JPH11138165A - Treatment of boron-containing water - Google Patents

Treatment of boron-containing water

Info

Publication number
JPH11138165A
JPH11138165A JP9308878A JP30887897A JPH11138165A JP H11138165 A JPH11138165 A JP H11138165A JP 9308878 A JP9308878 A JP 9308878A JP 30887897 A JP30887897 A JP 30887897A JP H11138165 A JPH11138165 A JP H11138165A
Authority
JP
Japan
Prior art keywords
water
boron
osmosis membrane
reverse osmosis
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9308878A
Other languages
Japanese (ja)
Other versions
JP3890708B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP30887897A priority Critical patent/JP3890708B2/en
Publication of JPH11138165A publication Critical patent/JPH11138165A/en
Application granted granted Critical
Publication of JP3890708B2 publication Critical patent/JP3890708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the lowering of permeability due to the generation of calcium scales and to keep the amt. of permeated water much for a long time by adding an antiscaling agent to the boron-contg. water to be passed through a reverse-osmosis membrane. SOLUTION: The raw water contg. boron is regulated to >= pH 9.2 by adding an alkali, then an antiscaling agent is added, and the water is passed through a reverse-osmosis membrane 1 to remove boron. Otherwise, an acid is added to the boron-contg. raw water to make it acidic transiently, carbon dioxide is removed by a degasification membrane 2, an alkali is added to the boron- contg. water freed from carbon dioxide to >=pH 9.2, the antiscaling agent is added, and the water is passed through the reverse-osmosis membrane 1 to remove boron. Consequently, calcium scales are formed on, the membrane 1 surface, the amt. of the water passed through the membrane is not decreased, and the boron-contg. water is passed through the reverse-osmosis membrane under high pH conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素含有水の処
理方法に関する。さらに詳しくは、本発明は、ホウ素含
有水のpHを9.2以上に調整し、逆浸透膜に通水してホ
ウ素を除去するホウ素含有水の処理方法において、逆浸
透膜の透過速度の低下を生ずることなく、長時間にわた
って高い透過水量を維持することができるホウ素含有水
の処理方法に関する。
[0001] The present invention relates to a method for treating boron-containing water. More specifically, the present invention relates to a method for treating boron-containing water in which the pH of boron-containing water is adjusted to 9.2 or more and water is passed through a reverse osmosis membrane to remove boron. The present invention relates to a method for treating boron-containing water, which can maintain a high permeated water amount for a long period of time without producing the water.

【0002】[0002]

【従来の技術】ホウ素を含有する原水を処理して純水又
は超純水を製造する方法として、アルカリ添加によりpH
を10以上にしたのち、逆浸透膜に通水する純水製造方
法が知られている。また、このような逆浸透膜処理にお
いては、カルシウムスケールが発生しやすいため、前処
理として弱酸性イオン交換装置及び脱気装置を用いてカ
ルシウムと炭酸を除去し、カルシウムスケールの発生を
防止する方法が知られている。第47回全国水道研究会
発表会(平成8年5月、発表番号4−98)では、逆浸
透膜を利用したホウ素低減システムにおいて、水のpHを
10以上とすることによりホウ素排除率が高くなるが、
微量のカルシウムなどの硬度成分が析出して膜閉塞を生
じ、短時間で造水量が低下することが報告されている。
カルシウムの除去に弱酸性イオン交換装置を用いると、
原水中のカルシウムイオンの形態がCa(HCO3)2の場
合はカルシウムは効果的に除去されるが、CaCl2
ような形態であると除去は困難であり、カルシウムが残
存する。このような場合、原水にアルカリを添加して、
通水しながらイオン交換樹脂の一部をNa型に変えるこ
とにより、CaCl2のような形態のカルシウムを除去
することも考えられるが、再生後の通水初期でのカルシ
ウム除去性の低下や、原水のカルシウム濃度の変動に対
してアルカリ添加量の調整が必要になるなど、装置の運
転が難しいという問題がある。原水中のカルシウムイオ
ンの形態がCa(HCO3)2である場合、弱酸性イオン交
換装置によりカルシウムを除去したのち、脱気膜装置に
より脱炭酸を行う方法が提案されている。カルシウムを
除去するとともに、脱炭酸を行うことにより、高pHで特
に析出しやすい炭酸カルシウムスケールの発生を防止す
ることができる。しかし、カルシウム又は全無機炭酸濃
度のいずれか一方を必要濃度以下にすれば、炭酸カルシ
ウムスケールは発生しないので、弱酸性イオン交換樹脂
装置と脱気膜装置の両方を設けることは、無駄でもあり
不経済でもある。また、従来のホウ素含有水の処理方法
においては、アルカリを添加してpH10以上とした被処
理水を、耐アルカリ性逆浸透膜に通水することにより、
ホウ素の除去率を高めているが、pHを高くするために水
酸化ナトリウムなどのアルカリの添加量が著しく多くな
り、耐アルカリ性逆浸透膜透過水中のアルカリ濃度が高
くなり、後段へのアルカリ負荷が大きくなるという問題
がある。
2. Description of the Related Art As a method for producing pure water or ultrapure water by treating raw water containing boron, pH is adjusted by adding an alkali.
Is adjusted to 10 or more, and then a method for producing pure water in which water is passed through a reverse osmosis membrane is known. Further, in such a reverse osmosis membrane treatment, since calcium scale is easily generated, a method of removing calcium and carbonic acid using a weakly acidic ion exchange device and a deaerator as a pretreatment to prevent the generation of calcium scale. It has been known. At the 47th National Water Works Research Conference (May 1996, Announcement No. 4-98), in a boron reduction system using a reverse osmosis membrane, by setting the pH of water to 10 or more, the boron rejection rate was high. But
It has been reported that a minute amount of a hard component such as calcium precipitates to cause film blockage, and the amount of fresh water is reduced in a short time.
Using a weakly acidic ion exchange device to remove calcium,
When the form of calcium ions in the raw water is Ca (HCO 3 ) 2 , calcium is effectively removed. However, when the form is CaCl 2 , it is difficult to remove calcium, and calcium remains. In such a case, add alkali to raw water,
It is also conceivable to remove calcium in a form such as CaCl 2 by changing a part of the ion exchange resin to the Na type while passing water. There is a problem that the operation of the apparatus is difficult, for example, it is necessary to adjust the amount of alkali added to the fluctuation of the calcium concentration of the raw water. When the form of calcium ions in raw water is Ca (HCO 3 ) 2 , a method has been proposed in which calcium is removed by a weakly acidic ion exchange device and then decarbonation is performed by a degassing membrane device. By removing calcium and performing decarboxylation, it is possible to prevent the formation of calcium carbonate scale, which easily precipitates at a high pH. However, if either calcium or the total inorganic carbonic acid concentration is reduced to a required concentration or less, calcium carbonate scale will not be generated, so providing both a weakly acidic ion exchange resin apparatus and a degassing membrane apparatus is wasteful and impractical. It is also an economy. Further, in the conventional method of treating boron-containing water, the water to be treated having a pH of 10 or more by adding an alkali is passed through an alkali-resistant reverse osmosis membrane,
Although the removal rate of boron is increased, the amount of alkali added such as sodium hydroxide is significantly increased in order to raise the pH, the alkali concentration in the permeated water of the alkali-resistant reverse osmosis membrane is increased, and the alkali load on the subsequent stage is reduced. There is a problem that it becomes larger.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ホウ素含有
水のpHを9.2以上に調整し、逆浸透膜に通水してホウ
素を除去するホウ素含有水の処理方法において、弱酸性
イオン交換樹脂装置などによる前処理を行うことなく逆
浸透膜に通水しても、カルシウムスケールの発生による
透過速度の低下がなく、長時間にわたって高い透過水量
を維持することができるホウ素含有水の処理方法を提供
することを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention relates to a method for treating boron-containing water in which the pH of boron-containing water is adjusted to 9.2 or higher and the water is passed through a reverse osmosis membrane to remove boron. Even if water is passed through the reverse osmosis membrane without performing pre-treatment with an exchange resin device etc., there is no decrease in the permeation rate due to the generation of calcium scale, and the treatment of boron-containing water that can maintain a high permeate water amount for a long time It is intended to provide a method.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、逆浸透膜に通水す
るホウ素含有水にスケール防止剤を添加することによ
り、逆浸透膜へのカルシウムスケールの付着を防止し、
長時間にわたって高い透過水量を維持し得ることを見い
だし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、(1)ホウ素含有水のpHを9.2
以上に調整し、逆浸透膜に通水してホウ素を除去するホ
ウ素含有水の処理方法において、逆浸透膜に通水するホ
ウ素含有水にスケール防止剤を添加することを特徴とす
るホウ素含有水の処理方法、を提供するものである。さ
らに、本発明の好ましい態様として、(2)ホウ素含有
水のpHを10以上に調整する第(1)項記載のホウ素含有
水の処理方法、(3)逆浸透膜が、耐アルカリ性逆浸透
膜である第(1)項記載のホウ素含有水の処理方法、
(4)ホウ素含有水に脱炭酸処理を行ったのち、逆浸透
膜に通水する第(1)項記載のホウ素含有水の処理方法、
(5)酸性に調整したホウ素含有水を、脱気膜装置に通
水することにより脱炭酸処理を行う第(4)項記載のホウ
素含有水の処理方法、及び、(6)スケール防止剤が、
カルボキシル基を有する低分子量ポリマー又はキレート
化剤である第(1)項記載のホウ素含有水の処理方法、を
挙げることができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that by adding a scale inhibitor to boron-containing water passing through a reverse osmosis membrane, reverse osmosis is achieved. Prevents calcium scale from adhering to the membrane,
It has been found that a high permeate volume can be maintained for a long time, and the present invention has been completed based on this finding.
That is, the present invention provides (1) a method of adjusting the pH of boron-containing water to 9.2.
Adjusted above, the boron-containing water treatment method for removing boron by passing through a reverse osmosis membrane, wherein a boron-containing water is added to the boron-containing water that passes through the reverse osmosis membrane, wherein a scale inhibitor is added. Processing method. Further, as a preferred embodiment of the present invention, (2) the method for treating boron-containing water according to (1), wherein the pH of the boron-containing water is adjusted to 10 or more, and (3) the reverse osmosis membrane is an alkali-resistant reverse osmosis membrane. The method for treating boron-containing water according to item (1),
(4) The method for treating boron-containing water according to (1), wherein after the decarbonation treatment is performed on the boron-containing water, the water is passed through a reverse osmosis membrane.
(5) The method for treating boron-containing water according to item (4), wherein the acid-adjusted boron-containing water is subjected to a decarboxylation treatment by passing the water through a degassing membrane device, and (6) a scale inhibitor. ,
The method for treating boron-containing water according to item (1), which is a low-molecular-weight polymer having a carboxyl group or a chelating agent, may be used.

【0005】[0005]

【発明の実施の形態】本発明のホウ素含有水の処理方法
は、ホウ素含有水のpHを9.2以上に調整し、逆浸透膜
に通水してホウ素を除去するホウ素含有水の処理に適用
することができる。本発明方法においては、逆浸透膜に
通水するホウ素含有水にスケール防止剤を添加する。本
発明方法において、ホウ素含有水のpHを9.2以上に調
整する方法には特に制限はなく、例えば、水酸化ナトリ
ウムなどのアルカリ水溶液を添加する方法や、強塩基性
イオン交換樹脂塔に通水する方法などを挙げることがで
きる。アルカリ水溶液を添加する方法としては、例え
ば、撹拌機つきのpH調整槽を設けてアルカリを添加し、
あるいは、通水ラインにアルカリ水溶液注入口、その下
流側にスタチックミキサーなどを設けて、注入口よりア
ルカリ水溶液を添加することができる。ホウ素含有水に
アルカリを添加することにより、pHをホウ酸のpKa9.
2(25℃)以上、より好ましくはpHを10以上に調整
する。本発明方法に用いる逆浸透膜は、耐アルカリ性逆
浸透膜であることが好ましく、pH10以上の水と長期的
に接しても劣化を受けないものであることが好ましい。
この場合、供給されるアルカリ性のホウ素含有水のpHよ
りも、濃縮水の方がpHが高くなるので、濃縮水のpHを考
慮して耐アルカリ性逆浸透膜を選択することが好まし
い。このような耐アルカリ性逆浸透膜としては、例え
ば、pH11まで長期耐久性のあるものとして市販されて
いる FILMTEC type FT30などや、pH1
0まで長期耐久性のあるものとして市販されている日東
電工(株)製ES20、ES10、NTR759や、東レ
(株)製SU700などのポリアミド系の膜などを挙げる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for treating boron-containing water according to the present invention adjusts the pH of boron-containing water to 9.2 or more and passes the water through a reverse osmosis membrane to remove boron. Can be applied. In the method of the present invention, a scale inhibitor is added to the boron-containing water passing through the reverse osmosis membrane. In the method of the present invention, there is no particular limitation on the method of adjusting the pH of the boron-containing water to 9.2 or higher, and for example, a method of adding an aqueous alkali solution such as sodium hydroxide or a method of passing through a strongly basic ion exchange resin tower. Examples of the method include watering. As a method of adding an alkali aqueous solution, for example, providing a pH adjustment tank with a stirrer, adding an alkali,
Alternatively, an alkaline aqueous solution inlet may be provided in the water flow line, and a static mixer or the like may be provided downstream of the inlet, and the alkaline aqueous solution can be added from the inlet. By adding an alkali to the boron-containing water, the pH is raised to the pKa of boric acid 9.
The pH is adjusted to 2 (25 ° C.) or more, more preferably to 10 or more. The reverse osmosis membrane used in the method of the present invention is preferably an alkali-resistant reverse osmosis membrane, and preferably does not deteriorate even if it is in contact with water having a pH of 10 or more for a long time.
In this case, since the concentrated water has a higher pH than the supplied alkaline boron-containing water, it is preferable to select an alkali-resistant reverse osmosis membrane in consideration of the pH of the concentrated water. Examples of such an alkali-resistant reverse osmosis membrane include FILMTEC type FT30, which is commercially available as a material having long-term durability up to pH 11, and pH 1
Nitto Denko Corporation's ES20, ES10, NTR759, and Toray that are commercially available as long-lasting
Polyamide-based films such as SU700 manufactured by K.K.

【0006】本発明方法においては、逆浸透膜に通水す
るホウ素含有水の脱炭酸処理を行うことが好ましい。脱
炭酸処理の方法には特に制限はなく、例えば、脱気膜、
真空脱気、脱炭酸塔などを用いて脱炭酸処理を行うこと
ができる。脱気膜を用いる場合は、例えば、ホウ素含有
水に酸を添加して酸性としたのち、脱気膜に通水するこ
とにより脱炭酸することができる。ホウ素含有水中の炭
酸を除去することにより、スケール防止剤の添加量を減
少するとともに、逆浸透膜に通水する前のpH調整に必要
なアルカリ添加量も減少することができる。炭酸が存在
すると必要なアルカリ添加量が多くなるのは、水中の全
炭酸濃度が多いほど、pHの緩衝作用が大きいためである
と考えられる。脱炭酸処理を行ってpH調整のためのアル
カリ添加量を減少することにより、逆浸透膜からのアル
カリリーク量、例えば、アルカリとして水酸化ナトリウ
ムを使用した場合には、ナトリウムのリーク量を減少す
ることができる。本発明に用いるスケール防止剤には特
に制限はなく、例えば、アクリル酸、メタクリル酸、マ
レイン酸などを重合して得られるカルボキシル基を有す
る低分子量ポリマー、イミノ二酢酸、エチレンジアミン
四酢酸などのキレート化剤、ニトリロトリメチレンホス
ホン酸などのホスホン酸、ヘキサメタリン酸ナトリウム
などのポリリン酸塩などを挙げることができる。これら
の中で、カルボキシル基を有する低分子量ポリマー及び
キレート化剤はカルシウムスケールを防止する効果が大
きく、特に好適に使用することができる。本発明方法に
おいて、逆浸透膜に通水するホウ素含有水にスケール防
止剤を添加する場所には特に制限はなく、例えば、ホウ
素を含有する原水に直接スケール防止剤を添加すること
ができ、脱炭酸処理の前に酸性としたホウ素含有水にス
ケール防止剤を添加することもでき、脱炭酸処理を終え
た直後のホウ素含有水にスケール防止剤を添加すること
もでき、あるいは、脱炭酸とpH調整を行った後のpH9.
2以上のホウ素含有水にスケール防止剤を添加すること
もできる。
In the method of the present invention, it is preferable to carry out a decarboxylation treatment of the water containing boron passing through the reverse osmosis membrane. There is no particular limitation on the method of the decarboxylation treatment, for example, a degassing membrane,
The decarboxylation treatment can be performed using a vacuum deaeration, a decarbonation tower, or the like. When using a degassing membrane, for example, after adding acid to boron-containing water to make it acidic, decarbonation can be performed by passing water through the degassing membrane. By removing the carbonic acid in the boron-containing water, the amount of the scale inhibitor to be added can be reduced, and the amount of the alkali added for adjusting the pH before the water is passed through the reverse osmosis membrane can also be reduced. It is considered that the reason why the required amount of added alkali increases when carbonic acid is present is that the higher the total carbonic acid concentration in water, the greater the pH buffering action. The amount of alkali leak from the reverse osmosis membrane, for example, when sodium hydroxide is used as the alkali, reduces the amount of sodium leak by reducing the amount of alkali added for pH adjustment by performing decarboxylation treatment. be able to. There is no particular limitation on the scale inhibitor used in the present invention, for example, acrylic acid, methacrylic acid, low molecular weight polymer having a carboxyl group obtained by polymerizing maleic acid, iminodiacetic acid, chelation of ethylenediaminetetraacetic acid and the like Agents, phosphonic acids such as nitrilotrimethylenephosphonic acid, and polyphosphates such as sodium hexametaphosphate. Among these, a low molecular weight polymer having a carboxyl group and a chelating agent have a large effect of preventing calcium scale and can be used particularly preferably. In the method of the present invention, the place where the scale inhibitor is added to the boron-containing water passing through the reverse osmosis membrane is not particularly limited. For example, the scale inhibitor can be directly added to the raw water containing boron, and A scale inhibitor can be added to the boron-containing water that has been acidified before the carbonation treatment, and a scale inhibitor can be added to the boron-containing water immediately after the decarboxylation treatment, or decarboxylation and pH PH after adjustment 9.
A scale inhibitor can be added to two or more boron-containing waters.

【0007】図1(a)は、本発明のホウ素含有水の処理
方法の一態様の工程系統図である。本態様においては、
ホウ素を含有する原水にアルカリを添加してpHを9.2
以上に調整したのち、スケール防止剤を添加し、逆浸透
膜1に通水してホウ素を除去する。図1(b)は、本発明
方法の他の態様の工程系統図である。本態様において
は、ホウ素を含有する原水に酸を添加していったん酸性
とし、脱気膜2において炭酸を除去し、脱炭酸されたホ
ウ素含有水にアルカリを添加してpHを9.2以上に調整
したのち、スケール防止剤を添加し、逆浸透膜1に通水
してホウ素を除去する。図1(c)は、本発明方法の他の
態様の工程系統図である。本態様においては、ホウ素を
含有する原水に先ずスケール防止剤を添加し、さらに酸
を添加していったん酸性として、脱気膜2において炭酸
を除去し、脱炭酸されたホウ素含有水にアルカリを添加
してpHを9.2以上に調整したのち、逆浸透膜1に通水
してホウ素を除去する。これらの態様の中で、脱気膜に
通水するホウ素含有水にスケール防止剤を添加する態様
は、脱気膜と逆浸透膜の両方において膜面のスケールを
防止することができるので好ましい。本発明方法におい
ては、複数の逆浸透膜を多段に設け、前段の逆浸透膜の
透過水を後段の逆浸透膜の供給水とすることができる。
図2(a)は、本発明方法の他の態様の工程系統図であ
る。本態様においては、逆浸透膜を2段に設け、ホウ素
を含有する原水に酸を添加して酸性とし、さらにスケー
ル防止剤を添加したのち、脱気膜2において炭酸を除去
し、脱炭酸されたホウ素含有水にアルカリを添加してpH
を9.2以上に調整し、前段の逆浸透膜1及び後段の逆
浸透膜1に通水してホウ素を除去する。図2(b)は、本
発明方法の他の態様の工程系統図である。本態様におい
ては、逆浸透膜を3段に設け、ホウ素を含有する原水に
先ずスケール防止剤を添加し、さらに酸を添加していっ
たん酸性として、脱気膜2において炭酸を除去し、脱炭
酸されたホウ素含有水にアルカリを添加してpHを9.2
以上に調整したのち、1段目、2段目及び3段目の逆浸
透膜1に逐次通水してホウ素を除去する。複数の逆浸透
膜を多段に設けることにより、ホウ素の除去率を高め、
処理水中のホウ素濃度を低下させることができる。本発
明のホウ素含有水の処理方法によれば、高いpH条件下で
逆浸透膜によるホウ素除去処理を行うに際して、弱酸性
イオン交換装置を設置してカルシウムを除去するなどの
前処理を行うことなく、逆浸透膜面へのカルシウムスケ
ールの付着を防止することができる。そのために、弱酸
性イオン交換装置などを省いて設備を簡略化するととも
に、処理工程を短縮することができる。本発明方法によ
り膜面へのカルシウムスケールの付着を防止し得る機構
は、ホウ素含有水中に含まれるカルシウムなどのイオン
が、キレート化剤によって封鎖され、pH9.2以上のア
ルカリ条件となっても炭酸カルシウムなどの塩を生成し
なくなるためと考えられる。
FIG. 1A is a flow chart of one embodiment of the method for treating boron-containing water of the present invention. In this embodiment,
PH was adjusted to 9.2 by adding alkali to raw water containing boron.
After the above adjustment, a scale inhibitor is added, and water is passed through the reverse osmosis membrane 1 to remove boron. FIG. 1 (b) is a process flow diagram of another embodiment of the method of the present invention. In this embodiment, the raw water containing boron is acidified once by adding an acid, carbonic acid is removed in the degassing membrane 2, and the alkali is added to the decarbonated boron-containing water to adjust the pH to 9.2 or more. After the adjustment, a scale inhibitor is added, and water is passed through the reverse osmosis membrane 1 to remove boron. FIG. 1 (c) is a process flow diagram of another embodiment of the method of the present invention. In this embodiment, a scale inhibitor is first added to the raw water containing boron, and then an acid is added to make the mixture once acidic, carbon dioxide is removed in the degassing membrane 2, and an alkali is added to the decarbonated boron-containing water. After adjusting the pH to 9.2 or more, water is passed through the reverse osmosis membrane 1 to remove boron. Among these embodiments, an embodiment in which a scale inhibitor is added to the boron-containing water passing through the degassing membrane is preferable because scale on the membrane surface can be prevented in both the degassing membrane and the reverse osmosis membrane. In the method of the present invention, a plurality of reverse osmosis membranes can be provided in multiple stages, and the permeated water of the preceding stage reverse osmosis membrane can be used as the supply water for the subsequent stage of reverse osmosis membrane.
FIG. 2A is a process flow diagram of another embodiment of the method of the present invention. In this embodiment, the reverse osmosis membrane is provided in two stages, the acid is added to the raw water containing boron to make it acidic, and after the scale inhibitor is added, the carbon dioxide is removed in the degassing membrane 2 and the carbon dioxide is removed. PH was adjusted by adding alkali to the boron-containing water
Is adjusted to 9.2 or more, and water is passed through the reverse osmosis membrane 1 in the first stage and the reverse osmosis membrane 1 in the second stage to remove boron. FIG. 2 (b) is a process flow diagram of another embodiment of the method of the present invention. In the present embodiment, a reverse osmosis membrane is provided in three stages, a scale inhibitor is first added to the raw water containing boron, and then an acid is added to make the water once acidic. PH was adjusted to 9.2 by adding alkali to the boron-containing water.
After the above adjustment, water is sequentially passed through the first, second, and third reverse osmosis membranes 1 to remove boron. By providing multiple reverse osmosis membranes in multiple stages, the removal rate of boron is increased,
The boron concentration in the treated water can be reduced. According to the method for treating boron-containing water of the present invention, when performing a boron removal treatment by a reverse osmosis membrane under high pH conditions, without performing a pretreatment such as installing a weakly acidic ion exchange device to remove calcium. Further, it is possible to prevent calcium scale from adhering to the reverse osmosis membrane surface. Therefore, the equipment can be simplified by omitting the weakly acidic ion exchange device and the like, and the processing steps can be shortened. The mechanism that can prevent the adhesion of calcium scale to the membrane surface by the method of the present invention is that ions such as calcium contained in the boron-containing water are blocked by a chelating agent and carbonated even under alkaline conditions of pH 9.2 or more. It is considered that salts such as calcium are not generated.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 図1(b)に示す酸添加、脱気膜による脱炭酸、アルカリ
添加、スケール防止剤添加及び逆浸透膜への通水をこの
順に行う工程により、ホウ素含有水の処理を行った。脱
炭酸装置は、脱気膜[大日本インキ化学工業(株)、SE
PAREL EF−040P]を備えたものであり、逆
浸透膜装置は、耐アルカリ性逆浸透膜[FILMTE
C、type ET30]を備えたものである。また、
ホウ素30ppbを含有する半導体製造工場の回収水を、
厚木市水で倍量に希釈した水を原水として用いた。原水
を初期水量300リットル/時で送水し、原水に塩酸を
添加してpHを4.5に調整したのち、脱気膜に通水して
脱炭酸処理を行った。次いで、脱炭酸水に水酸化ナトリ
ウムを添加してpHを10.0に調整したのち、スケール
防止剤としてエチレンジアミン四酢酸四ナトリウム塩
(EDTA・4Na)を20mg/リットルになるように
添加して、逆浸透膜に通水した。試験開始当初の逆浸透
膜の透過水量は240リットル/時であったものが、7
20時間経過後は150リットル/時となった。 実施例2 EDTA・4Naの添加量を50mg/リットルとした以
外は、実施例1と同じ操作を繰り返した。720時間経
過後の逆浸透膜の透過水量は、200リットル/時であ
った。 実施例3 EDTA・4Naの添加量を100mg/リットルとした
以外は、実施例1と同じ操作を繰り返した。720時間
経過後の逆浸透膜の透過水量は、230リットル/時で
あった。 実施例4 図1(c)に示すスケール防止剤添加、酸添加、脱気膜に
よる脱炭酸、アルカリ添加及び逆浸透膜への通水をこの
順に行う工程により、ホウ素含有水の処理を行った。脱
炭酸装置は、脱気膜[大日本インキ化学工業(株)、SE
PAREL EF−040P]を備えたものであり、逆
浸透膜装置は、耐アルカリ性逆浸透膜[FILMTE
C、type ET30]を備えたものである。また、
ホウ素30ppbを含有する半導体製造工場の回収水を、
厚木市水で倍量に希釈した水を原水として用いた。原水
を初期水量300リットル/時で送水し、原水にスケー
ル防止剤としてエチレンジアミン四酢酸四ナトリウム塩
(EDTA・4Na)を20mg/リットルになるように
添加し、さらに塩酸を添加してpHを4.5に調整したの
ち、脱気膜に通水して脱炭酸処理を行った。次いで、脱
炭酸水に水酸化ナトリウムを添加してpHを10.0に調
整したのち、逆浸透膜に通水した。試験開始当初の逆浸
透膜の透過水量は240リットル/時であったものが、
720時間経過後は230リットル/時となった。 実施例5 EDTA・4Naの添加量を50mg/リットルとした以
外は、実施例4と同じ操作を繰り返した。720時間経
過後の逆浸透膜の透過水量は、240リットル/時で、
試験開始当初と同じであった。 実施例6 EDTA・4Naの添加量を100mg/リットルとした
以外は、実施例4と同じ操作を繰り返した。720時間
経過後の逆浸透膜の透過水量は、240リットル/時
で、試験開始当初と同じであった。 比較例1 EDTA・4Naを添加しないこと以外は、実施例1と
同じ操作を繰り返した。720時間経過後の逆浸透膜の
透過水量は、120リットル/時であった。実施例1〜
6及び比較例1の結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Boron-containing water was treated by the steps shown in FIG. 1 (b) in which acid addition, decarboxylation using a degassing membrane, alkali addition, scale inhibitor addition, and water passing through a reverse osmosis membrane were performed in this order. . The decarbonation unit is a degassing membrane [Dainippon Ink and Chemicals, Inc., SE
PAREL EF-040P], and the reverse osmosis membrane device is an alkali-resistant reverse osmosis membrane [FILMTE
C, type ET30]. Also,
Recovered water from a semiconductor manufacturing plant containing 30 ppb boron
Water diluted twice in Atsugi City water was used as raw water. Raw water was supplied at an initial water volume of 300 liters / hour, hydrochloric acid was added to the raw water to adjust the pH to 4.5, and then water was passed through a degassing membrane to perform a decarbonation treatment. Next, sodium hydroxide was added to the decarbonated water to adjust the pH to 10.0, and then ethylenediaminetetraacetic acid tetrasodium salt (EDTA.4Na) was added as a scale inhibitor to a concentration of 20 mg / liter. Water was passed through the reverse osmosis membrane. At the beginning of the test, the reverse osmosis membrane had a permeated water volume of 240 liters / hour.
After 20 hours, it was 150 liters / hour. Example 2 The same operation as in Example 1 was repeated, except that the amount of EDTA / 4Na added was 50 mg / liter. After 720 hours, the amount of water permeated through the reverse osmosis membrane was 200 liters / hour. Example 3 The same operation as in Example 1 was repeated except that the amount of EDTA / 4Na added was 100 mg / liter. After 720 hours, the amount of water permeated through the reverse osmosis membrane was 230 liters / hour. Example 4 The treatment with boron-containing water was carried out by the steps shown in FIG. 1 (c), in which a scale inhibitor was added, an acid was added, decarboxylation by a degassing membrane, an alkali was added, and water passed through the reverse osmosis membrane in this order. . The decarbonation unit is a degassing membrane [Dainippon Ink and Chemicals, Inc., SE
PAREL EF-040P], and the reverse osmosis membrane device is an alkali-resistant reverse osmosis membrane [FILMTE
C, type ET30]. Also,
Recovered water from a semiconductor manufacturing plant containing 30 ppb boron
Water diluted twice in Atsugi City water was used as raw water. Raw water is supplied at an initial water volume of 300 liters / hour, and ethylenediaminetetraacetic acid tetrasodium salt (EDTA.4Na) is added to the raw water as a scale inhibitor so as to have a concentration of 20 mg / liter. After adjusting to 5, water was passed through a degassing membrane to perform a decarbonation treatment. Next, sodium hydroxide was added to the decarbonated water to adjust the pH to 10.0, and the solution was passed through a reverse osmosis membrane. The amount of water permeated through the reverse osmosis membrane at the beginning of the test was 240 liters / hour,
After 720 hours, it was 230 liters / hour. Example 5 The same operation as in Example 4 was repeated except that the amount of EDTA-4Na added was 50 mg / liter. After 720 hours, the amount of water permeated through the reverse osmosis membrane is 240 liters / hour.
It was the same as at the beginning of the test. Example 6 The same operation as in Example 4 was repeated except that the amount of EDTA-4Na added was 100 mg / liter. After 720 hours, the amount of water permeated through the reverse osmosis membrane was 240 liters / hour, which was the same as at the beginning of the test. Comparative Example 1 The same operation as in Example 1 was repeated except that EDTA / 4Na was not added. After 720 hours, the amount of water permeated through the reverse osmosis membrane was 120 liters / hour. Example 1
Table 1 shows the results of Comparative Example 6 and Comparative Example 1.

【0009】[0009]

【表1】 [Table 1]

【0010】第1表の結果から、スケール防止剤を添加
しない比較例1においては、720時間通水後には、逆
浸透膜透過水の水量は、試験開始当初に比べて半減する
のに対して、脱炭酸水にEDTA・4Naを添加した実
施例1〜3と、原水にEDTA・4Naを添加した実施
例4〜6では、逆浸透膜透過水の水量の減少の程度が少
ない。また、同じ場所でEDTA・4Naを添加した場
合は、その添加量が多いほど逆浸透膜透過水の水量が多
くなっていることから、逆浸透膜に通水するホウ素含有
水にスケール防止剤を添加する本発明方法により、逆浸
透膜の透過速度の低下を防いで、長時間にわたって高い
透過水量を維持し得ることが分かる。特に、原水にED
TA・4Naを50mg/リットル以上添加した実施例5
と実施例6においては、720時間経過後も逆浸透膜透
過水量は全く減少していない。なお、実施例1〜6及び
比較例1において、逆浸透膜透過水のホウ素濃度は、す
べて0.9ppbであった。
[0010] From the results in Table 1, in Comparative Example 1 in which no scale inhibitor was added, the amount of water permeated through the reverse osmosis membrane was reduced by half after passing for 720 hours, compared to the amount at the beginning of the test. In Examples 1 to 3 in which EDTA / 4Na was added to decarbonated water and Examples 4 to 6 in which EDTA / 4Na was added to raw water, the amount of water permeated through the reverse osmosis membrane was less reduced. When EDTA / 4Na is added at the same place, the larger the amount of EDTA / 4Na, the larger the amount of water permeated through the reverse osmosis membrane. Therefore, a scale inhibitor is added to the boron-containing water passing through the reverse osmosis membrane. It can be seen that the method of the present invention to be added can prevent a decrease in the permeation rate of the reverse osmosis membrane and maintain a high permeated water amount for a long time. In particular, ED
Example 5 in which TA-4Na was added at 50 mg / liter or more
In Example 6, the amount of water permeated through the reverse osmosis membrane did not decrease at all even after elapse of 720 hours. In Examples 1 to 6 and Comparative Example 1, the boron concentration in the reverse osmosis membrane permeated water was 0.9 ppb.

【0011】[0011]

【発明の効果】本発明方法によれば、弱酸性イオン交換
樹脂塔を設けてカルシウムを除去するなどの前処理なし
でも、逆浸透膜面にカルシウムスケールが発生して膜透
過水量が低下することがなく、ホウ素含有水の高pH条件
下での逆浸透膜処理が可能となり、設備を簡略化し、処
理工程を短縮することができる。
According to the method of the present invention, calcium scale is generated on the reverse osmosis membrane surface and the amount of permeated water decreases even without a pretreatment such as removing calcium by providing a weakly acidic ion exchange resin tower. Therefore, reverse osmosis membrane treatment under high pH conditions of boron-containing water becomes possible, equipment can be simplified, and the treatment process can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のホウ素含有水の処理方法の工
程系統図である。
FIG. 1 is a process flow chart of a method for treating boron-containing water of the present invention.

【図2】図2は、本発明のホウ素含有水の処理方法の工
程系統図である。
FIG. 2 is a process flow diagram of the method for treating boron-containing water of the present invention.

【符号の説明】[Explanation of symbols]

1 逆浸透膜 2 脱気膜 1 reverse osmosis membrane 2 degassing membrane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ホウ素含有水のpHを9.2以上に調整し、
逆浸透膜に通水してホウ素を除去するホウ素含有水の処
理方法において、逆浸透膜に通水するホウ素含有水にス
ケール防止剤を添加することを特徴とするホウ素含有水
の処理方法。
(1) adjusting the pH of the boron-containing water to 9.2 or more,
A method for treating boron-containing water, which removes boron by passing through a reverse osmosis membrane, comprising adding a scale inhibitor to the boron-containing water passing through a reverse osmosis membrane.
JP30887897A 1997-11-11 1997-11-11 Method for treating boron-containing water Expired - Fee Related JP3890708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30887897A JP3890708B2 (en) 1997-11-11 1997-11-11 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30887897A JP3890708B2 (en) 1997-11-11 1997-11-11 Method for treating boron-containing water

Publications (2)

Publication Number Publication Date
JPH11138165A true JPH11138165A (en) 1999-05-25
JP3890708B2 JP3890708B2 (en) 2007-03-07

Family

ID=17986358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30887897A Expired - Fee Related JP3890708B2 (en) 1997-11-11 1997-11-11 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP3890708B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
WO2002068338A3 (en) * 2001-02-26 2002-12-27 Ide Technologies Ltd Method of boron removal in presence of magnesium ions
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
WO2008020444A1 (en) * 2006-08-15 2008-02-21 Mekorot Israel National Water Company, Ltd. Multiple stage reverse osmosis method for removing boron from a salinated fluid
US7442309B2 (en) * 2002-06-13 2008-10-28 Hydranautics Methods for reducing boron concentration in high salinity liquid
US7618538B2 (en) * 2006-08-10 2009-11-17 Acciona Agua, S.A.U. Procedure for elimination of boron from sea-water by reverse osmosis membranes
CN102107996A (en) * 2004-12-14 2011-06-29 栗田工业株式会社 Apparatus and method for treating waste water
US8357300B2 (en) 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
US8702978B2 (en) 2010-09-16 2014-04-22 Kabushiki Kaisha Toshiba Seawater desalination apparatus and chemical injection apparatus
WO2015102272A1 (en) * 2013-12-30 2015-07-09 부경대학교산학협력단 Method for removing boron present in seawater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269463A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Membrane separation apparatus
JPH0829315B2 (en) * 1988-08-15 1996-03-27 オルガノ株式会社 Demineralized water production equipment
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JPH09290275A (en) * 1996-02-29 1997-11-11 Toray Ind Inc Device for removing boron in water and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829315B2 (en) * 1988-08-15 1996-03-27 オルガノ株式会社 Demineralized water production equipment
JPH05269463A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Membrane separation apparatus
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JPH09290275A (en) * 1996-02-29 1997-11-11 Toray Ind Inc Device for removing boron in water and method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
WO2002068338A3 (en) * 2001-02-26 2002-12-27 Ide Technologies Ltd Method of boron removal in presence of magnesium ions
US7097769B2 (en) 2001-02-26 2006-08-29 I.D.E. Technologies Ltd. Method of boron removal in presence of magnesium ions
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
US7442309B2 (en) * 2002-06-13 2008-10-28 Hydranautics Methods for reducing boron concentration in high salinity liquid
CN102107996A (en) * 2004-12-14 2011-06-29 栗田工业株式会社 Apparatus and method for treating waste water
US7618538B2 (en) * 2006-08-10 2009-11-17 Acciona Agua, S.A.U. Procedure for elimination of boron from sea-water by reverse osmosis membranes
WO2008020444A1 (en) * 2006-08-15 2008-02-21 Mekorot Israel National Water Company, Ltd. Multiple stage reverse osmosis method for removing boron from a salinated fluid
US8357300B2 (en) 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
US8702978B2 (en) 2010-09-16 2014-04-22 Kabushiki Kaisha Toshiba Seawater desalination apparatus and chemical injection apparatus
WO2015102272A1 (en) * 2013-12-30 2015-07-09 부경대학교산학협력단 Method for removing boron present in seawater

Also Published As

Publication number Publication date
JP3890708B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
US20060273038A1 (en) Chemical cleaning for membranes
EP1424311B1 (en) Method of multi-stage reverse osmosis treatment
JP4798644B2 (en) Desalination method using reverse osmosis membrane
JPH11138165A (en) Treatment of boron-containing water
KR20090104007A (en) Method for the treatment with reverse osmosis membrane
JP2019081134A (en) Seawater desalination method and sea water desalination system
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP2002192152A (en) Method and apparatus for water treatment
JP2001149950A (en) Water treating method and water treating device
JP3575260B2 (en) Pure water production equipment
JPH05269463A (en) Membrane separation apparatus
JP2004167423A (en) Apparatus and method for pure water production
JPH09206749A (en) Fresh water production device and method thereof
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP3885319B2 (en) Pure water production equipment
JPH11267645A (en) Production of pure water
JP2022176325A (en) Operational method of desalination apparatus
JP3534155B2 (en) Pure water production equipment
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
JP2005118712A (en) Pure water manufacturing method
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JP3227765B2 (en) Membrane separation device
JP3752761B2 (en) Reverse osmosis membrane treatment method
JPS6291287A (en) Apparatus for making pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees