JPH11126702A - Manufacture of positive temperature coefficient thermistor - Google Patents

Manufacture of positive temperature coefficient thermistor

Info

Publication number
JPH11126702A
JPH11126702A JP29063397A JP29063397A JPH11126702A JP H11126702 A JPH11126702 A JP H11126702A JP 29063397 A JP29063397 A JP 29063397A JP 29063397 A JP29063397 A JP 29063397A JP H11126702 A JPH11126702 A JP H11126702A
Authority
JP
Japan
Prior art keywords
calcined
thermistor element
temperature
powder
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29063397A
Other languages
Japanese (ja)
Inventor
Susumu Matsushima
奨 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29063397A priority Critical patent/JPH11126702A/en
Publication of JPH11126702A publication Critical patent/JPH11126702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent cracks by using material powder with lower calcining temperature than that of the center of a formed body to form the periphery of the formed body and firing the same even if a sheathing method or a firing condition is changed. SOLUTION: Predetermined materials such as barium carbonate and the like are mixed and divided into two, the two divided materials are put in calcining sheathes, calcined, for example at 1080 deg.C and 1060 deg.C, respectively, and then granulating powder is prepared by adding a binder. The granulating powder of the calcined material at a temperature of 1060 deg.C is filled into a mortar 3c, a frame 4 is positioned in the center of the mortar 3c and the granulating powder of the material calcined at 1080 deg.C is filled into the flame 4. The granulating powder of the material calcined at 1060 deg.C is further filled into the periphery circumferentially surrounding the frame 4. The granulating powder of the material calcined at 1060 deg.C is filled into the mortar 3c except for the frame to form a formed body. In the formed body, the periphery 2 of the material calcined at 1080 deg.C in the center 1 is covered with the material calcined at 1060 deg.C. Then, the formed body is calcined at, for example 1280 deg.C and a thermistor element is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正特性サーミスタ
素子の製造方法に関するものである。
The present invention relates to a method for manufacturing a PTC thermistor element.

【0002】[0002]

【従来の技術】以下に従来の正特性サーミスタ素子(以
降、サーミスタ素子と称する)の製造方法について説明
する。
2. Description of the Related Art A method for manufacturing a conventional positive temperature coefficient thermistor element (hereinafter referred to as a thermistor element) will be described below.

【0003】従来のサーミスタ素子は、主成分の炭酸バ
リウムと酸化チタン、副成分の酸化鉛、酸化イットリウ
ム、酸化アルミニウム、酸化マンガン及び酸化珪素など
を所定量秤量し、混合、乾燥した後、900〜1000
℃の温度で仮焼を行う。次に得られた仮焼材料を粉砕、
造粒しチタン酸バリウム材料粉末を作製する。次いで所
定形状に成形した後、大気中で1200℃付近の温度で
焼成しサーミスタ素子を作製していた。このとき、成形
に用いる材料粉末は同じ仮焼温度の材料粉末を用いるの
が一般的である。
In a conventional thermistor element, barium carbonate and titanium oxide as main components, lead oxide, yttrium oxide, aluminum oxide, manganese oxide, silicon oxide, and the like as main components are weighed in predetermined amounts, mixed, dried, and dried. 1000
Perform calcination at a temperature of ° C. Next, crush the calcined material obtained,
Granulation is performed to produce a barium titanate material powder. Next, after being formed into a predetermined shape, it was baked at a temperature of about 1200 ° C. in the air to produce a thermistor element. At this time, it is common to use material powder having the same calcining temperature as the material powder used for molding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の製造方法では、成形体を焼成する際の成形体を詰める
焼成サヤ詰め方法、または焼成条件によって、焼成後の
サーミスタ素子の外周部にヒビ割れが発生することがあ
った。この原因の一つに、サーミスタ素子成形体の焼成
過程で造粒時に添加したバインダー成分が成形体の外周
を通過して完全に抜けきれないことがあり、このため成
形体の焼成収縮の進行が部分的に不均一となりヒビ割れ
が発生する。この対策としてバインダーの飛散を容易に
するために、混合済材料の仮焼温度を低めに設定するこ
とが考えられるが、この場合得られるサーミスタ素子が
ポーラスなものとなり、完成品のサーミスタ素子が還元
雰囲気中に曝されたとき電気特性が劣化するという問題
があった。
However, in the above-mentioned conventional manufacturing method, cracks are formed on the outer peripheral portion of the thermistor element after firing, depending on the firing sheath packing method for packing the green body when firing the green body or the firing conditions. Occurred. One of the causes is that the binder component added at the time of granulation during the firing process of the thermistor element molded body does not pass through the outer periphery of the molded body and cannot be completely removed. It becomes partially uneven and cracks occur. As a countermeasure, it is conceivable to set the calcining temperature of the mixed material lower in order to facilitate the scattering of the binder.In this case, the obtained thermistor element becomes porous and the finished thermistor element is reduced. When exposed to an atmosphere, there was a problem that electrical characteristics deteriorated.

【0005】[0005]

【課題を解決するための手段】本発明は前記従来の問題
点を解決するもので、サーミスタ素子を成形する時、成
形体の外周部を中央部より低い仮焼温度の材料粉末を用
いて成形を行い、これを焼成することにより、サヤ詰め
方法、または焼成条件を変動させてもヒビ割れが発生し
ないサーミスタ素子を得ることができる。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems. When molding a thermistor element, the outer peripheral portion of the molded body is molded using a material powder having a lower calcination temperature than the central portion. And baking the same to obtain a thermistor element which does not cause cracking even if the method of shrinking or changing the baking conditions is changed.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、チタン酸バリウムを主成分とする正特性サーミスタ
素子において、前記素子の外周部を中央部を形成する材
料よりも低い温度で仮焼した同組成材料を用い成形した
後、所定温度で焼成を行うことを特徴とする正特性サー
ミスタ素子の製造方法であり、成形体の外周部を中央部
より仮焼温度の低い材料を用いて形成することにより、
成形体の焼成過程で材料に含まれているバインダー成分
を成形体外周部から均等に飛散させることができ、成形
体全体を均一に焼成収縮させ、焼成収縮の不均一進行が
原因で発生する外周部のヒビ割れを防止することができ
る。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 of the present invention is directed to a positive temperature coefficient thermistor element containing barium titanate as a main component, in which the outer peripheral portion of the element is at a lower temperature than the material forming the central portion. A method of manufacturing a positive temperature coefficient thermistor element, characterized in that the calcined material is molded using the same composition material, and then calcined at a predetermined temperature. By forming
The binder component contained in the material can be evenly scattered from the outer periphery of the molded body during the firing process of the molded body, and the entire molded body is uniformly fired and shrunk, and the outer periphery generated due to uneven progress of firing shrinkage. Cracks in the part can be prevented.

【0007】以下、本発明の実施の形態について図1、
図2を用い説明する。 (実施の形態1)図1に本発明の製造方法で成形した成
形体を示した。1は仮焼温度の高い材料を用いた中央
部、2は仮焼温度の低い材料を用いた外周部である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 shows a molded article formed by the production method of the present invention. Reference numeral 1 denotes a central portion using a material having a high calcining temperature, and reference numeral 2 denotes an outer peripheral portion using a material having a low calcining temperature.

【0008】まず(化1)に示す組成になるように、炭
酸バリウム、酸化鉛、酸化チタン、酸化イットリウム、
酸化珪素、酸化アルミ、及び酸化マンガンをそれぞれの
規定量秤量する。
First, barium carbonate, lead oxide, titanium oxide, yttrium oxide,
The specified amount of each of silicon oxide, aluminum oxide, and manganese oxide is weighed.

【0009】[0009]

【化1】 Embedded image

【0010】これに純水を加えボールミルで18時間混
合後、脱水乾燥を行った。次に混合材料を二分割し、仮
焼用サヤに入れ1080℃の温度と、1060℃の温度
でそれぞれ2時間仮焼を行った後、それぞれの仮焼済材
料をボールミルで18時間粉砕し、更にバインダーを添
加してスプレードライヤーで乾燥し造粒粉を作製した。
[0010] Pure water was added thereto, and the mixture was mixed by a ball mill for 18 hours, followed by dehydration and drying. Next, the mixed material is divided into two parts, placed in a sinter for calcination and calcined at a temperature of 1080 ° C. and a temperature of 1060 ° C. for 2 hours each. Then, each calcined material is pulverized by a ball mill for 18 hours. Further, a binder was added, and the mixture was dried with a spray drier to produce granulated powder.

【0011】1060℃仮焼材料の造粒粉末を、図2に
示す内法が縦20mm、横15mmの臼3cに2mm厚さに充
填する。次に下杵3aを4mm引下げた後、臼3cの中央
部に縦16mm、横11mm、深さ4mmの枠体4を置き、そ
の枠体4の内側に1080℃で仮焼した材料の造粒粉末
を4mmの厚さに充填し、更に枠体4の周囲を取り囲む2
mm幅の外周部に1060℃で仮焼した材料の造粒粉末を
充填する。次いで枠体4を除いた後、再び下杵3aを2
mm引下げ、更に臼3cに1060℃で仮焼した材料の造
粒粉末を2mm充填する。その後臼3cの上、下面から上
杵3b、下杵3aで800kg/cm2の圧力を加え成形を
行い、縦20mm、横15mm、厚さ4mmの形状の成形体を
作製した。得られた成形体は、中央部1の1080℃で
仮焼した材料の外周部2が1060℃で仮焼した材料で
覆われたものとなる。またこれとは別に従来の成形方法
で1060℃、及び1080℃で仮焼した粉末のみを用
いた成形体の作製を行った。
The granulated powder of the calcined material at 1060 ° C. is filled into a mortar 3c having a length of 20 mm and a width of 15 mm by the internal method shown in FIG. Next, after lowering the lower punch 3a by 4 mm, a frame 4 having a length of 16 mm, a width of 11 mm, and a depth of 4 mm is placed at the center of the mill 3c, and the material calcined at 1080 ° C. inside the frame 4 is granulated. Fill the powder to a thickness of 4 mm and further surround the frame 4
A granulated powder of a material calcined at 1060 ° C. is filled in an outer peripheral portion having a width of mm. Next, after removing the frame 4, the lower punch 3a is
Then, the mill 3c is filled with 2 mm of granulated powder of the material calcined at 1060 ° C. Thereafter, the upper punch 3b and the lower punch 3a applied a pressure of 800 kg / cm 2 from the upper and lower surfaces of the mill 3c to carry out molding, thereby producing a molded body having a shape of 20 mm in length, 15 mm in width and 4 mm in thickness. In the obtained molded body, the outer peripheral portion 2 of the material calcined at 1080 ° C. in the central portion 1 is covered with the material calcined at 1060 ° C. Separately, a compact was produced using only the powder calcined at 1060 ° C. and 1080 ° C. by a conventional molding method.

【0012】その後、成形体の焼成過程で材料成分中の
酸化鉛の蒸発を防ぐため、それぞれの成形体を密閉状態
の焼成サヤに詰め、1280℃の温度で2時間焼成を行
いサーミスタ素子を作製した。
Thereafter, in order to prevent the lead oxide in the material components from evaporating during the firing process of the compacts, each compact is packed in a closed slag and baked at 1280 ° C. for 2 hours to produce a thermistor element. did.

【0013】得られたサーミスタ素子のヒビ割れ発生状
況を調査した後、サーミスタ素子の両面に縦14mm、横
9mmの電極を形成し、そのサーミスタ素子を還元雰囲気
中で電極間に100Vの電圧を100時間印加する寿命
試験を行い、寿命試験前後のサーミスタ素子の室温抵抗
値変化を評価し、その結果を(表1)に示した。
After investigating the occurrence of cracks in the obtained thermistor element, electrodes having a length of 14 mm and a width of 9 mm were formed on both sides of the thermistor element, and the thermistor element was applied with a voltage of 100 V between the electrodes in a reducing atmosphere. A life test in which a time was applied was performed, and a change in resistance value at room temperature of the thermistor element before and after the life test was evaluated. The results are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)において、No1,No2は本発
明の繰り返し実験品であり、No3は1080℃、No
4は1060℃で仮焼した材料のみを用いたサーミスタ
素子である。
In Table 1, No. 1 and No. 2 are repetitive experimental products of the present invention.
Reference numeral 4 denotes a thermistor element using only a material calcined at 1060 ° C.

【0016】(表1)に示すように、本発明品と、従来
品では密閉焼成における差は明らかに異なり、No3の
1080℃で仮焼した材料のみを用いたものはヒビ割れ
が大量に発生している。一方No4の1060℃で仮焼
した材料のみを用いたものはヒビ割れは発生しないが、
還元雰囲気中の寿命試験で室温抵抗値が大幅に劣化して
いる。これに対し本発明品はヒビ割れ、および還元雰囲
気中の寿命試験において室温抵抗値の劣化も殆ど発生し
ていない。これは本発明品はサーミスタ素子の中央部1
を仮焼温度の高い材料粉末、外周部2を仮焼温度の低い
材料粉末で構成されているため、焼成で外周部2は仮焼
温度が低い材料を用いているためポーラスになり、造粒
時に添加したバインダーがサーミスタ素子の外周部2か
ら均等に飛散することができ、それにより焼成時の収縮
が均一に進行しヒビ割れの発生を抑制することができた
ものと考えられる。また、還元雰囲気下での使用におい
ては、電極を形成したサーミスタ素子の中央部1は仮焼
温度が高い材料を用いているため焼結性に優れ緻密にな
り、電気特性の劣化に至らないものと思われる。
As shown in Table 1, the difference in the closed firing between the product of the present invention and the conventional product is clearly different, and the material using only the material calcined at 1080.degree. doing. On the other hand, No. 4 using only the material calcined at 1060 ° C. does not crack,
The room temperature resistance has been significantly degraded in a life test in a reducing atmosphere. On the other hand, in the product of the present invention, cracking and deterioration of the room temperature resistance value hardly occurred in a life test in a reducing atmosphere. This is because the product of the present invention is the central part 1 of the thermistor element.
Is composed of a material powder having a high calcining temperature, and the outer peripheral portion 2 is composed of a material powder having a low calcining temperature. It is considered that the sometimes added binder can be evenly scattered from the outer peripheral portion 2 of the thermistor element, whereby the shrinkage at the time of firing progresses uniformly and the generation of cracks can be suppressed. Further, when used in a reducing atmosphere, the central portion 1 of the thermistor element on which the electrodes are formed is made of a material having a high calcining temperature, so that the material has excellent sinterability and is dense, and does not lead to deterioration of electrical characteristics. I think that the.

【0017】このことからサーミスタ成形体の外周部2
を中央部1より仮焼温度の低い材料で構成することによ
り、ヒビ割れの発生しない、還元雰囲気下で使用が可能
なサーミスタ素子が得られることが分かる。
From this, the outer peripheral portion 2 of the thermistor molded body
It can be seen that a thermistor element which does not cause cracking and can be used in a reducing atmosphere can be obtained by forming the material having a lower calcination temperature than that of the central portion 1.

【0018】(実施の形態2)(実施の形態1)ではサ
ーミスタ素子の中央部1に1080℃で仮焼した材料、
外周部2に1060℃で仮焼した材料を用いたが、本実
施形態では(実施の形態1)と同組成の材料をそれぞれ
1100℃、1080℃と仮焼温度を更に20℃ずつ高
くした材料を用い構成方法は(実施の形態1)と同様に
して成形体を作製し、(実施の形態1)と同一条件で処
理を行い、得られたサーミスタ素子についてのヒビ割れ
の発生状況の調査と、耐電圧特性の評価を行い、その結
果を(表2)に示した。
(Embodiment 2) In Embodiment 1, a material which is calcined at 1080 ° C. in the central portion 1 of the thermistor element,
Although the material calcined at 1060 ° C. was used for the outer peripheral portion 2, in the present embodiment, a material having the same composition as that of (Embodiment 1) was further increased by 20 ° C. to 1100 ° C. and 1080 ° C., respectively. A molded body was produced in the same manner as in (Embodiment 1), and was processed under the same conditions as in (Embodiment 1), and the occurrence of cracks in the obtained thermistor element was investigated. The breakdown voltage characteristics were evaluated, and the results are shown in (Table 2).

【0019】[0019]

【表2】 [Table 2]

【0020】(表2)において、No5,No6は本発
明の繰り返し実験品であり、No7は1080℃、No
8は1100℃で仮焼した材料を用いたサーミスタ素子
である。
In Table 2, No. 5 and No. 6 are the repetitive experimental products of the present invention, and No. 7 was at 1080 ° C.
Reference numeral 8 denotes a thermistor element using a material calcined at 1100 ° C.

【0021】(表2)に示すように本発明品の中央部
1、外周部2の材料として(実施の形態1)よりもそれ
ぞれ20℃仮焼温度を高くした材料粉末を用いたNo
5,No6のサーミスタ素子は、ヒビ割れの発生が少な
く、耐電圧特性が高い。これに対し1100℃の仮焼温
度の粉末のみを用いて作製したサーミスタ素子No8は
焼結性に優れ耐電圧が高いものの、焼成時のヒビ割れが
多く発生する。一方1080℃の仮焼温度材料のみを用
いたサーミスタ素子No7はヒビ割れの発生も多く、耐
電圧特性もNo8より劣っている。このことからサーミ
スタ成形体の外周部2を中央部1より仮焼温度の低い材
料で構成することにより、耐電圧特性は低下させずに、
ヒビ割れの発生しないサーミスタ素子が得られることが
分かる。
As shown in Table 2, as the material for the central portion 1 and the outer peripheral portion 2 of the product of the present invention, a material powder having a calcination temperature of 20 ° C. higher than that of (Embodiment 1) was used.
The No. 5 and No. 6 thermistor elements have less cracking and high withstand voltage characteristics. On the other hand, the thermistor element No. 8 manufactured using only the powder having the calcining temperature of 1100 ° C. has excellent sinterability and high withstand voltage, but generates many cracks during firing. On the other hand, the thermistor element No. 7 using only the calcining temperature material of 1080 ° C. has many occurrences of cracks and is inferior to the withstand voltage characteristic of No. 8. For this reason, by forming the outer peripheral portion 2 of the thermistor molded body from a material having a lower calcination temperature than the central portion 1, the withstand voltage characteristics are not reduced,
It can be seen that a thermistor element free from cracking can be obtained.

【0022】(実施の形態3)(実施の形態1)、およ
び(実施の形態2)においては、中央部1の材料と外周
部2の材料との仮焼温度差を20℃としたが、この温度
差を40℃にして(実施の形態1)と同条件でサーミス
タ素子の成形、焼成を行い、得られたサーミスタ素子の
ヒビ割れ発生状況、還元雰囲気中での寿命試験の評価を
行い、その結果を(表3)に示した。
(Embodiment 3) In (Embodiment 1) and (Embodiment 2), the difference in the calcining temperature between the material of the central portion 1 and the material of the outer peripheral portion 2 is set to 20 ° C. The temperature difference was set to 40 ° C., the thermistor element was molded and fired under the same conditions as in (Embodiment 1), and the resulting thermistor element was evaluated for the occurrence of cracks and the life test in a reducing atmosphere. The results are shown in (Table 3).

【0023】[0023]

【表3】 [Table 3]

【0024】(表3)において、No9,No10は本
発明の実施形態の繰り返し実験品である。
In Table 3, No. 9 and No. 10 are repeated experimental products of the embodiment of the present invention.

【0025】(表3)に示すように、本実施形態ではヒ
ビ割れ発生はなく、また還元雰囲気中での抵抗値の劣化
は認められなかった。
As shown in Table 3, no cracking occurred in this embodiment, and no deterioration in the resistance value was observed in a reducing atmosphere.

【0026】このことから、(実施の形態1)では中央
部1の材料と外周部2の材料の仮焼温度差を20℃とし
たが、40℃以上の仮焼温度差があった方が望ましいこ
とが分かる。
For this reason, in the first embodiment, the difference in the calcining temperature between the material in the central portion 1 and the material in the outer peripheral portion 2 was set to 20 ° C., but the difference in the calcining temperature was 40 ° C. or more. It turns out to be desirable.

【0027】(実施の形態4)(実施の形態1)におい
て、外周部2の肉厚が2mmのサーミスタ素子を作製し、
縦14mm、横9mmの電極を形成し、サーミスタ素子表面
に形成する電極部分が仮焼温度の高い材料を用いた中央
部1と同じ形状とした。
(Embodiment 4) In (Embodiment 1), a thermistor element whose outer peripheral portion 2 has a thickness of 2 mm is manufactured.
An electrode having a length of 14 mm and a width of 9 mm was formed, and an electrode portion formed on the surface of the thermistor element had the same shape as the central portion 1 using a material having a high calcining temperature.

【0028】本実施形態において、外周部2に1060
℃で仮焼した材料、中央部1に1100℃で仮焼した材
料を用い、(実施の形態1)と同条件で作製した外周部
2の肉厚は2mmの焼結体に、(表3)に示した電極を形
成したNo11〜No13のサーミスタ素子と、外周部
2に1060℃で仮焼した材料、中央部1に1100℃
で仮焼した材料を用い、外周部2の幅肉厚を(表3)に
示すように変更し、(実施の形態1)と同条件で焼成し
た焼結体に縦14mm、横9mmの電極を形成したNo14
〜No16のサーミスタ素子についてヒビ割れの発生状
況、耐電圧特性を評価しその結果を(表4)に示した。
In the present embodiment, 1060
The calcined material at 1 ° C. and the calcined material at 1100 ° C. for the central part 1 were used to form a sintered body having a thickness of 2 mm at the outer peripheral part 2 manufactured under the same conditions as in (Embodiment 1). ), The thermistor elements No. 11 to No. 13 in which the electrodes shown in FIG. 1 are formed, a material calcined at 1060 ° C. on the outer peripheral part 2, and 1100 ° C. on the central part 1
The width of the outer peripheral portion 2 was changed as shown in Table 3 by using the material calcined in the above, and the sintered body fired under the same conditions as in the first embodiment was applied to a 14 mm long, 9 mm wide electrode. No14 that formed
No. 16 to No. 16 were evaluated for the occurrence of cracks and withstand voltage characteristics, and the results are shown in (Table 4).

【0029】[0029]

【表4】 [Table 4]

【0030】(表4)に示したように、仮焼温度の低い
材料を用いた外周部2の表面まで電極を形成したNo1
3,16は耐電圧特性が低下する。また外周部2の肉厚
が2mmより薄いNo14,15はヒビ割れが発生し、3
mmのNo16は発生していない。
As shown in (Table 4), No. 1 electrode was formed up to the surface of the outer peripheral portion 2 using a material having a low calcining temperature.
In Nos. 3 and 16, the withstand voltage characteristics deteriorate. Nos. 14 and 15 in which the thickness of the outer peripheral portion 2 is smaller than 2 mm have cracks,
No. 16 of mm did not occur.

【0031】この結果から、サーミスタ素子表面に形成
する電極はサーミスタ素子の中央部1の上、下面の面積
と同等、またはそれより小さくすることが耐電圧特性の
向上につながり、またサーミスタ素子の外周部2の幅肉
厚を少なくとも2mm以上必要とすることでヒビ割れの発
生を抑制できることが分かる。
From these results, it is found that the electrode formed on the surface of the thermistor element is equal to or smaller than the area of the upper and lower surfaces of the central part 1 of the thermistor element, which leads to the improvement of the withstand voltage characteristic. It is understood that the occurrence of cracks can be suppressed by requiring the width of the portion 2 to be at least 2 mm or more.

【0032】[0032]

【発明の効果】以上本発明によれば、チタン酸バリウム
を主成分とする正特性サーミスタ素子において、素子の
外周部を中央部よりも低い温度で仮焼した同組成材料を
用い成形した後、所定温度で焼成を行うことにより、焼
成時にヒビ割れの発生しない、耐還元性雰囲気に強く、
しかも耐電圧特性に優れたサーミスタ素子を提供するこ
とが可能となる。
As described above, according to the present invention, in a positive temperature coefficient thermistor element containing barium titanate as a main component, the outer peripheral portion of the element is molded using the same composition material calcined at a lower temperature than the central portion. By firing at a predetermined temperature, cracks do not occur during firing, strong in reduction resistant atmosphere,
In addition, it is possible to provide a thermistor element having excellent withstand voltage characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における成形体の断面図FIG. 1 is a cross-sectional view of a molded body according to an embodiment of the present invention.

【図2】同、成形工法を説明する断面図FIG. 2 is a cross-sectional view illustrating the molding method.

【符号の説明】[Explanation of symbols]

1 中央部 2 外周部 3a 下杵 3b 上杵 3c 臼 4 枠体 DESCRIPTION OF SYMBOLS 1 Center part 2 Outer part 3a Lower punch 3b Upper punch 3c Dust 4 Frame

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウムを主成分とする正特性
サーミスタ素子において、前記素子の外周部を中央部を
形成する材料よりも低い温度で仮焼した同組成材料を用
い成形した後、所定温度で焼成を行うことを特徴とする
正特性サーミスタ素子の製造方法。
In a positive temperature coefficient thermistor element containing barium titanate as a main component, after molding an outer peripheral portion of the element using a material of the same composition which is calcined at a lower temperature than a material forming a central portion, the molding is performed at a predetermined temperature. A method of manufacturing a positive temperature coefficient thermistor element, characterized by performing firing.
JP29063397A 1997-10-23 1997-10-23 Manufacture of positive temperature coefficient thermistor Pending JPH11126702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29063397A JPH11126702A (en) 1997-10-23 1997-10-23 Manufacture of positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29063397A JPH11126702A (en) 1997-10-23 1997-10-23 Manufacture of positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH11126702A true JPH11126702A (en) 1999-05-11

Family

ID=17758510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29063397A Pending JPH11126702A (en) 1997-10-23 1997-10-23 Manufacture of positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH11126702A (en)

Similar Documents

Publication Publication Date Title
EP3148021A1 (en) Spark plug
EP3148022B1 (en) Spark plug
JPH11126702A (en) Manufacture of positive temperature coefficient thermistor
EP0751539B1 (en) Positive characteristics thermistor device
JP6800016B2 (en) A compound for spark plug insulators and a method for producing spark plug insulators.
JP3914635B2 (en) Manufacturing method of ceramic electronic component
JPS5832519B2 (en) Manufacturing method of piezoelectric material containing lead
RU2046417C1 (en) Process of manufacture of zinc oxide varistors
JPH03177363A (en) Method for burning semiconductor ceramics
JP2000272958A (en) Insulating material for spark plug, its production and spark plug using the same
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
CN117510198A (en) Lead-based piezoelectric ceramic and preparation method thereof
JPH06287069A (en) Production of semiconductor porcelain
JPH11340074A (en) Manufacture of grain boundary insulation type laminated semiconductor capacitor
JP5126829B2 (en) Piezoelectric ceramic composition
JPH11176613A (en) Manufacture of ceramic electronic part
JPH0745401A (en) Manufacture of positive temperature coefficient thermistor
JPH0282409A (en) Combined ceramic dielectric body and manufacture thereof
JPS584447B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPH05254946A (en) Production of piezoelectric ceramic
JPH0573241B2 (en)
JPH08293403A (en) Manufacture of voltage nonlinear resistor element
JPH05267004A (en) Manufacture of chip type thermistor
JPS5851906B2 (en) Method for manufacturing target porcelain for high frequency sputtering
JPH0969419A (en) Method of manufacturing varistor