JPH07223805A - Double pipe type ozone-generator - Google Patents

Double pipe type ozone-generator

Info

Publication number
JPH07223805A
JPH07223805A JP1906194A JP1906194A JPH07223805A JP H07223805 A JPH07223805 A JP H07223805A JP 1906194 A JP1906194 A JP 1906194A JP 1906194 A JP1906194 A JP 1906194A JP H07223805 A JPH07223805 A JP H07223805A
Authority
JP
Japan
Prior art keywords
inner electrode
electrode
internal electrode
cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1906194A
Other languages
Japanese (ja)
Inventor
Tomoko Wakuta
智子 涌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1906194A priority Critical patent/JPH07223805A/en
Publication of JPH07223805A publication Critical patent/JPH07223805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain highly concentrated ozone by disposing an inner electrode- cooling pipe in an inner electrode to improve the cooling efficiency for the inner electrode, in a double pipe type ozone-generator coaxially having a cylindrical outer electrode and the cylindrical inner electrode. CONSTITUTION:In a double pipe type ozone-generator in which an outer electrode 1 and an inner electrode 2 are coaxially disposed through an electric discharge gap 3, an inner electrode-cooling pipe 8 is coaxially attached in the inner electrode 2. Cooling water 7 flows from one end of the inner electrode 2 into a space 10a, proceeds to places near to the inner wall of the inner electrode through plural holes 11 formed in the part of the inner electrode-cooling pipe 8 between a sealing plate 9 and the inner wall of the inner electrode 2, reaches the flowing-out end of the inner electrode 2, and subsequently flows out from plural holes 11 on the outside of the inner electrode 2 through a flowing-out side space 10b. The width of the flow passage and the flow rate of the cooling water 7 are preferably controlled to <<=3mm and <=3X10<-2>m/s, respectively, in order to raise the cooling efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水処理,殺菌などに用
いられるオゾン発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone generator used for water treatment, sterilization and the like.

【0002】[0002]

【従来の技術】従来用いられている二重管型オゾン発生
装置の構造を図4の模式断面図に示す。図4において、
この装置は、円筒形の外部電極1と内部電極2が、放電
ギャップ3を隔てて同心状に配置され、内部電極2の内
面には、誘電体層4として例えばガラスを密着してあ
る。
2. Description of the Related Art The structure of a conventional double-tube ozone generator is shown in the schematic sectional view of FIG. In FIG.
In this device, a cylindrical outer electrode 1 and an inner electrode 2 are concentrically arranged with a discharge gap 3 in between, and glass, for example, as a dielectric layer 4 is adhered to the inner surface of the inner electrode 2.

【0003】この装置の放電ギャップ3の一端から、空
気または酸素ガスを導入し、外部電極1と内部電極2の
間に、交流電源5により交流電圧を印加すると、無声放
電を生じて、放電ギャップ3の他端からオゾンを発生す
ることができる。このとき、外部電極1と内部電極2の
温度上昇により、オゾンが熱分解を起こして高濃度オゾ
ンが得られなくなるのを防ぐために、外部電極1の外部
に設けた外部電極冷却管6の内壁と外部電極1の外壁と
の間隙を、点線の矢印7で示す冷却水7が流れるように
供給し、この冷却水7を入口から離れた所にある出口か
ら流出させることにより、外部電極1を冷却する。一
方、内部電極2の冷却は、その一端から内部に冷却水7
を流入し、他端から流出させることにより行なわれる。
When air or oxygen gas is introduced from one end of the discharge gap 3 of this device and an AC voltage is applied between the outer electrode 1 and the inner electrode 2 by an AC power source 5, silent discharge is generated and the discharge gap is generated. Ozone can be generated from the other end of 3. At this time, in order to prevent the ozone from thermally decomposing due to the temperature rise of the external electrode 1 and the internal electrode 2 and the high concentration ozone not being obtained, the internal wall of the external electrode cooling pipe 6 provided outside the external electrode 1 is prevented. Cooling of the external electrode 1 is performed by supplying the cooling water 7 indicated by the dotted arrow 7 so that the cooling water 7 flows through the gap between the external electrode 1 and the outer wall, and letting the cooling water 7 flow out from the outlet located away from the inlet. To do. On the other hand, the internal electrode 2 is cooled by cooling water 7
Is made to flow in and is made to flow out from the other end.

【0004】[0004]

【発明が解決しようとする課題】問題は、内部電極2の
冷却状態にある。即ち、内部電極2の内部における冷却
水7の流れ方向は、図4の点線の矢印で示したように、
内部電極2の中央部は流速が大きく良好な流れを有する
が、隅の部分は流速が小さいので渦巻状となって、冷却
水7はそこに滞留してしまう。したがって、内部電極2
の冷却効果が十分でなく、高濃度オゾンを得難くなると
いう問題が生ずる。
The problem is the cooling state of the internal electrode 2. That is, the flow direction of the cooling water 7 inside the internal electrode 2 is, as shown by the dotted arrow in FIG.
The center part of the internal electrode 2 has a high flow velocity and has a good flow, but the corner part has a low flow velocity and thus becomes a spiral, and the cooling water 7 stays there. Therefore, the internal electrode 2
However, there is a problem in that it is difficult to obtain high-concentration ozone because the cooling effect is not sufficient.

【0005】本発明は、上述の点に鑑みてなされたもの
であり、その目的は、内部電極の冷却効率を向上させ、
オゾン濃度を高めることが可能なオゾン発生装置を提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to improve the cooling efficiency of internal electrodes,
An object is to provide an ozone generator capable of increasing the ozone concentration.

【0006】[0006]

【課題を解決するための手段】内部電極の内壁との間に
冷却水の流路を形成する内部電極冷却管を設置し、冷却
水の流路の幅を3mm以下とし、冷却水の流通速度を少
なくとも3×10-2m/sとする。
An internal electrode cooling pipe for forming a cooling water flow path is installed between the inner wall of an internal electrode and a cooling water flow path having a width of 3 mm or less. Is at least 3 × 10 −2 m / s.

【0007】[0007]

【作用】上記の内部電極冷却管を設けて、冷却水の水量
に関わることなく冷却水の流路幅や流通速度を決めるこ
とがてきるので、冷却効率が高く、冷却水は従来のよう
に内部電極内の隅の部分に滞留することなく、常に流れ
ている状態にあり、大きな冷却能によって内部電極の昇
温が抑制されて、オゾンが熱分解されるのを防ぎ、高濃
度のオゾンを発生させることができる。
Since the internal electrode cooling pipe described above can be provided to determine the flow width and flow rate of the cooling water regardless of the amount of the cooling water, the cooling efficiency is high and the cooling water is the same as the conventional one. It does not stay in the corners of the internal electrode and is always flowing, and the large cooling capacity suppresses the temperature rise of the internal electrode, preventing ozone from being thermally decomposed, and preventing high concentration of ozone. Can be generated.

【0008】[0008]

【実施例】以下、本発明を実施例に基づき説明する。図
1は、本発明の二重管型オゾン発生装置の構成を示す模
式断面図であり、図1(a)は装置全体,図1(b)
は、本発明に係わる内部電極とその冷却手段のみを示
し、両図とも図4と共通部分を同一符号で表わしてあ
る。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic cross-sectional view showing the configuration of a double-tube ozone generator of the present invention, FIG. 1 (a) is the entire device, and FIG. 1 (b).
Shows only the internal electrodes and the cooling means therefor according to the present invention. In both figures, the same parts as in FIG. 4 are represented by the same reference numerals.

【0009】本発明のオゾン発生装置の全体の構成は、
既に述べた図4の場合と基本的に同じであるから、その
説明は省略する。したがって、ここでは主として図1
(b)を参照して説明する。本発明の装置が従来と異な
る点は、図1(b)に示す如く、内部電極2の内部に、
内部電極2と同心状に内部電極冷却管を取り付けたこ
とにある。この内部電極冷却管は、両端は開放してあ
るが、その両端の内部電極2の内壁近傍で、内部電極2
に垂直な方向に設けた封止板9により、両端部近傍に、
それぞれ矢印で示した冷却水7の入口側の空間部10a
と、出口側の空間部10bを形成している。冷却水7
は、内部電極2内壁と内部電極冷却管外壁とにより形
成される流路に従って流れるが、まず内部電極2の一端
から流入して、流入側の空間部10aに入り、さらに封
止板9と内部電極2内壁との間に位置する内部冷電極却
の部分にあけた複数個の孔11を通って、内部電極
2の内壁近傍を進み、内部電極2の流出端に到達する
が、ここにも冷却水7の流入側と同様にして形成された
複数個の孔11から、流出側の空間部10bを経て内部
電極2の外部に流出することができる。
The overall structure of the ozone generator of the present invention is as follows.
Since it is basically the same as the case of FIG. 4 already described, the description thereof will be omitted. Therefore, mainly in FIG.
This will be described with reference to (b). The difference of the device of the present invention from the conventional one is that, as shown in FIG.
This is because the internal electrode cooling pipe 8 is attached concentrically with the internal electrode 2. Although both ends of the internal electrode cooling pipe 8 are open, the internal electrode 2 is provided in the vicinity of the inner wall of the internal electrode 2 at both ends thereof.
By the sealing plate 9 provided in the direction perpendicular to the
Space portion 10a on the inlet side of the cooling water 7 indicated by an arrow
And the space portion 10b on the outlet side is formed. Cooling water 7
Flows according to the flow path formed by the inner wall of the inner electrode 2 and the outer wall of the inner electrode cooling pipe 8. First, it flows in from one end of the inner electrode 2 and enters the inflow side space 10a, and then the sealing plate 9 and While passing through the plurality of holes 11 formed in the portion of the internal cold electrode cooling pipe 8 located between the inner electrode 2 inner wall and the inner electrode 2 inner wall, the inner electrode 2 reaches the outflow end of the inner electrode 2. Also here, the cooling water 7 can flow out of the internal electrode 2 through the plurality of holes 11 formed in the same manner as the inflow side, through the space portion 10b on the outflow side.

【0010】次に、図2は同じく本発明の二重管型オゾ
ン発生装置の構成を示す模式断面図であり、図2(a)
は装置全体,図2(b)は、本発明に係わる内部電極と
その冷却手段のみを示し、両図とも図4と共通部分を同
一符号で表わしたものであるが、異なる点は、図2で
は、内部電極の一端を閉塞状態にした場合を示してお
り、ここでも主として図2(b)を参照して説明する。
Next, FIG. 2 is a schematic cross-sectional view showing the structure of the double-tube type ozone generator of the present invention, as shown in FIG.
2 shows the entire device, and FIG. 2 (b) shows only the internal electrodes according to the present invention and the cooling means therefor. In both figures, the same parts as those in FIG. 4 are represented by the same reference numerals. Shows a case where one end of the internal electrode is in a closed state, and here also, description will be made mainly with reference to FIG.

【0011】図2(a)に示したオゾン発生装置は、図
1の内部電極2の冷却水7の流出端に相当する部分が閉
塞されているので、この内部電極2a内に取り付ける内
部電極冷却管8aも、これに対応する部分を閉塞させて
あり、したがって、内部電極冷却管8aの一端から流入
した冷却水7は、内部電極冷却管8aの閉塞部に形成し
た孔11aを通過した後、内部電極2aの内壁と内部電
極冷却管8aの外壁との間隙からなる流路を通り、流入
端の方へ向かって逆行するように流れ、最後に冷却水7
は、内部電極2aの開口側の出口12から外部に流出す
るという経路を辿る。
In the ozone generator shown in FIG. 2 (a), the portion corresponding to the outflow end of the cooling water 7 of the internal electrode 2 of FIG. 1 is closed, so that the internal electrode cooling attached to the internal electrode 2a is cooled. The pipe 8a also has a corresponding portion closed, so that the cooling water 7 flowing from one end of the internal electrode cooling pipe 8a passes through the hole 11a formed in the closed portion of the internal electrode cooling pipe 8a, It flows through the flow path formed by the gap between the inner wall of the inner electrode 2a and the outer wall of the inner electrode cooling pipe 8a so as to run backwards toward the inflow end, and finally the cooling water 7
Follows a path of flowing out from the outlet 12 on the opening side of the internal electrode 2a.

【0012】ここで、以上のようにして冷却した内部電
極2および2aの冷却効果について、内部電極2の内壁
と内部電極冷却管の外壁とのギヤップ寸法、即ち、冷
却水7の流路の幅、および内部電極2aと内部電極冷却
管8aの外壁との間の冷却水流路幅をパラメータとし
て、冷却水水量と内部電極温度上昇との関係を調べ、得
られた結果を図3の線図に示す。図3における曲線
(イ)は冷却水流路の幅寸法が3mm,曲線(ロ)は冷
却水流路の幅寸法が6mm,曲線(ハ)は冷却水流路の
幅寸法が10mmであることを表わし、このときの冷却
水7の流通速度は3×10-2m/s以上とする。
Here, regarding the cooling effect of the internal electrodes 2 and 2a cooled as described above, the gap size between the inner wall of the internal electrode 2 and the outer wall of the internal electrode cooling pipe 8 , that is, the flow path of the cooling water 7 The width and the width of the cooling water passage between the inner electrode 2a and the outer wall of the inner electrode cooling pipe 8a are used as parameters to investigate the relationship between the amount of cooling water and the temperature rise of the inner electrode, and the obtained results are shown in the diagram of FIG. Shown in. The curve (a) in FIG. 3 indicates that the width dimension of the cooling water flow channel is 3 mm, the curve (b) indicates that the width dimension of the cooling water flow channel is 6 mm, and the curve (c) indicates that the width dimension of the cooling water flow channel is 10 mm. The flow rate of the cooling water 7 at this time is 3 × 10 −2 m / s or more.

【0013】図3の線図から、内部電極2および2aの
温度上昇を5℃以下に抑えるためには、冷却水7の水量
の如何に関わらず、冷却水は少なくとも3×10-2m/
sの速度で流し、内部電極とその冷却管とにより形成さ
れる冷却水流路の幅寸法を3mm以下とすればよいこと
がわかる。このようにすると、冷却水は内部電極内の隅
の部分に滞留することなく、常に流れている状態にあ
り、その結果内部電極の昇温が抑制されるので、この内
部電極冷却管を用いた本発明の二重管型オゾン発生装置
は、高濃度のオゾンを発生させることができる。
From the diagram of FIG. 3, in order to suppress the temperature rise of the internal electrodes 2 and 2a to 5 ° C. or less, the cooling water should be at least 3 × 10 −2 m / irrespective of the amount of the cooling water 7.
It can be seen that the width dimension of the cooling water flow path formed by the internal electrode and the cooling pipe thereof should be set to 3 mm or less by flowing at a speed of s. In this way, the cooling water does not stay in the corners of the internal electrode and is constantly flowing, and as a result, the temperature rise of the internal electrode is suppressed, so this internal electrode cooling pipe was used. The double-tube ozone generator of the present invention can generate high-concentration ozone.

【0014】[0014]

【発明の効果】二重管型オゾン発生装置により得られる
オゾン濃度を高めるために、電極を冷却するのが有効で
あるが、従来、内部電極の冷却に関しては、単に内部に
冷却水を流すだけであって、四隅の部分に冷却水が滞留
するなど、冷却能が十分でなかったが、本発明の装置で
は、内部電極の内壁との間に冷却水の流路を形成する内
部電極冷却管を設置して、冷却水の水量に関係なく、冷
却水の流路幅の寸法や流れ速度を適切に設定したため
に、内部電極の冷却効果を向上させることができる。し
たがって、このような内部電極冷却管を有する本発明の
オゾン発生装置は、電極の温度上昇によりオゾンが熱分
解されるのを防ぎ、高濃度のオゾンが得られる。
In order to increase the ozone concentration obtained by the double tube type ozone generator, it is effective to cool the electrodes, but conventionally, regarding cooling of the internal electrodes, cooling water is simply passed inside. The cooling capacity was not sufficient, such as the cooling water staying at the four corners, but in the device of the present invention, the internal electrode cooling pipe that forms a cooling water flow path between itself and the inner wall of the internal electrode. Is installed and the dimension of the flow width of the cooling water and the flow velocity are appropriately set regardless of the amount of the cooling water, so that the cooling effect of the internal electrode can be improved. Therefore, the ozone generator of the present invention having such an internal electrode cooling pipe prevents the ozone from being thermally decomposed due to the temperature rise of the electrode, and can obtain high-concentration ozone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二重管型オゾン発生装置の構成を示
し、それぞれ(a)は装置全体,(b)は内部電極とそ
の冷却手段を表わす模式断面図
FIG. 1 is a schematic cross-sectional view showing the structure of a double-tube ozone generator of the present invention, in which (a) is the entire device and (b) is an internal electrode and its cooling means.

【図2】本発明の二重管型オゾン発生装置の構成を示
し、それぞれ(a)は装置全体,(b)は図1とは異な
る内部電極とその冷却手段を表わす模式断面図
2 is a schematic cross-sectional view showing the structure of a double-tube ozone generator of the present invention, in which (a) is the entire device and (b) is an internal electrode different from FIG. 1 and its cooling means.

【図3】冷却水の流路幅をパラメータとして冷却水の水
量と内部電極の温度上昇との関係を示す線図
FIG. 3 is a diagram showing the relationship between the amount of cooling water and the temperature rise of internal electrodes with the flow width of cooling water as a parameter.

【図4】従来の二重管型オゾン発生装置の構成を示す模
式断面図
FIG. 4 is a schematic cross-sectional view showing the configuration of a conventional double-tube ozone generator.

【符号の説明】[Explanation of symbols]

1 外部電極 2 内部電極 2a 内部電極 3 放電ギャップ 4 誘電体層 5 交流電源 6 外部電極冷却管 7 冷却水 8 内部電極冷却管 8a 内部電極冷却管 9 封止板 10a 空間部 10b 空間部 11 孔 11a 孔 12 出口 1 External Electrode 2 Internal Electrode 2a Internal Electrode 3 Discharge Gap 4 Dielectric Layer 5 AC Power Supply 6 External Electrode Cooling Pipe 7 Cooling Water 8 Internal Electrode Cooling Pipe 8a Internal Electrode Cooling Pipe 9 Sealing Plate 10a Space 10b Space 11 Hole 11a Hole 12 exit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内面に誘電体が密着した円筒形の外部電極
と、この外部電極に放電ギャップを隔てて外部電極と同
心状に設置した円筒形の内部電極を有し、これら両電極
間に交流電圧を印加して、放電ギャップから供給する原
料ガスをオゾン化する二重管型オゾン発生装置であっ
て、内部電極内に挿入され、内部電極の内壁との間に冷
却水の流路を形成する円筒形の内部電極冷却管を備える
ことを特徴とする二重管型オゾン発生装置。
1. A cylindrical external electrode having an inner surface closely contacted with a dielectric material, and a cylindrical internal electrode concentrically arranged with the external electrode with a discharge gap formed between the external electrode, and between these electrodes. A double-tube ozone generator for applying an AC voltage to ozone a raw material gas supplied from a discharge gap. The double-tube ozone generator is inserted into an internal electrode, and a cooling water flow path is formed between the internal wall of the internal electrode and the internal electrode. A double-tube type ozone generator, comprising a cylindrical internal electrode cooling tube to be formed.
【請求項2】請求項1記載の装置において、内部電極冷
却管は内部電極と同心状に設けることを特徴とする二重
管型オゾン発生装置。
2. The double-tube ozone generator according to claim 1, wherein the internal electrode cooling pipe is provided concentrically with the internal electrode.
【請求項3】請求項1または2記載の装置において、冷
却水の流通速度を少なくとも3×10-2m/sとするこ
とを特徴とする二重管型オゾン発生装置。
3. The double-tube ozone generator according to claim 1 or 2, wherein the flow rate of the cooling water is at least 3 × 10 −2 m / s.
【請求項4】請求項1ないし3記載の装置において、冷
却水の流路の幅を3mm以下とすることを特徴とする二
重管型オゾン発生装置。
4. The double-tube ozone generator according to claim 1, wherein the width of the cooling water passage is 3 mm or less.
JP1906194A 1994-02-16 1994-02-16 Double pipe type ozone-generator Pending JPH07223805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1906194A JPH07223805A (en) 1994-02-16 1994-02-16 Double pipe type ozone-generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1906194A JPH07223805A (en) 1994-02-16 1994-02-16 Double pipe type ozone-generator

Publications (1)

Publication Number Publication Date
JPH07223805A true JPH07223805A (en) 1995-08-22

Family

ID=11988926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1906194A Pending JPH07223805A (en) 1994-02-16 1994-02-16 Double pipe type ozone-generator

Country Status (1)

Country Link
JP (1) JPH07223805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
KR100485108B1 (en) * 1996-05-30 2005-09-02 후지 덴키 가부시끼가이샤 Ozone generator
JP2010248015A (en) * 2009-04-13 2010-11-04 Metawater Co Ltd Ozone producing electrode
KR101984437B1 (en) * 2018-12-26 2019-05-30 김숙 Water treating apparatus using plasma

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
KR100485108B1 (en) * 1996-05-30 2005-09-02 후지 덴키 가부시끼가이샤 Ozone generator
JP2010248015A (en) * 2009-04-13 2010-11-04 Metawater Co Ltd Ozone producing electrode
KR101984437B1 (en) * 2018-12-26 2019-05-30 김숙 Water treating apparatus using plasma

Similar Documents

Publication Publication Date Title
JP3848538B2 (en) Ozone generator
US5871701A (en) Ozone generator with small-diameter dielectric tubes
JPH07223805A (en) Double pipe type ozone-generator
KR101980433B1 (en) Ozone generating system with high energy efficiency
JP2007070214A (en) Ozone generator
JP4658298B2 (en) Ozone generator
JPH07187609A (en) Ozonizer
KR20200038574A (en) Plasma generating device having double structure of dielectric pipe
US20080025883A1 (en) Ozone generator
JP2002255514A (en) Ozone generator
US5501845A (en) Chilled oxygen for an ionization device
JP2002255513A (en) Ozone generator
JP3839179B2 (en) Ozone generator
JP3837931B2 (en) Ozonizer
JPH08169703A (en) Double-pipe ozonizer
JPH11157808A (en) Ozone generating device
JPH08325002A (en) Ozonizer
JPH10182111A (en) Ozone generator
CN218596207U (en) Pipeline type sewage treatment plant
JP2641886B2 (en) Ozone generator
CN108529567A (en) It is a kind of to integrate board-like unit module, ozone generator for the stackable of efficient ozone synthesis
JPH08217413A (en) Ozonizer and deodorizing device equipped therewith
JPH03114590A (en) Apparatus for making ozone water
JP4375112B2 (en) Deodorizing device and refrigerator
JP2008031002A (en) Ozone generator, ozone generator module, and stack assembly of ozone generators