JP3804229B2 - Ozonizer - Google Patents

Ozonizer Download PDF

Info

Publication number
JP3804229B2
JP3804229B2 JP31530697A JP31530697A JP3804229B2 JP 3804229 B2 JP3804229 B2 JP 3804229B2 JP 31530697 A JP31530697 A JP 31530697A JP 31530697 A JP31530697 A JP 31530697A JP 3804229 B2 JP3804229 B2 JP 3804229B2
Authority
JP
Japan
Prior art keywords
ozonizer
ozone
cooling
cooling water
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31530697A
Other languages
Japanese (ja)
Other versions
JPH11147702A (en
Inventor
久道 石岡
一樹 甲斐
秀明 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP31530697A priority Critical patent/JP3804229B2/en
Publication of JPH11147702A publication Critical patent/JPH11147702A/en
Application granted granted Critical
Publication of JP3804229B2 publication Critical patent/JP3804229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水処理などに用いられるオゾンを生成するためのオゾナイザに関する。
【0002】
【従来の技術】
オゾナイザは、オゾンのもつ殺菌・脱色・脱臭力を利用するために、水処理施設などにおいて広く使用されている。図2は、従来技術によるオゾナイザの内の片面冷却オゾナイザの一例の構造を示すもので、(a)は全体の構成を示す長さ方向の断面図、(b)はオゾン発生管の一部を詳細に示す長さ方向の断面図である。片面冷却オゾナイザはオゾン発生管の接地電極のみを冷却水で冷却する構造のオゾナイザである。
【0003】
このオゾナイザの筐体は、両端が開口している筒状をしたステンレス鋼からなる胴部1と、その両開口端部に締め付けられている2つステンレス鋼からなる側板21及び22とによって構成されている。胴部1と2つの側板21及び22とは気密に結合される必要があるため、両開口端部のそれぞれに平パッキン(図2では単にパッキン)81及び82を介して、図示していないネジなどの締め付け手段を用いて結合されている。胴部1の内面側には、多数のオゾン発生管を保持するための、少なくとも一対のステンレス鋼からなる支持板41及び42が互いに適当な間隔をおいて嵌め込まれている。胴部1の管壁には、側板21と側板21側の支持板41との中間の位置に原料ガスを供給するためのガス入口11があり、反対側の側板22と側板22側の支持板42との中間の位置に、生成されたオゾンを含むガスを取り出すためのガス出口12がある。更に、2つの支持板41及び42の中間の位置に、冷却水を流入させるための冷却水入口13と、冷却水を排出する冷却水出口14とが、ほぼ対向して設けられている。通常は、冷却水入口13が下部に、冷却水出口14が上部に設けられる。また、胴部1の側板21に近い位置に、電圧導入端子72が装着されている。
【0004】
支持板41及び42に支持されるオゾン発生管は、両端が開口している円筒状のステンレス鋼からなる接地側の接地電極5と、接地電極5の内側にほぼ一定のギャップ長をもつ放電ギャップ56を介して配置されている高電圧電極6とで構成されている。接地電極5は、ステンレス鋼からなる金属管51と、この内面にライニング(金属管51の内側にガラス管を挿入し、内圧を加えた状態で誘導加熱によってガラスを軟化させ、金属管51の内面にガラス層を形成する技術)によって形成されたガラス誘電体層52とからなっている。高電圧電極6の外面下部の両端付近には、放電ギャップ56を保持するための突起体61が溶接による肉盛りによって形成されている。このオゾン発生管は、支持板41及び42に形成されている貫通孔に嵌め込まれて支持板41及び42に支持されており、その接触部は、冷却水が漏れないように図示していないOリングによってシールされている。
【0005】
筐体、オゾン発生管などにステンレス鋼を使用しているのは、ステンレス鋼がオゾンの強い酸化作用に対して耐性を有するからである。高周波電源73からオゾン発生管に供給される高周波電圧の一方は、胴部1に装着されている電圧導入端子72からリード線71を介して各オゾン発生管の高電圧電極6に供給される。高周波電源73の高周波電圧の他方は、接地電位点に接続され、同時に胴部1に接続されており、図示していないリード線を介して接地電極5に接続されている。
【0006】
オゾン発生管の接地電極5を冷却する冷却水は、熱交換器93で冷却されてポンプ92で加圧され、冷却配管91を通って冷却水入口13から水ジャケット3に供給されて接地電極5を冷却し、冷却水出口14から冷却配管91を通って熱交換器93に戻る。この冷却系は公知の工業用水供給系統であり、冷却水には工業用水が用いられることが多い。
【0007】
このような片面冷却オゾナイザにおいて、ガス入口11から供給された酸素を含む原料ガス(空気あるいは酸素など)は、側板21側の接地電極5の開口部から放電ギャップ56に流入し、放電ギャップ56における無声放電によって酸素の一部がオゾン化され、オゾンを含むガスとなってガス出口12から取り出される。ガス出口12の後方には、図示していない圧力調整弁が装着されており、ガスの圧力値を例えば1.7 気圧に調節して、オゾンを含むガスを消費設備に供給する。
【0008】
図3は、従来技術によるオゾナイザの内の両面冷却オゾナイザの一例の構造を示すもので、(a)は全体の構成を示す長さ方向の断面図、(b)はオゾン発生管の一部を詳細に示す長さ方向の部分断面図である。両面冷却オゾナイザはオゾン発生管の接地電極と高電圧電極の両方を冷却水で冷却する構造のオゾナイザである。
【0009】
両面冷却オゾナイザが図2に示した片面冷却オゾナイザと異なる点は、高電圧電極6aの両端が閉塞され、そこに冷却水を導入する冷却パイプが取り付けられており、内部に冷却水が循環されることである。高電圧電極6aは接地電位に対して電気的に絶縁される必要があるので、冷却水には高抵抗のイオン交換水が使用される。また、胴部1に設けられた冷却水分岐のためのマニホールド95及び96と冷却パイプとは絶縁チューブ97によって接続され、電気的に絶縁されている。更に、冷却水系には冷却水の抵抗値を高く維持するためのイオン交換器94が装備されている。
【0010】
図4は、従来技術によるオゾナイザの内のガラス管式オゾナイザの一例の構造を示すもので、(a)は全体の構成を示す長さ方向の断面図、(b)はその垂直方向の断面図である。ガラス管式オゾナイザは、両端が開口している円筒状のステンレス鋼からなる接地電極5aと、一端を閉塞したガラス管6b1 の内面にスパッタリング法や蒸着法により形成したアルミあるいはステンレスなどの金属膜6b2 を有する高電圧電極6bとからなるオゾン発生管を備えている。ガラス管6b1 が誘電体層として機能する。高電圧電極6bはステンレス鋼製のスペーサ62によって保持され、放電ギャップ56が維持されている。このようにガラス管式オゾナイザの構造は片面冷却オゾナイザによく似た構造をしている。
【0011】
以上のような従来技術によるオゾナイザは、オゾン化ガスの供給には好適なオゾナイザであるが、処理技術の要請から、従来の100g/Nm3のオゾン濃度を更に高いオゾン濃度、例えば 150〜200 g/Nm3、に高めたオゾン化ガスが必要となってきている。オゾン濃度を高くする方法としては、放電ギャップ56を狭くすればよいことは公知である。しかし、製造技術における電極の製作精度から、工業的規模で一様で狭い放電ギャップ56を実現することは困難であった。例えば、放電キャップ56を0.5mm 以下に保持しようとしても、電極が湾曲しているために、電極の長手方向で放電キャップ56がばらつき、電極面内における放電の不均一とガス流の不均一を生じ、高濃度のオゾンを含むオゾン化ガスを得ることができるオゾナイザの良品率が低くなってしまうという問題点をもっている。
【0012】
【発明が解決しようとする課題】
この発明の課題は、上記の問題点を解決して、高濃度のオゾンを含むオゾン化ガスが得られ、良品率が高く、かつ安価なオゾナイザを提供することである。
【0013】
【課題を解決するための手段】
このような課題を解決するために、この発明においては、両端が開口している筒状の接地電極、接地電極の内側に空隙を介して配置されている高電圧電極、及び両電極間に配置されている誘電体層からなるオゾン発生管と、オゾン発生管を内蔵する筐体とを備え、筐体内に導入された酸素を含む原料ガスの放電によってオゾンを生成するオゾナイザにおいて、高電圧電極のガス流通方向における終端部近傍の外径が拡張されている。
【0014】
高電圧電極の終端部近傍を拡張することによって、この部分の流体抵抗が大きくなり、それより前の部分の放電ギャップの不均一によるガス流の不均一が緩和される。
【0015】
【発明の実施の形態】
この発明によるオゾナイザの実施の形態について、実施例を用いて説明する。この発明においても、基本的な構成は従来技術と同じであるので、従来技術と同じ機能をもつ部分については同じ符号を用いている。
【0016】
図1はこの発明の実施例によるオゾン発生管の一部を示す長さ方向の部分断面図である。この実施例は片面冷却オゾナイザの構造として示しているが、他の構造のオゾナイザにも有効である。
【0017】
この実施例の高電圧電極6cは、ガス流通方向の終端部近傍の直径が拡張された直径拡大部6c1 を備えている。直径拡大部6c1 によってガス流路が絞られるために、この部分の流体抵抗が他の部分に比べて十分大きくなる。その結果、それより上流側の放電ギャップのギャップ長のバラツキによるガス流の不均一が緩和される。実施例においては、終端部のギャップ長を上流部の平均ギャップ長の1/6にした結果、発生オゾンの濃度を増加させることができた。
【0018】
【発明の効果】
この発明によれば、両端が開口している筒状の接地電極、接地電極の内側に空隙を介して配置されている高電圧電極、及び両電極間に配置されている誘電体層からなるオゾン発生管と、オゾン発生管を内蔵する筐体とを備え、筐体内に導入された酸素を含む原料ガスの放電によってオゾンを生成するオゾナイザにおいて、高電圧電極のガス流通方向における終端部近傍の外径が拡張されているので、この部分の流体抵抗が大きくなり、それより前の部分の放電ギャップの不均一によるガス流の不均一が緩和される。したがって、電極形状を少し変更することで、放電ギャップが小さく、高濃度オゾンが得られるオゾナイザを高い良品率で得ることができるようになり、加工精度の悪い安価な材料を使用することができるようになる。
【図面の簡単な説明】
【図1】この発明によるオゾナイザの実施例の構造を示すオゾン発生管の長さ方向の断面図
【図2】従来技術による片面冷却オゾナイザの一例の構造を示し、(a)は全体の構成を示す長さ方向の断面図、(b)はオゾン発生管の一部を詳細に示す長さ方向の断面図
【図3】従来技術による両面冷却オゾナイザの一例の構造を示し、(a)は全体の構成を示す長さ方向の断面図、(b)はオゾン発生管の一部を詳細に示す長さ方向の部分断面図
【図4】従来技術によるガラス管式オゾナイザの一例の構造を示し、(a)は全体の構成を示す長さ方向の断面図、(b)はその垂直方向の断面図
【符号の説明】
1 胴部 11 ガス入口 12 ガス出口 13 冷却水入口 14 冷却水出口 21, 22 側板3水ジャケット 41, 42 支持板 5, 5a, 5b 接地電極 51 金属管 52 ガラス誘電体層 56 放電ギャップ 6,6a,6b,6c, 高電圧電極 61 突起体 62 スペーサ 6b1 ガラス管 6b2 金属膜 6c1 直径拡大部 63 ナット 71 リード線 72 電圧導入端子 73 高周波電源 74 接続部材 81, 82 パッキン 91 冷却配管 92 ポンプ 93 熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ozonizer for generating ozone used for water treatment and the like.
[0002]
[Prior art]
Ozonizers are widely used in water treatment facilities and the like in order to utilize the bactericidal, decolorizing and deodorizing power of ozone. 2A and 2B show the structure of an example of a single-side cooling ozonizer of an ozonizer according to the prior art. FIG. 2A is a longitudinal sectional view showing the entire structure, and FIG. 2B shows a part of an ozone generating tube. It is sectional drawing of the length direction shown in detail. The single-side cooling ozonizer is an ozonizer having a structure in which only the ground electrode of the ozone generating tube is cooled with cooling water.
[0003]
The housing of this ozonizer is composed of a cylindrical body 1 made of stainless steel having both ends open and two side plates 21 and 22 made of stainless steel fastened to both open ends. ing. Since the body 1 and the two side plates 21 and 22 need to be airtightly connected, screws (not shown) are connected to both ends of the opening through flat packings (simply packings in FIG. 2) 81 and 82, respectively. It is connected using a fastening means such as. On the inner surface side of the body portion 1, support plates 41 and 42 made of at least a pair of stainless steel for holding a large number of ozone generating tubes are fitted at appropriate intervals. On the tube wall of the body portion 1, there is a gas inlet 11 for supplying a raw material gas to an intermediate position between the side plate 21 and the support plate 41 on the side plate 21 side, and a side plate 22 on the opposite side and a support plate on the side plate 22 side. There is a gas outlet 12 for taking out the gas containing the generated ozone at a position intermediate with 42. Further, a cooling water inlet 13 for allowing cooling water to flow in and a cooling water outlet 14 for discharging the cooling water are provided substantially opposite to each other between the two support plates 41 and 42. Usually, the cooling water inlet 13 is provided in the lower part and the cooling water outlet 14 is provided in the upper part. In addition, a voltage introduction terminal 72 is mounted at a position near the side plate 21 of the body 1.
[0004]
The ozone generating tube supported by the support plates 41 and 42 is composed of a ground-side ground electrode 5 made of cylindrical stainless steel having both ends open, and a discharge gap having a substantially constant gap length inside the ground electrode 5. And a high-voltage electrode 6 disposed through 56. The ground electrode 5 includes a metal tube 51 made of stainless steel, and a lining (a glass tube is inserted inside the metal tube 51 and the glass is softened by induction heating in a state where internal pressure is applied. The glass dielectric layer 52 is formed by a technology for forming a glass layer on the glass dielectric layer 52. Near both ends of the lower portion of the outer surface of the high-voltage electrode 6, a protrusion 61 for holding the discharge gap 56 is formed by welding. The ozone generating tube is fitted into through holes formed in the support plates 41 and 42 and supported by the support plates 41 and 42, and the contact portion is not shown so that the cooling water does not leak. Sealed by a ring.
[0005]
The reason why stainless steel is used for the housing, the ozone generating tube, etc. is that stainless steel has resistance to the strong oxidizing action of ozone. One of the high-frequency voltages supplied from the high-frequency power source 73 to the ozone generator tube is supplied from the voltage introduction terminal 72 attached to the body 1 to the high voltage electrode 6 of each ozone generator tube via the lead wire 71. The other of the high-frequency voltages of the high-frequency power source 73 is connected to the ground potential point, and is simultaneously connected to the body 1 and is connected to the ground electrode 5 through a lead wire (not shown).
[0006]
The cooling water for cooling the ground electrode 5 of the ozone generating pipe is cooled by the heat exchanger 93 and pressurized by the pump 92, supplied to the water jacket 3 from the cooling water inlet 13 through the cooling pipe 91, and grounded electrode 5. Then, the cooling water exit 14 passes through the cooling pipe 91 and returns to the heat exchanger 93. This cooling system is a known industrial water supply system, and industrial water is often used as the cooling water.
[0007]
In such a single-sided cooling ozonizer, a source gas (such as air or oxygen) containing oxygen supplied from the gas inlet 11 flows into the discharge gap 56 from the opening of the ground electrode 5 on the side plate 21 side, and in the discharge gap 56. A part of oxygen is ozonized by silent discharge, and is extracted from the gas outlet 12 as a gas containing ozone. A pressure regulating valve (not shown) is mounted behind the gas outlet 12, and the pressure value of the gas is adjusted to, for example, 1.7 atm to supply a gas containing ozone to the consuming equipment.
[0008]
FIG. 3 shows the structure of an example of a double-sided cooling ozonizer in the conventional ozonizer. (A) is a longitudinal sectional view showing the entire structure, and (b) is a part of an ozone generating tube. It is a fragmentary sectional view of the length direction shown in detail. The double-sided cooling ozonizer is an ozonizer having a structure in which both the ground electrode and the high voltage electrode of the ozone generating tube are cooled with cooling water.
[0009]
The double-sided cooling ozonizer is different from the single-sided cooling ozonizer shown in FIG. 2 in that both ends of the high-voltage electrode 6a are closed and cooling pipes for introducing cooling water are attached to the cooling water. That is. Since the high voltage electrode 6a needs to be electrically insulated from the ground potential, high resistance ion exchange water is used as the cooling water. Further, the manifolds 95 and 96 for branching the cooling water provided in the body portion 1 and the cooling pipe are connected by an insulating tube 97 and are electrically insulated. Further, the cooling water system is equipped with an ion exchanger 94 for maintaining a high resistance value of the cooling water.
[0010]
4A and 4B show the structure of an example of a glass tube type ozonizer of conventional ozonizers. FIG. 4A is a longitudinal sectional view showing the entire configuration, and FIG. 4B is a vertical sectional view thereof. It is. The glass tube type ozonizer has a ground electrode 5a made of cylindrical stainless steel with both ends opened, and a metal film 6b2 made of aluminum or stainless steel formed by sputtering or vapor deposition on the inner surface of the glass tube 6b1 closed at one end. And an ozone generating tube comprising a high voltage electrode 6b having The glass tube 6b1 functions as a dielectric layer. The high voltage electrode 6b is held by a stainless steel spacer 62, and the discharge gap 56 is maintained. As described above, the structure of the glass tube ozonizer is similar to that of the single-side cooling ozonizer.
[0011]
The conventional ozonizer as described above is an ozonizer suitable for the supply of ozonized gas. However, due to the demand for processing technology, the conventional ozone concentration of 100 g / Nm3 is increased to a higher ozone concentration, for example, 150 to 200 g / Ozonized gas increased to Nm3 has become necessary. As a method for increasing the ozone concentration, it is known that the discharge gap 56 may be narrowed. However, it has been difficult to realize a uniform and narrow discharge gap 56 on an industrial scale because of the manufacturing accuracy of electrodes in manufacturing technology. For example, even if an attempt is made to hold the discharge cap 56 at 0.5 mm or less, since the electrode is curved, the discharge cap 56 varies in the longitudinal direction of the electrode, resulting in non-uniform discharge and gas flow in the electrode surface. The problem is that the yield of ozonizers that can produce ozonized gas containing high-concentration ozone is low.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide an ozonizer that solves the above-described problems and obtains an ozonized gas containing high-concentration ozone, has a high yield rate, and is inexpensive.
[0013]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, a cylindrical ground electrode having both ends opened, a high voltage electrode disposed inside the ground electrode via a gap, and disposed between both electrodes In an ozonizer that includes an ozone generator tube made of a dielectric layer and a housing containing the ozone generator tube, and generates ozone by discharge of a source gas containing oxygen introduced into the housing, a high-voltage electrode The outer diameter in the vicinity of the terminal end in the gas flow direction is expanded.
[0014]
By expanding the vicinity of the terminal portion of the high voltage electrode, the fluid resistance of this portion is increased, and the nonuniformity of the gas flow due to the nonuniformity of the discharge gap in the previous portion is alleviated.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the ozonizer according to the present invention will be described using examples. Also in this invention, since the basic configuration is the same as that of the prior art, the same reference numerals are used for portions having the same functions as those of the prior art.
[0016]
FIG. 1 is a partial sectional view in the length direction showing a part of an ozone generating tube according to an embodiment of the present invention. Although this embodiment is shown as a structure of a single-side cooling ozonizer, it is also effective for an ozonizer having another structure.
[0017]
The high voltage electrode 6c of this embodiment includes a diameter enlarged portion 6c1 in which the diameter in the vicinity of the end portion in the gas flow direction is expanded. Since the gas flow path is throttled by the enlarged diameter portion 6c1, the fluid resistance in this portion is sufficiently larger than in other portions. As a result, the gas flow non-uniformity due to the variation in the gap length of the discharge gap on the upstream side is alleviated. In the example, as a result of setting the gap length of the terminal portion to 1/6 of the average gap length of the upstream portion, it was possible to increase the concentration of generated ozone.
[0018]
【The invention's effect】
According to the present invention, the ozone is composed of a cylindrical ground electrode having both ends opened, a high voltage electrode disposed inside the ground electrode via a gap, and a dielectric layer disposed between both electrodes. In an ozonizer comprising a generator tube and a housing containing an ozone generator tube, and generating ozone by discharge of a source gas containing oxygen introduced into the housing, the outside of the high voltage electrode near the end portion in the gas flow direction Since the diameter is expanded, the fluid resistance of this portion is increased, and the non-uniformity of gas flow due to the non-uniformity of the discharge gap in the previous portion is alleviated. Therefore, by slightly changing the electrode shape, an ozonizer with a small discharge gap and high concentration ozone can be obtained at a high yield rate, and an inexpensive material with low processing accuracy can be used. become.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an ozone generating tube showing the structure of an embodiment of an ozonizer according to the present invention. FIG. 2 shows the structure of an example of a single-side cooling ozonizer according to the prior art, and FIG. FIG. 3B is a longitudinal sectional view showing a part of an ozone generating tube in detail. FIG. 3 shows a structure of an example of a double-sided cooling ozonizer according to the prior art, and FIG. FIG. 4B is a partial cross-sectional view in the length direction showing a part of the ozone generating tube in detail. FIG. 4 shows a structure of an example of a conventional glass tube ozonizer, (A) is a longitudinal sectional view showing the entire configuration, (b) is a vertical sectional view thereof [Explanation of Symbols]
1 Body 11 Gas inlet 12 Gas outlet 13 Cooling water inlet 14 Cooling water outlet 21, 22 Side plate 3 Water jacket 41, 42 Support plate 5, 5a, 5b Ground electrode 51 Metal tube 52 Glass dielectric layer 56 Discharge gap 6, 6a , 6b, 6c, High voltage electrode 61 Projection body 62 Spacer 6b1 Glass tube 6b2 Metal film 6c1 Diameter enlarged part 63 Nut 71 Lead wire 72 Voltage introduction terminal 73 High frequency power supply 74 Connection member 81, 82 Packing 91 Cooling pipe 92 Pump 93 Heat exchange vessel

Claims (1)

両端が開口している筒状の接地電極、接地電極の内側に空隙を介して配置されている高電圧電極、及び両電極間に配置されている誘電体層からなるオゾン発生管と、オゾン発生管を内蔵する筐体とを備え、筐体内に導入された酸素を含む原料ガスの放電によってオゾンを生成するオゾナイザにおいて、高電圧電極のガス流通方向における終端部近傍の外径が拡張されていることを特徴とするオゾナイザ。An ozone generator tube composed of a cylindrical ground electrode open at both ends, a high voltage electrode disposed inside the ground electrode via a gap, and a dielectric layer disposed between both electrodes, and ozone generation And an ozonizer that generates ozone by discharge of a source gas containing oxygen introduced into the housing, and the outer diameter in the vicinity of the terminal portion in the gas flow direction of the high-voltage electrode is expanded. Ozonizer characterized by that.
JP31530697A 1997-11-17 1997-11-17 Ozonizer Expired - Fee Related JP3804229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31530697A JP3804229B2 (en) 1997-11-17 1997-11-17 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31530697A JP3804229B2 (en) 1997-11-17 1997-11-17 Ozonizer

Publications (2)

Publication Number Publication Date
JPH11147702A JPH11147702A (en) 1999-06-02
JP3804229B2 true JP3804229B2 (en) 2006-08-02

Family

ID=18063817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31530697A Expired - Fee Related JP3804229B2 (en) 1997-11-17 1997-11-17 Ozonizer

Country Status (1)

Country Link
JP (1) JP3804229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349391A (en) * 2004-06-10 2005-12-22 Corning Inc Airtight port assembly and its manufacturing method
JP5185592B2 (en) * 2007-10-18 2013-04-17 メタウォーター株式会社 Ozone generator
CN114763251B (en) * 2021-01-12 2024-03-15 北京科胜美科技有限公司 Ground electrode for ozone generator

Also Published As

Publication number Publication date
JPH11147702A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5417936A (en) Plate-type ozone generator
US5008087A (en) Ozone generator apparatus and method
US4908189A (en) Concentric tube ozonator
US5503809A (en) Compact ozone generator
US6027701A (en) Ozone generator
US4656010A (en) Device for producing ozone
JPS61275107A (en) Ozonator
US20070071658A1 (en) Corona discharge ozone generator
JP3804229B2 (en) Ozonizer
JP2012206898A (en) Ozone generator
JP2002255514A (en) Ozone generator
JP2002255513A (en) Ozone generator
JP3837931B2 (en) Ozonizer
JP5180460B2 (en) Ozone generator
JPH08325002A (en) Ozonizer
JP3837878B2 (en) Double-sided cooling ozonizer
JPH07187609A (en) Ozonizer
JP2000226202A (en) Tubular ozonizer
JP2002160906A (en) Ozone generator
KR100392509B1 (en) An ozone discharge tube and an ozone generation apparatus using it
JP3812128B2 (en) Ozone generator
JPH10182111A (en) Ozone generator
JPH08217413A (en) Ozonizer and deodorizing device equipped therewith
JPH07223805A (en) Double pipe type ozone-generator
JP2000026107A (en) Ozonizer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees