by cooling water introduced therein. A housing comprising a cylindrical high voltage electrode having a closed structure, a cylindrical body having both ends opened, and two side plates for hermetically closing the openings, and a housing incorporating the ozone generation tube. And a water jacket provided between the housing and the ground electrode for cooling the ground electrode, and a power supply for supplying power to the ozone generating tube, and discharging the source gas containing oxygen introduced into the housing. A double-sided cooling ozonizer, which generates ozone by using the same, wherein one housing includes one ozone generating tube.
【請求項2】前記高電圧電極の両端に取り付けられて高
電圧電極と前記電源とを接続し冷却水を導入あるいは排
出し且つ先端部にネジを有する金属パイプと、この金属
パイプの外周部に側板を貫通し且つ金属パイプを貫通さ
せている絶縁部材とを備え、絶縁部材から突出している
金属パイプのネジをソケットで気密に締め込まれている
ことを特徴とする請求項1に記載の両面冷却オゾナイ
ザ。
2. A metal pipe attached to both ends of the high-voltage electrode, connecting the high-voltage electrode and the power supply, introducing or discharging cooling water, and having a thread at a tip end. 2. An insulating member penetrating the side plate and penetrating the metal pipe, wherein a screw of the metal pipe protruding from the insulating member is airtightly tightened by a socket. Cooling ozonizer.
【請求項3】前記金属パイプに少なくとも1つの環状溝
を備え、且つその環状溝にOリングを嵌め込まれている
ことを特徴とする請求項2に記載の両面冷却オゾナイ
ザ。
3. The double-sided cooling ozonizer according to claim 2, wherein the metal pipe has at least one annular groove, and an O-ring is fitted into the annular groove.
【請求項4】前記絶縁部材につばを備えていることを特
徴とする請求項2又は請求項3に記載の両面冷却オゾナ
イザ。
4. The double-sided cooling ozonizer according to claim 2, wherein the insulating member includes a flange.
【請求項5】前記電源の接地電位側に接続され、前記筐
体に気密に貫通させられ、且つ前記接地電極に接触させ
られている導電性のネジを備えていることを特徴とする
請求項1に記載の両面冷却オゾナイザ。
5. A conductive screw connected to a ground potential side of the power supply, hermetically penetrated through the housing, and being in contact with the ground electrode. 2. The double-sided cooling ozonizer according to 1.
【請求項6】前記水ジャケットの内部を、螺旋状の仕切
り部材によって螺旋状に連続している空間に仕切ってい
ることを特徴とする請求項1に記載の両面冷却オゾナイ
ザ。
6. The double-sided cooling ozonizer according to claim 1, wherein the inside of the water jacket is partitioned into a spirally continuous space by a spiral partitioning member.
【請求項7】前記筐体の軸方向が垂直になるように筐体
を配置し、冷却水の入口を筐体の下部に、冷却水の出口
を筐体の上部に設けていることを特徴とする請求項1に
記載の両面冷却オゾナイザ。
7. A housing is arranged such that an axial direction of the housing is vertical, an inlet of cooling water is provided at a lower portion of the housing, and an outlet of cooling water is provided at an upper portion of the housing. The double-sided cooling ozonizer according to claim 1, wherein
JP30401097A 1997-11-06 1997-11-06 Double-sided cooling ozonizer Expired - Fee Related JP3837878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30401097A JP3837878B2 (en) 1997-11-06 1997-11-06 Double-sided cooling ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30401097A JP3837878B2 (en) 1997-11-06 1997-11-06 Double-sided cooling ozonizer

Publications (2)

Publication Number Publication Date
JPH11139809A true JPH11139809A (en) 1999-05-25
JP3837878B2 JP3837878B2 (en) 2006-10-25

Family

ID=17927987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30401097A Expired - Fee Related JP3837878B2 (en) 1997-11-06 1997-11-06 Double-sided cooling ozonizer

Country Status (1)

Country Link
JP (1) JP3837878B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068218A (en) * 2006-09-15 2008-03-27 Hamanetsu:Kk Ozone water generator
JP2009155186A (en) * 2007-12-27 2009-07-16 Dkk Toa Corp Ozone generator
JP2010228974A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Ozone generator
JP2010248017A (en) * 2009-04-13 2010-11-04 Metawater Co Ltd Ozone producing electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068218A (en) * 2006-09-15 2008-03-27 Hamanetsu:Kk Ozone water generator
JP2009155186A (en) * 2007-12-27 2009-07-16 Dkk Toa Corp Ozone generator
JP2010228974A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Ozone generator
JP2010248017A (en) * 2009-04-13 2010-11-04 Metawater Co Ltd Ozone producing electrode

Also Published As

Publication number Publication date
JP3837878B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US5417936A (en) Plate-type ozone generator
US6027701A (en) Ozone generator
KR890003654B1 (en) Apparatus for generation of ozone
US5008087A (en) Ozone generator apparatus and method
US5211919A (en) Flat plate corona cell for generating ozone
CA2219578C (en) Non-electrode discharge lamp apparatus and liquid treatment apparatus using such lamp apparatus
HU228019B1 (en) Ozone generating device
US20070071658A1 (en) Corona discharge ozone generator
JP3837878B2 (en) Double-sided cooling ozonizer
US7700052B2 (en) Ozone generator
JP5661003B2 (en) Ozone generator tube and ozone generator
US4011165A (en) High frequency ozonizer
US5306471A (en) Concentric ozonator tube assesmbly
JPH11130409A (en) One-side-cooled ozonizer
US9469537B2 (en) Method for individually replacing ozone generator electrode assemblies
EP0461752A1 (en) Ozone generator method and apparatus
KR100485108B1 (en) Ozone generator
JP3000080B1 (en) Water-cooled electrode
JP3804229B2 (en) Ozonizer
US8372345B2 (en) Integrated ozone generator system
JP2002255514A (en) Ozone generator
JPH11157808A (en) Ozone generating device
JPS6325203A (en) Ozonizer
CN220684689U (en) Ozone tube and ozone generator
JPH0729696A (en) Cooling system in ion accelerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees