JPH0745401A - Manufacture of positive temperature coefficient thermistor - Google Patents

Manufacture of positive temperature coefficient thermistor

Info

Publication number
JPH0745401A
JPH0745401A JP19000493A JP19000493A JPH0745401A JP H0745401 A JPH0745401 A JP H0745401A JP 19000493 A JP19000493 A JP 19000493A JP 19000493 A JP19000493 A JP 19000493A JP H0745401 A JPH0745401 A JP H0745401A
Authority
JP
Japan
Prior art keywords
melting point
molded item
sintering aid
sintering
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19000493A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19000493A priority Critical patent/JPH0745401A/en
Publication of JPH0745401A publication Critical patent/JPH0745401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To improve anti-reduction performance and to enable reliable use by carrying out oxidation treatment by baking a molded item at a temperature not exceeding a melting point of sintering assistant under a high oxygen concentration before baking the molded item regularly. CONSTITUTION:A molded item 1 is formed by adding sintering assistant to a barium titanate-based semiconductor porcelain material. The molded item 1 is baked at about 1000 to 1240 deg.C not exceeding a melting point of the sintering assistant under high oxygen concentration and oxidation treatment is performed for it. In the process, the molded item 1 is fully and uniformly oxidized as far as an inside thereof in a relatively porous state wherein denseness of a sintering body is not proceeded. Then, regular baking is carried out at a temperature exceeding a melting point of a sintering agent in usual atmosphere or under high oxygen concentration. Furthermore, an electrode 2 is provided to a surface of the molded item 1. Thereby, a thermistor of less characteristic deterioration can be acquired even under reducing atmosphere or in a state wherein oxygen does not exist.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば温風ヒータやパ
ッケージエアコンに用いられる正特性サーミスタの製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive temperature coefficient thermistor used in, for example, a warm air heater or a packaged air conditioner.

【0002】[0002]

【従来の技術】チタン酸バリウムのバリウムの一部を鉛
で置換したチタン酸バリウム系の正特性サーミスタはま
ず材料を配合して、混合し、次に脱水、乾燥後、これら
の混合粉末を仮焼する。そしてこの仮焼粉末を粉砕し、
バインダーを加えて造粒して成形後、本焼成を行ってい
た。この得られた焼結体表面に電極を形成していた。ま
た焼成は大気中で行われるのが一般的であるが、低抵抗
化を求められるものについては、一度還元雰囲気中で熱
処理後、再酸化処理を行っているものもある。
2. Description of the Related Art A barium titanate type positive temperature coefficient thermistor in which a part of barium of barium titanate is replaced with lead is prepared by first mixing the materials, mixing them, and then dehydrating and drying the mixed powders. Bake. And this calcinated powder is crushed,
After the binder was added and granulated and molded, the main firing was performed. An electrode was formed on the surface of the obtained sintered body. Further, firing is generally performed in the air, but for those required to have a low resistance, there is a case where the reoxidation treatment is performed after the heat treatment once in the reducing atmosphere.

【0003】[0003]

【発明が解決しようとする課題】上記の正特性サーミス
タは機械油や食料油、調味料等の有機成分がサーミスタ
素子に付着すると、発熱状態では、これらの有機成分の
燃焼に伴い還元雰囲気下におかれることになる。還元雰
囲気下や、酸素のない状態で正特性サーミスタを使用し
た場合、抵抗値が大きく低下したり、抵抗温度係数も著
しく小さくなってしまう等の特性劣化を起こす。このた
め重大な事故につながる危険性があるので、その使用用
途が限定されるという問題点を有していた。
In the above positive temperature coefficient thermistor, when organic components such as machine oil, food oil, and seasonings adhere to the thermistor element, in a heat-generating state, the organic components such as mechanical oil, food oil, and seasoning are kept in a reducing atmosphere due to the combustion of these organic components. Will be placed. When a positive temperature coefficient thermistor is used in a reducing atmosphere or in the absence of oxygen, the resistance value is greatly reduced, and the temperature coefficient of resistance is significantly reduced. For this reason, there is a risk that it may lead to a serious accident, and thus there is a problem that its intended use is limited.

【0004】本発明はこのような問題点を解決するもの
で、耐還元性能に優れた、安心して使用できる正特性サ
ーミスタの製造方法を提供することを目的とするもので
ある。
The present invention solves such problems, and an object of the present invention is to provide a method of manufacturing a positive temperature coefficient thermistor which is excellent in reduction resistance and can be used with confidence.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明は、成形体を本焼成する前に、高酸素濃度下
において、焼結助剤の融点以下の温度で焼成し酸化処理
を行うことを特徴とするものである。
In order to achieve this object, according to the present invention, before the main calcination of the molded body, it is carried out under a high oxygen concentration by calcination at a temperature below the melting point of the sintering aid. It is characterized by performing.

【0006】[0006]

【作用】この構成によると、焼結体の緻密化が進化して
いない、言い換えれば、まだ液相焼結が関与しない過程
で比較的多孔質な状態で成形体内部まで十分かつ均一に
酸化する。そして、本焼成により成形体内部が十分酸化
された状態のまま液相焼結が進行し、緻密になる。
According to this structure, the densification of the sintered body has not evolved, in other words, it oxidizes sufficiently and uniformly to the inside of the molded body in a relatively porous state in the process in which liquid phase sintering is not yet involved. . Then, by the main firing, liquid phase sintering proceeds while the inside of the molded body is sufficiently oxidized, and becomes dense.

【0007】その結果、還元雰囲気下におかれたとして
も、サーミスタ素子の内部までは還元されず抵抗値の大
きな低下等の特性劣化がおきるのを防止することができ
る特性サーミスタを得ることができる。
As a result, it is possible to obtain a characteristic thermistor capable of preventing the deterioration of the characteristic such as a large decrease in resistance value without reducing even the inside of the thermistor element even if the thermistor is placed in a reducing atmosphere. .

【0008】[0008]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0009】図1は本実施例における正特性サーミスタ
の斜視図である。まず、(Ba0.68Pb0.22Ca0.10
TiO3+0.002Y23+0.0003MnO2
0.02SiO2の組成となるようにBaCO3,Pb
O,CaCO3,TiO2,Y23,MnO2,SiO2
それぞれ秤量し、ボールミルにて湿式混合する。次にこ
の混合物を乾燥した後、1050℃で2時間仮焼する。
その後再びボールミルにて湿式粉砕し、乾燥する。次に
この乾燥粉砕粉にポリビニルアルコールからなるバイン
ダーを添加し造粒し、1平方センチメートル当たり80
0Kgの圧力で直径20mm、厚さ2.5mmの円板状に成形
した。
FIG. 1 is a perspective view of a positive temperature coefficient thermistor in this embodiment. First, (Ba 0.68 Pb 0.22 Ca 0.10 )
TiO 3 + 0.002Y 2 O 3 +0.0003 MnO 2 +
BaCO 3 , Pb so that the composition is 0.02SiO 2.
O, CaCO 3 , TiO 2 , Y 2 O 3 , MnO 2 and SiO 2 are weighed and wet mixed in a ball mill. Next, this mixture is dried and then calcined at 1050 ° C. for 2 hours.
After that, it is wet-milled again with a ball mill and dried. Next, a binder made of polyvinyl alcohol was added to the dry pulverized powder and granulated, and
It was molded into a disk shape having a diameter of 20 mm and a thickness of 2.5 mm at a pressure of 0 kg.

【0010】次に、この成形体1を(表1)(表2)に
示す条件で前処理を行った後、本焼成を行った。この成
形体上下両面にNiメッキを形成した後、銀ペーストを
印刷塗布、焼き付けし、電極2とした後に、側面の電極
を削除して試料を作製した。
Next, the molded body 1 was subjected to pretreatment under the conditions shown in (Table 1) and (Table 2), followed by main firing. After Ni plating was formed on the upper and lower surfaces of this molded body, a silver paste was applied by printing and baked to form the electrode 2, and the electrodes on the side surfaces were removed to prepare a sample.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】以上の試料の抵抗値、温度特性を測定した
後、窒素ガス中で、100時間、100Vの電圧を印加
した後、試料を取り出して、再度抵抗値、温度特性を測
定した。その結果を(表3)(表4)に示す。
After measuring the resistance value and temperature characteristic of the above sample, a voltage of 100 V was applied in nitrogen gas for 100 hours, the sample was taken out, and the resistance value and temperature characteristic were measured again. The results are shown in (Table 3) and (Table 4).

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】ここで(表3)(表4)における抵抗値変
化幅とは最大抵抗値を最小抵抗値で除算した数値の常用
対数値であり、下記の式で表される。
Here, the resistance value change width in (Table 3) and (Table 4) is a common logarithmic value of a value obtained by dividing the maximum resistance value by the minimum resistance value, and is represented by the following formula.

【0017】 抵抗値変化幅=Log(最大抵抗値/最小抵抗値) 上記(表3)(表4)より明らかなように、資料番号
2,4,6,11および16では素子自体焼結しておら
ず絶縁体化した。これは焼結助剤SiO2の融点である
1240℃以下で本焼成を行うと焼結が進行せず半導体
化しないためである。従って、本焼成の温度は焼結助剤
の融点1240℃以上必要である。
Resistance value change width = Log (maximum resistance value / minimum resistance value) As is clear from the above (Table 3) and (Table 4), in the material numbers 2, 4, 6, 11 and 16, the element itself was sintered. Not an insulator. This is because if the main calcination is performed at 1240 ° C. or lower, which is the melting point of the sintering aid SiO 2, the sintering does not proceed and the semiconductor is not formed. Therefore, the firing temperature must be 1240 ° C. or higher of the melting point of the sintering aid.

【0018】さらに前処理の温度としては、試料番号
1、21および21より1000℃未満または1240
℃を越えると、窒素ガス中での通電後の抵抗値並びに抵
抗値の変化幅が著しく低下するため、1000〜124
0℃が好ましい。
Further, the pretreatment temperature is lower than 1000 ° C. or 1240 as compared with Sample Nos. 1, 21 and 21.
When the temperature exceeds ℃, the resistance value after energization in nitrogen gas and the change width of the resistance value are remarkably reduced.
0 ° C is preferred.

【0019】一方、前処理を空気中で行った試料番号
2,3,10,13,16および17は、(表3)(表
4)より窒素ガス中での通電後の抵抗値並びに抵抗値の
変化幅が著しく低下していることがわかる。これに対し
て前処理を高濃度酸素中または空気中で処理した後高濃
度酸素中で処理した試料番号5,7〜9,12,14,
15および18〜20は、ほとんど特性が変化していな
い。
On the other hand, for the sample numbers 2, 3, 10, 13, 16 and 17 which were pretreated in the air, the resistance value and the resistance value after energization in nitrogen gas were calculated from (Table 3) and (Table 4). It can be seen that the change width of is significantly reduced. On the other hand, sample numbers 5, 7 to 9, 12, 14, which were pretreated in high concentration oxygen or in air and then in high concentration oxygen,
The characteristics of 15 and 18 to 20 are almost unchanged.

【0020】さらに、本焼成の雰囲気としては試料番号
8,9,12,15,18および19より通常の空気中
で行っても、その特性の低下は認められなかった。
Further, as the atmosphere for the main calcination, even if the sample Nos. 8, 9, 12, 15, 18, and 19 were used in normal air, the characteristics were not deteriorated.

【0021】以上より、成形体を焼結助剤の融点以下の
温度、好ましくは1000〜1240℃で、高酸素濃度
下において、一旦前処理した後、焼結助剤の融点以上の
温度で本焼成を通常の雰囲気中あるいは高酸素濃度下で
行うことにより、酸素のない状態あるいは還元性雰囲気
で使用されても抵抗値の大きな低下等の特性劣化の少な
い正特性サーミスタを得ることができる。
From the above, the compact is pretreated once at a temperature below the melting point of the sintering aid, preferably at 1000 to 1240 ° C. under a high oxygen concentration, and then at a temperature above the melting point of the sintering aid. By performing the firing in a normal atmosphere or under a high oxygen concentration, it is possible to obtain a positive temperature coefficient thermistor with less characteristic deterioration such as a large decrease in resistance value even when used in an oxygen-free state or a reducing atmosphere.

【0022】[0022]

【発明の効果】以上のように、本発明の製造方法による
正特性サーミスタは成形体の本焼成前に、高酸素濃度下
において焼結助剤の融点以下の温度で、加熱酸化処理を
する。
As described above, the positive temperature coefficient thermistor according to the manufacturing method of the present invention is heated and oxidized at a temperature below the melting point of the sintering aid under a high oxygen concentration before the main firing of the molded body.

【0023】その結果、成形体内部が十分酸化されてい
るので、還元雰囲気下や、酸素のない状態においても特
性劣化の少ないサーミスタを得ることができる。
As a result, since the inside of the molded body is sufficiently oxidized, it is possible to obtain a thermistor with little characteristic deterioration even in a reducing atmosphere or in the absence of oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における正特性サーミスタの
斜視図
FIG. 1 is a perspective view of a positive temperature coefficient thermistor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 成形体 2 電極 1 molded body 2 electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウムを主成分とする半導体
磁器材料に焼結助剤を加えて成形体を作り、次にこの成
形体を高酸素濃度下で前記焼結助剤の融点以下の温度で
加熱酸化処理し、その後この成形体を焼結助剤の融点以
上の温度で本焼成し、次にこの成形体の表面に電極を設
ける正特性サーミスタの製造方法。
1. A compact is made by adding a sintering aid to a semiconductor porcelain material containing barium titanate as a main component, and the compact is then heated to a temperature not higher than the melting point of the sintering aid under a high oxygen concentration. A method for producing a positive temperature coefficient thermistor in which an electrode is heat-oxidized at 1, the main body is subsequently fired at a temperature equal to or higher than the melting point of the sintering aid, and then an electrode is provided on the surface of the main body.
【請求項2】 チタン酸バリウムを主成分とする半導体
磁器材料に焼結助剤を加えて成形体を作り、次にこの成
形体を前記焼結助剤の融点以下の温度で空気中で焼成
し、その後この成形体を高濃度酸素下において前記焼結
助剤の融点以下の温度で加熱酸化処理を行い、次にこの
成形体を焼結助剤の融点以上の温度で本焼成を行い、そ
の後この成形体の表面に電極を設ける正特性サーミスタ
の製造方法。
2. A compact is made by adding a sintering aid to a semiconductor ceramic material containing barium titanate as a main component, and then the compact is fired in air at a temperature not higher than the melting point of the sintering aid. Then, the compact is subjected to a heat oxidization treatment at a temperature equal to or lower than the melting point of the sintering aid under high concentration oxygen, and then the compact is subjected to main firing at a temperature equal to or higher than the melting point of the sintering aid, Then, a method for manufacturing a positive temperature coefficient thermistor in which an electrode is provided on the surface of this molded body.
JP19000493A 1993-07-30 1993-07-30 Manufacture of positive temperature coefficient thermistor Pending JPH0745401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19000493A JPH0745401A (en) 1993-07-30 1993-07-30 Manufacture of positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19000493A JPH0745401A (en) 1993-07-30 1993-07-30 Manufacture of positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH0745401A true JPH0745401A (en) 1995-02-14

Family

ID=16250783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19000493A Pending JPH0745401A (en) 1993-07-30 1993-07-30 Manufacture of positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH0745401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298643A (en) * 1987-07-02 1994-10-25 Carl R Thornfeldt Remedy for wrinkle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298643A (en) * 1987-07-02 1994-10-25 Carl R Thornfeldt Remedy for wrinkle

Similar Documents

Publication Publication Date Title
KR20010051354A (en) Semiconducting Ceramic Material, Process for Producing the Ceramic Material, and Thermistor
JPH0745401A (en) Manufacture of positive temperature coefficient thermistor
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP5574343B2 (en) DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC, CERAMIC SUBSTRATE AND ELECTRONIC COMPONENT, AND METHOD FOR PRODUCING DIELECTRIC
WO2024042767A1 (en) Thermistor element and method for producing same
JP2808758B2 (en) Method for firing barium titanate-based semiconductor porcelain
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH1092605A (en) Manufacture of positive temperature thermistor
JPS6217368B2 (en)
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPS6328323B2 (en)
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP2001206767A (en) Piezoelectric porcelain and its manufacturing method
JP2612247B2 (en) Manufacturing method of NTC thermistor
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH09268060A (en) Electroconductive ceramics
JPH0524648B2 (en)
JPH11214204A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH06181108A (en) Semiconductor ceramic having positive resistance-temperature characteristic
JPH03103357A (en) Preparation of ptc ceramic
JPH11116326A (en) Thermistor with positive characteristic and its production
JPH0891925A (en) Barium titanate-based semiconductor ceramic