JPH11126381A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH11126381A
JPH11126381A JP28848597A JP28848597A JPH11126381A JP H11126381 A JPH11126381 A JP H11126381A JP 28848597 A JP28848597 A JP 28848597A JP 28848597 A JP28848597 A JP 28848597A JP H11126381 A JPH11126381 A JP H11126381A
Authority
JP
Japan
Prior art keywords
magnetic
recording
magneto
recording medium
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28848597A
Other languages
Japanese (ja)
Other versions
JP3416490B2 (en
Inventor
Yasushi Hozumi
靖 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28848597A priority Critical patent/JP3416490B2/en
Publication of JPH11126381A publication Critical patent/JPH11126381A/en
Application granted granted Critical
Publication of JP3416490B2 publication Critical patent/JP3416490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magneto-optical recording medium with which the higher density of the recording density accompanying the microminiaturization of recording magnetic domains is realized and an improvement in regenerative signal quality are made possible. SOLUTION: The magneto-optical recording medium which is formed with the recording magnetic domains and is recorded with information by utilizing the temp. distribution by irradiation with a laser beam and the externally impressed magnetic fields by a magnetic field generator is subjected to recording of information by the recording magnetic domains of d/L×100<20(%) when the distance from the start position of the arbitrary recording magnetic domain to the position where the magnetic domain width of this recording magnetic domain exhibits the max. value or begins to exhibit the max. value is defined as (d) and the length of the max. width of the recording magnetic domains width as L.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザー光により
記録・再生を行う光磁気記録媒体、更に詳しくは媒体の
高密度記録化を可能とする光磁気記録媒体に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a magneto-optical recording medium for recording / reproducing with a laser beam, and more particularly to a magneto-optical recording medium capable of high-density recording of the medium.

【0002】[0002]

【従来の技術】情報の書き換え可能な大容量メモリの一
つとして、レーザー光を用いて再生、記録を行う光磁気
記録媒体が注目されている。再生光学系のレーザー波長
λと対物ンズの開口数NAによりビームウェストの径が
決まるので、光磁気記録媒体は信号再生時の空間周波数
が2NA/λ程度まで検出可能である。しかしながら、
光磁気記録媒体のさらなる大容量化への要求が高まる一
方である。この要求を満たす目的で、すなわち、光磁気
記録媒体の記録密度を波長λと開口数NAで決まる回折
限界を超える密度にまで高めるために、記録媒体の構成
や読み取り方法を工夫し、記録密度を改善する技術が開
発されている。
2. Description of the Related Art As one of large-capacity memories in which information can be rewritten, a magneto-optical recording medium that performs reproduction and recording using a laser beam has attracted attention. Since the beam waist diameter is determined by the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens, the magneto-optical recording medium can detect a spatial frequency of up to about 2 NA / λ during signal reproduction. However,
There is a growing demand for a further increase in the capacity of magneto-optical recording media. For the purpose of satisfying this requirement, that is, in order to increase the recording density of the magneto-optical recording medium to a density exceeding the diffraction limit determined by the wavelength λ and the numerical aperture NA, the recording medium configuration and reading method are devised to reduce the recording density. Improved techniques are being developed.

【0003】以下に、光学的な回折限界を超えた微小記
録磁区長まで記録密度を上げた光磁気記録媒体の例を示
す。
The following is an example of a magneto-optical recording medium in which the recording density is increased to a minute recording magnetic domain length exceeding the optical diffraction limit.

【0004】例えば、特開平3−93058号、特開平
6−124500号において、磁気的に結合される再生
層と記録保持層とを有してなる多層膜の、記録保持層に
信号記録を行うとともに、レーザー光を照射して加熱
し、再生層の昇温領域に記録保持層に記録された信号を
転写しながら読み取る信号再生方法が提案されている
(図3参照)。
For example, in JP-A-3-93058 and JP-A-6-124500, signal recording is performed on a recording holding layer of a multilayer film having a magnetically coupled reproducing layer and a recording holding layer. At the same time, a signal reproducing method has been proposed in which a signal recorded on the recording holding layer is read while transferring the signal recorded on the recording holding layer to a heated region of the reproducing layer by heating by irradiating a laser beam (see FIG. 3).

【0005】この方法によれば、再生用のレーザーのス
ポット径に対して、このレーザーによって加熱されて転
写温度に達し信号が検出される領域(アパーチャー)
は、より小さな領域に限定できるため、再生時の符号間
干渉を減少させ、光学的な検出限界λ/2NA以下のビ
ット周期の信号が再生可能となる。
According to this method, an area (aperture) where the spot diameter of the reproduction laser is heated by the laser to reach the transfer temperature and a signal is detected.
Can be limited to a smaller area, so that intersymbol interference during reproduction can be reduced, and a signal having a bit period equal to or less than the optical detection limit λ / 2NA can be reproduced.

【0006】また、別の例として、上記超解像度光磁気
記録再生方式の欠点を補った、光磁気記録媒体、再生方
法および再生装置として特開平6−290496号が提
案されている。
As another example, JP-A-6-290496 has been proposed as a magneto-optical recording medium, a reproducing method, and a reproducing apparatus which compensate for the disadvantages of the super-resolution magneto-optical recording / reproducing method.

【0007】特開平6−290496号においては、磁
気的な交換結合を利用した少なくとも3層から構成する
多層膜からなる光磁気記録媒体により、再生信号振幅を
低下させることなく光学的な検出限界以下の周期の信号
が高速で再生可能となり、記録密度ならびに転送速度を
大幅に向上できる光磁気記録媒体、再生方法および再生
装置が提案されている。
In JP-A-6-290496, a magneto-optical recording medium composed of a multilayer film composed of at least three layers utilizing magnetic exchange coupling is used to reduce the reproduction signal amplitude to below the optical detection limit. A magneto-optical recording medium, a reproducing method, and a reproducing apparatus capable of reproducing a signal having a period of at a high speed and greatly improving the recording density and the transfer speed have been proposed.

【0008】すなわち、付属の加熱装置により再生記録
マークに温度分布をもたせ、この温度分布と再生記録マ
ーク中の磁気エネルギーの温度依存性とにより、磁壁に
再生光スポット内へ移動する圧力が誘発される(図4参
照)。この結果、磁壁が瞬間的に再生光スポット内へ移
動し、再生光スポット内の原子スピンの向きが反転して
全て一方向に揃い、再生信号振幅は記録されている磁壁
の間隔(すなわち記録マーク長)によらず、常に一定か
つ最大の振幅になり、光学的な回折限界に起因した波形
干渉等の問題から完全に解放されるのである。以上の再
生方法を磁壁移動磁区拡大再生方式と呼ぶことにする。
That is, a temperature distribution is given to the read / write mark by an attached heating device, and the temperature distribution and the temperature dependency of the magnetic energy in the read / write mark induce a pressure on the domain wall to move into the read light spot. (See FIG. 4). As a result, the domain wall instantaneously moves into the reproducing light spot, the directions of the atomic spins in the reproducing light spot are reversed, and all are aligned in one direction, and the reproduction signal amplitude is the interval between the recorded magnetic domain walls (that is, the recording mark). Regardless of the length, the amplitude is always constant and maximum, and the problem of waveform interference and the like due to the optical diffraction limit is completely eliminated. The above-mentioned reproducing method will be referred to as a domain wall moving magnetic domain expansion reproducing method.

【0009】[0009]

【発明が解決しようとしている課題】上記、超解像度光
磁気記録再生方式、磁壁移動磁区拡大再生方式は、とも
に光学的な回折限界を超えた再生方式であり、これらの
性能を十分に発揮するためには、回折限界を超えた微小
記録磁区が形成されていることが前提になっている。こ
の回折限界を超えた微小磁区の記録は、大きく分けて、
光変調記録方式と磁界変調記録方式の2方式がある。
The super-resolution magneto-optical recording / reproducing system and the domain wall moving magnetic domain enlarging / reproducing system are both reproducing systems which exceed the optical diffraction limit. Is based on the premise that minute recording magnetic domains exceeding the diffraction limit are formed. The recording of microdomains beyond this diffraction limit can be broadly divided into
There are two methods, an optical modulation recording method and a magnetic field modulation recording method.

【0010】光変調記録方式の場合は、レーザー光のガ
ウシアン強度分布の先端を利用する。記録媒体に回折限
界を超えた、微小な記録温度以上の温度分布領域を生じ
させ、印加磁界一定のものとレーザー光の強度を変調す
ることにより記録を行う。
In the case of the light modulation recording method, the tip of the Gaussian intensity distribution of the laser light is used. A recording is performed by generating a temperature distribution region exceeding the diffraction limit and exceeding the minute recording temperature on the recording medium and modulating the intensity of the laser beam with a constant applied magnetic field.

【0011】一方、磁界変調記録方式においては、記録
媒体に形成される、レーザー光による温度分布が常に同
一分布になるようにレーザ光を照射し(例えば、記録パ
ワーでのレーザー光の連続照射)、外部磁界を変調する
ことにより記録を行う。このとき、磁界の変調速度を高
速に設定することにより、微小磁区の記録を可能にす
る。
On the other hand, in the magnetic field modulation recording system, a laser beam is irradiated so that the temperature distribution formed by the laser beam formed on the recording medium always has the same distribution (for example, continuous irradiation of the laser beam at a recording power). Recording is performed by modulating an external magnetic field. At this time, by setting the modulation speed of the magnetic field to be high, recording of a minute magnetic domain is enabled.

【0012】以上のような、光変調記録方式、磁界変調
記録方式においては、ガウシアン強度分布を示すレーザ
ー光による温度分布を反映した形状の記録磁区が形成さ
れる。すなわち、光変調記録方式では、円形あるいは長
円形状に記録磁区が形成され、磁界変調記録方式では、
矢羽根状の記録磁区が形成される。
In the light modulation recording method and the magnetic field modulation recording method as described above, a recording magnetic domain having a shape reflecting a temperature distribution by a laser beam having a Gaussian intensity distribution is formed. That is, in the light modulation recording method, recording magnetic domains are formed in a circular or elliptical shape, and in the magnetic field modulation recording method,
Arrow-shaped recording magnetic domains are formed.

【0013】このような、円弧状の形状を有する記録磁
区は、特に、光学的な回折限界を超えた再生方式を実現
する超解像度光磁気記録再生方式、磁壁移動磁区拡大再
生方式において、情報の再生の際に、再生信号品質に悪
影響を及ぼす。以下に図面を参照して、矢羽根形状の記
録磁区が再生信号品質に与える影響を説明する。図5と
図6は超解像度光磁気記録再生方式、図7と図8は磁壁
移動磁区拡大再生方式における円弧状の記録磁区の再生
信号品質への影響を説明した模式図である。
Such a recording magnetic domain having an arc shape is particularly useful in a super-resolution magneto-optical recording / reproducing method for realizing a reproducing method that exceeds the optical diffraction limit and a domain wall moving magnetic domain enlarging / reproducing method. At the time of reproduction, it adversely affects reproduction signal quality. In the following, with reference to the drawings, an explanation will be given of the influence of the arrow-shaped recording magnetic domain on the reproduction signal quality. FIGS. 5 and 6 are schematic diagrams for explaining the effect of the arc-shaped recording magnetic domain on the reproduction signal quality in the super-resolution magneto-optical recording / reproducing system, and FIGS. 7 and 8 in the domain wall moving magnetic domain enlarging / reproducing system.

【0014】超解像度光磁気記録再生方式においては、
例えば、図5で示されているような磁界変調記録方式で
微小磁区を記録したとき、矢羽根状の磁区形状であるこ
とから、記録磁区情報の再生の役割を果たすアパーチャ
ー領域に複数の記録磁区が入り込み、再生信号に悪影響
を及ぼす。
In the super-resolution magneto-optical recording / reproducing method,
For example, when a small magnetic domain is recorded by a magnetic field modulation recording method as shown in FIG. 5, since the magnetic domain shape is an arrow feather shape, a plurality of recording magnetic domains are provided in an aperture area which plays a role of reproducing recorded magnetic domain information. And adversely affect the reproduced signal.

【0015】一方、図7に示すような磁壁移動磁区拡大
再生方式においては、記録磁区が円弧状であることによ
り、磁壁の移動、磁区の拡大現象が起こりにくいものと
なり、再生信号の立ち上り、立ち下がりが鈍くなる。こ
の再生方式は、媒体への加熱により、磁壁の移動を可能
とする温度(磁壁移動温度)の等温線が記録磁区形状を
形成する磁壁全体を包括したときに、磁壁が移動し磁区
を拡大して情報を再生する。したがって、図7のような
記録磁区の磁壁の円弧状の形状と磁壁移動温度の等温線
の形状と交わる関係になる場合、等温線が記録磁区に接
し始めた段階(図中実線で示す等温線)では磁壁の移
動、磁区の拡大は、磁壁エネルギーの増加をもたらし、
困難なものとなる。図中破線で示す位置にまで等温線が
移ったときに、磁壁全体が移動することになる。このよ
うな現象は、磁界変調記録方式で記録される場合だけで
はなく、光変調記録方式で記録された場合にも同様のこ
とが言える。そして、図7に示すような磁界変調記録方
式による記録磁区の再生においては、任意の記録磁区に
よる十分な再生信号が得られる前に、次の記録磁区に再
生スポットあるいは磁壁移動温度の等温線が入り込み、
後者の記録磁区の情報も再生してしまい、再生特性に影
響を及ぼす。
On the other hand, in the domain wall moving domain expansion / reproduction system shown in FIG. 7, since the recording magnetic domain is in an arc shape, the domain wall movement and the magnetic domain expansion phenomenon are less likely to occur, and the rising and falling edges of the reproduction signal. The decline slows down. In this reproducing method, when the isotherm of the temperature at which the domain wall can be moved (domain wall moving temperature) covers the entire domain wall forming the recording domain shape by heating the medium, the domain wall moves and expands the domain. To play the information. Therefore, when the arcuate shape of the domain wall of the recording magnetic domain intersects with the shape of the isotherm of the domain wall moving temperature as shown in FIG. 7, the stage at which the isotherm starts to contact the recording magnetic domain (the isotherm indicated by a solid line in the drawing) In), domain wall movement and domain expansion increase domain wall energy,
It will be difficult. When the isotherm moves to the position indicated by the broken line in the figure, the entire domain wall moves. Such a phenomenon can be said not only when recording is performed by the magnetic field modulation recording method but also when recording is performed by the light modulation recording method. Then, in the reproduction of the recording magnetic domain by the magnetic field modulation recording method as shown in FIG. 7, before a sufficient reproduction signal by an arbitrary recording magnetic domain is obtained, a reproduction spot or an isotherm of a domain wall moving temperature is formed in the next recording magnetic domain. Ingress,
The information of the latter recorded magnetic domain is also reproduced, which affects reproduction characteristics.

【0016】以上のような問題を鑑み、本発明の目的
は、特に記録磁区の微小化に伴う記録密度の高密度化を
実現する光磁気記録媒体において、記録磁区形状の観点
から、再生信号品質の向上を達成するものである。
In view of the above problems, an object of the present invention is to provide a reproducing signal quality in a magneto-optical recording medium which realizes a high recording density particularly in accordance with the miniaturization of the recording magnetic domain, from the viewpoint of the recording magnetic domain shape. Is achieved.

【0017】[0017]

【課題を解決するための手段】前記の目的は以下の手段
によって達成される。
The above object is achieved by the following means.

【0018】すなわち、本発明は、レーザー光照射によ
る温度分布と磁界発生装置による外部印加磁界を利用し
て、記録磁区を形成し、情報を記録する光磁気記録媒体
において、任意の記録磁区の開始位置から、該記録磁区
の磁区幅が最大値を示す、あるいは最大値を示し始める
位置までの距離をd、記録磁区幅の最大幅の長さをLと
したとき、d/L×100<20(%)である記録磁区
により情報を記録することを特徴とする光磁気記録媒体
を提案するものであり、情報の記録前の、記録領域間の
未記録領域において磁気的性質が失われる方向に変質処
理を施したこと、前記の記録前の処理を、記録領域間の
未記録領域の磁気的性質を失う方向に変質させる温度ま
で加熱すること、前記の記録前の処理を、レーザーを利
用して加熱することにより行うこと、少なくとも第1、
第2、第3の磁性層が順次積層されている光磁気記録媒
体であって、周囲温度近傍の温度において該第3の磁性
層に比べ相対的に磁壁抗磁力が小さく磁壁移動度が大き
な垂直磁化膜からなる、該第1の磁性層、および、該第
1の磁性層および第3の磁性層よりもキュリー温度の低
い磁性層からなる、第2の磁性層、および、垂直磁化膜
である該第3の磁性層により構成されること、少なくと
も第1、第2の磁性層が順次積層されている光磁気記録
媒体であって、少なくとも上記第2磁性層に情報を記録
し、該記録情報を上記第1磁性層の磁化状態を変化させ
ながら読み出すことを含む。
That is, according to the present invention, a recording magnetic domain is formed by utilizing a temperature distribution by laser beam irradiation and an externally applied magnetic field by a magnetic field generator, and in a magneto-optical recording medium for recording information, the start of an arbitrary recording magnetic domain is started. When the distance from the position to the position where the magnetic domain width of the recording magnetic domain shows the maximum value or starts to show the maximum value is d, and the length of the maximum width of the recording magnetic domain width is L, d / L × 100 <20 The present invention proposes a magneto-optical recording medium characterized in that information is recorded by a recording magnetic domain of (%), and in a direction in which magnetic properties are lost in an unrecorded area between recorded areas before information is recorded. That the alteration process has been performed, the process before recording is heated to a temperature that causes the magnetic properties of the unrecorded areas between the recording areas to lose magnetic properties, and the process before recording is performed using a laser. Heating It is carried out by at least a first,
A magneto-optical recording medium in which second and third magnetic layers are sequentially laminated, wherein a perpendicular magnetic field has a smaller domain wall coercive force and a larger domain wall mobility than the third magnetic layer at a temperature near an ambient temperature. A first magnetic layer comprising a magnetic film; a second magnetic layer comprising a magnetic layer having a lower Curie temperature than the first magnetic layer and the third magnetic layer; and a perpendicular magnetic film. A magneto-optical recording medium comprising the third magnetic layer, wherein at least a first and a second magnetic layer are sequentially laminated, wherein information is recorded on at least the second magnetic layer; Reading while changing the magnetization state of the first magnetic layer.

【0019】本発明は、図1に示すような円弧状の度合
いを示すd/L×100が、20(%)未満である記録
磁区形状を形成することを特徴とする。このような記録
磁区形状を形成することにより、記録磁区の再生におい
ては、超解像度光磁気記録再生方式の場合は、図6に示
すように複数の記録磁区による信号再生の影響を抑制で
き、更に、アパーチャー内の再生すべき記録磁区面積が
従来例よりも大きくなり、信号振幅の増加とともに信号
品質を改善できる。磁壁移動磁区拡大再生方式の場合
は、図8に示すように、ここでも複数の記録磁区による
信号再生の影響を抑制でき、また、再生信号の立ち上
り、立ち下がりも従来例に比べ急峻にすることを可能に
し、信号品質を改善できる。上記磁壁移動磁区拡大再生
方式で得られた、本発明の再生信号の立ち上り、立ち下
がりがより急峻になるという効果は、通常再生方式にお
いても同様の効果を奏し、ジッター改善による信号品質
向上をもたらす。
The present invention is characterized in that a recording magnetic domain shape in which d / L × 100 indicating the degree of arc shape as shown in FIG. 1 is less than 20 (%) is formed. By forming such a recording magnetic domain shape, in the case of reproducing a recording magnetic domain, in the case of the super-resolution magneto-optical recording / reproducing method, the influence of signal reproduction by a plurality of recording magnetic domains can be suppressed as shown in FIG. The area of the recording magnetic domain to be reproduced in the aperture becomes larger than that of the conventional example, and the signal quality can be improved as the signal amplitude increases. In the case of the domain wall displacement magnetic domain expansion reproduction method, as shown in FIG. 8, the influence of signal reproduction by a plurality of recording magnetic domains can be suppressed, and the rise and fall of the reproduction signal should be steeper than in the conventional example. And improve the signal quality. The effect that the rising and falling of the reproduction signal of the present invention obtained by the domain wall displacement magnetic domain expansion reproduction method becomes steeper also exerts the same effect in the normal reproduction method, and improves the signal quality by improving the jitter. .

【0020】本発明の記録磁区の形成においては、例え
ば、図2に示すように、記録領域(例えば、本実施例で
はランド部)の両側に位置する未記録領域(例えば、本
実施例ではグルーブ部)の磁気的性質が失われる方向に
変質させる前処理(本実施例ではレーザー照射による加
熱処理)を施すことにより、実現できる。
In the formation of the recording magnetic domain of the present invention, for example, as shown in FIG. 2, an unrecorded area (for example, a groove in this embodiment) located on both sides of a recording area (for example, a land in this embodiment). This can be realized by performing a pretreatment (heat treatment by laser irradiation in the present embodiment) for changing the magnetic properties of the part (1) in a direction in which the magnetic properties are lost.

【0021】[0021]

【発明の実施の形態】以下、本発明を適用した実施例に
ついて説明する。
Embodiments of the present invention will be described below.

【0022】[0022]

【実施例】【Example】

<実施例1>本実施例で使用した基板は、ポリカーボネ
ート(PC)を用いて射出成形により作製した。トラッ
クピッチ1.1μm、溝深さは0.3μmであり、この
基板状に磁性膜を成膜したとき、溝(グルーブ)により
隣接するトラック間で磁気的結合を分断することを可能
にしている。本実施例では射出成形基板にポリカーボネ
ート(PC)を用いたが、ポリメチルメタクリレート
(PMMA)、アモルファスポリオレフィン(APO)
等を成形材料として用いてもよい。また、紫外線硬化樹
脂による、いわゆる2P成形基板を使用することもでき
る。
<Example 1> The substrate used in this example was manufactured by injection molding using polycarbonate (PC). The track pitch is 1.1 μm and the groove depth is 0.3 μm. When a magnetic film is formed on this substrate, magnetic coupling can be separated between adjacent tracks by grooves. . In this embodiment, polycarbonate (PC) is used for the injection molded substrate, but polymethyl methacrylate (PMMA), amorphous polyolefin (APO)
Etc. may be used as a molding material. Also, a so-called 2P molded substrate made of an ultraviolet curable resin can be used.

【0023】以上のようにして作製した基板上に特開平
6−290496号で提案されているような記録膜をス
パッタ法により成膜した。記録膜としては基板上に第1
の誘電体層(SiN)、第1の磁性層(GdFe)、第
2の磁性層(TbFe)、第3の磁性層(TbFeC
o)、第2の誘電体層(SiN)が順次積層されてい
る。各誘電体層としては、上記誘電体層の他に、例え
ば、AlN,SiO2 ,SiO,ZnS,MgF2 等の
透明誘電材料が使用できる。また、各磁性層としては、
上記磁性材料を含む種々の磁性材料によって構成するこ
とが考えられるが、例えば、Pr,Nd,Sm,Gd,
Tb,Dy,Ho等の希土類金属元素の一種類あるいは
二種類以上が10〜40at%と、Fe,Co,Ni等
の遷移金属の一種類あるいは二種類以上が60〜90a
t%とで構成される希土類−遷移金属非晶質合金によっ
て構成し得る。また、耐食性向上等のために、これにC
r,Mn,Cu,Ti,Al,Si,Pt,In等の元
素を少量添加してもよい。
A recording film as proposed in JP-A-6-290496 was formed on the substrate prepared as described above by sputtering. As the recording film, the first
Dielectric layer (SiN), first magnetic layer (GdFe), second magnetic layer (TbFe), third magnetic layer (TbFeC)
o), a second dielectric layer (SiN) is sequentially laminated. As each dielectric layer, for example, a transparent dielectric material such as AlN, SiO 2 , SiO, ZnS, MgF 2 or the like can be used in addition to the above-mentioned dielectric layer. Also, as each magnetic layer,
Various magnetic materials including the above-described magnetic materials may be used. For example, Pr, Nd, Sm, Gd,
One or more rare earth metal elements such as Tb, Dy and Ho are 10 to 40 at%, and one or more transition metals such as Fe, Co and Ni are 60 to 90 a%.
% of a rare earth-transition metal amorphous alloy. In addition, to improve corrosion resistance, etc.
Elements such as r, Mn, Cu, Ti, Al, Si, Pt, and In may be added in small amounts.

【0024】以上のようにして作製した光磁気記録媒体
を、記録測定前の処理として、グルーブ部にレーザース
ポットが位置決めされるようにトラッキング制御をし、
ディスク回転速度2m/sec、レーザーパワー10m
W(λ=680nm、NA=0.55)でDC光を照射
し、グルーブ上の磁性層の磁気的性質を失わせる方向に
変質させる前処理を行った。
The magneto-optical recording medium manufactured as described above is subjected to tracking control as a process before recording measurement so that a laser spot is positioned in a groove portion.
Disk rotation speed 2m / sec, laser power 10m
DC light irradiation was performed with W (λ = 680 nm, NA = 0.55), and a pretreatment was performed to alter the magnetic properties of the magnetic layer on the groove in such a direction as to lose the magnetic properties.

【0025】以上の前処理後の光磁気記録媒体に情報を
記録し、光磁気ディスク記録再生装置の光学系に加熱用
レーザーを付加した測定装置を用いてC/N比(キャリ
アレベル対ノズルの比)を測定した。記録情報は、レー
ザーパワー3.5mW(λ=680nm,NA=0.5
5)のレーザー光を照射しながら外部磁界200Oeを
変調して、ディスク回転速度2m/sec、記録周波数
5MHz、記録マーク長0.2μmでキャリア信号を書
き込んだ。情報の再生は、λ=680nm,NA=0.
55、レーザーパワー2mWで行った場合、51dBの
C/N比が得られた。
Information is recorded on the magneto-optical recording medium after the above pre-processing, and the C / N ratio (carrier level versus nozzle-nozzle ratio) is measured using a measuring device having a heating laser added to the optical system of the magneto-optical disk recording / reproducing device. Ratio) was measured. The recorded information was laser power 3.5 mW (λ = 680 nm, NA = 0.5
The external magnetic field 200 Oe was modulated while irradiating the laser light of 5), and a carrier signal was written at a disk rotation speed of 2 m / sec, a recording frequency of 5 MHz, and a recording mark length of 0.2 μm. Information reproduction is performed at λ = 680 nm, NA = 0.
When the laser power was set to 55 and the laser power was set to 2 mW, a C / N ratio of 51 dB was obtained.

【0026】この0.2μmのマークで記録された上記
記録媒体を、MFM(磁気力顕微鏡)により記録磁区形
状を観察した。このときのMFM観察像が図9であっ
た。このとき、d/L×100=0(%)であった。
The recording medium recorded with the 0.2 μm mark was observed for its magnetic domain shape by MFM (magnetic force microscope). The MFM observation image at this time is shown in FIG. At this time, d / L × 100 = 0 (%).

【0027】<実施例2>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー9mWで行ったこと以外は、実施例1と同じよう
にして、作製、測定を行った。このとき、49dBのC
/N比、および、d/L×100=6(%)であった。
<Example 2> Preparation and measurement were performed in the same manner as in Example 1 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 9 mW. Was done. At this time, C of 49 dB
/ N ratio and d / L × 100 = 6 (%).

【0028】<実施例3>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー8mWで行ったこと以外は、実施例1と同じよう
にして、作製、測定を行った。このとき、47dBのC
/N比、および、d/L×100=13(%)であっ
た。
<Example 3> Preparation and measurement were performed in the same manner as in Example 1 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 8 mW. Was done. At this time, 47 dB C
/ N ratio and d / L × 100 = 13 (%).

【0029】<実施例4>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー7mWで行ったこと以外は、実施例1と同じよう
にして、作製、測定を行った。このとき、45dBのC
/N比、および、d/L×100=20(%)であっ
た。
<Example 4> Preparation and measurement were performed in the same manner as in Example 1 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 7 mW. Was done. At this time, 45 dB C
/ N ratio and d / L × 100 = 20 (%).

【0030】<比較例1>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程を省いたこ
と以外は、実施例1と同じようにして、作製、測定を行
った。このとき、42dBのC/N比、および、図10
で示されるようなMFM観察像が得られた。d/L×1
00=31(%)であった。
<Comparative Example 1> Preparation and measurement were performed in the same manner as in Example 1 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove so as to lose the magnetic properties was omitted. At this time, the C / N ratio of 42 dB and FIG.
An MFM observation image as shown by was obtained. d / L × 1
00 was 31 (%).

【0031】<比較例2>グルーブ上の磁性層の磁気性
質を失わせる方向に変質させる前処理工程をレーザーパ
ワー6mWで行ったこと以外は、実施例1と同じように
して、作製、測定を行った。このとき、44dBのC/
N比、および、d/L×100=25(%)であった。
<Comparative Example 2> Production and measurement were performed in the same manner as in Example 1 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 6 mW. went. At this time, C /
N ratio and d / L × 100 = 25 (%).

【0032】<実施例5>トラックピッチが0.9μm
であるポリカーボネート基板を使用した以外は、比較例
2と同じようにして、作製、測定を行った。このとき、
46dBのC/N比、およびd/L×100=18
(%)であった。
<Embodiment 5> Track pitch is 0.9 μm
Production and measurement were performed in the same manner as in Comparative Example 2 except that a polycarbonate substrate was used. At this time,
C / N ratio of 46 dB, and d / L × 100 = 18
(%)Met.

【0033】以上、実施例1〜5、および、比較例1、
2の結果から、(d/L×100)に対すするC/N比
の依存性をグラフにした場合、図11のような結果が得
られる。図11から、d/L×100≦20(%)であ
るとき、少なくとも45dB以上のC/N比が得られて
いる。
As described above, Examples 1 to 5 and Comparative Example 1
In the case where the dependence of the C / N ratio on (d / L × 100) is plotted from the result of FIG. 2, the result as shown in FIG. 11 is obtained. From FIG. 11, when d / L × 100 ≦ 20 (%), a C / N ratio of at least 45 dB or more is obtained.

【0034】<実施例6>本実施例で使用した基板は、
ポリカーボネート(PC)を用いて射出成形により作製
した。トラックピッチは1.1μmである。本実施例で
は射出成形基板にポリカーボネート(PC)を用いた
が、ポリメチルメタクリレート(PMMA)、アモルフ
ァスポリオレフィン(APO)等を成形材料として用い
てもよい。また、紫外線硬化樹脂による、いわゆる2P
成形基板を使用することもできる。
<Embodiment 6> The substrate used in this embodiment is:
It was produced by injection molding using polycarbonate (PC). The track pitch is 1.1 μm. In this embodiment, polycarbonate (PC) is used for the injection molded substrate, but polymethyl methacrylate (PMMA), amorphous polyolefin (APO), or the like may be used as a molding material. Also, a so-called 2P made of an ultraviolet curable resin.
Molded substrates can also be used.

【0035】以上のようにして作製した基板上に特開平
6−124500号で提案されているような記録膜をス
パッタ法により成膜した。記録膜としては基板上に第1
の誘電体層(SiN)、第1の磁性層(GdFeC
o)、第2の磁性層(TbFeCo)、第2の誘電体層
(SiN)が順次積層されている。各誘電体層として
は、上記誘電体層の他に、例えば、AlN,SiO2
SiO,ZnS,MgF2 等の透明誘電材料が使用でき
る。また、各磁性層としては、上記磁性材料を含む種々
の磁性材料によって構成することが考えられるが、例え
ば、Pr,Nd,Sm,Gd,Tb,Dy,Ho等の希
土類金属元素の一種類あるいは二種類以上が10〜40
at%と、Fe,Co,Ni等の遷移金属の一種類ある
いは二種類以上が90〜60at%とで構成される希土
類−遷移金属非晶質合金によって構成し得る。また、耐
食性向上等のために、これに、Cr,Mn,Cu,T
i,Al,Si,Pt,In等の元素を少量添加しても
よい。
A recording film as proposed in JP-A-6-124500 was formed on the substrate thus prepared by sputtering. As the recording film, the first
Dielectric layer (SiN), first magnetic layer (GdFeC)
o), a second magnetic layer (TbFeCo), and a second dielectric layer (SiN) are sequentially stacked. As each dielectric layer, for example, AlN, SiO 2 ,
A transparent dielectric material such as SiO, ZnS, MgF 2 or the like can be used. Each magnetic layer may be made of various magnetic materials including the above-mentioned magnetic materials. For example, one kind of rare earth metal element such as Pr, Nd, Sm, Gd, Tb, Dy, Ho or the like may be used. 2 or more types are 10 to 40
It can be constituted by a rare earth-transition metal amorphous alloy composed of at.% and 90 to 60 at. In addition, Cr, Mn, Cu, T
Elements such as i, Al, Si, Pt, and In may be added in small amounts.

【0036】以上のようにして作製した光磁気記録媒体
を、記録測定前の処理として、グルーブ部にレーザース
ポットが位置決めされるようにトラッキング制御をし、
ディスク回転速度2m/sec、レーザーパワー10m
W(λ=680nm、NA=0.55)でグルーブ上の
磁性層の磁気的性質を失わせる方向に変質させる前処理
を行った。
The magneto-optical recording medium manufactured as described above is subjected to tracking control as a process before recording measurement so that a laser spot is positioned in a groove portion.
Disk rotation speed 2m / sec, laser power 10m
With W (λ = 680 nm, NA = 0.55), a pretreatment for changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed.

【0037】以上の前処理後の光磁気記録媒体に、情報
を記録し、C/N比(キャリアレベル対ノズルの比)を
測定した。記録情報は、レーザーパワー3.5mW(λ
=680nm,NA=0.55)のレーザー光を照射し
ながら外部磁界200Oeを変調して、ディスク回転速
度2m/sec、記録周波数2.5MHz、記録マーク
長0.4μmでキャリア信号を書き込んだ。情報の再生
は、λ=680nm,NA=0.55、レーザーパワー
2mWで行った場合、49dBのC/N比が得られた。
Information was recorded on the magneto-optical recording medium after the above pretreatment, and the C / N ratio (ratio of carrier level to nozzle) was measured. Recorded information is a laser power of 3.5 mW (λ
(680 nm, NA = 0.55) while modulating an external magnetic field of 200 Oe to write a carrier signal at a disk rotation speed of 2 m / sec, a recording frequency of 2.5 MHz, and a recording mark length of 0.4 μm. When reproduction of information was performed with λ = 680 nm, NA = 0.55, and laser power of 2 mW, a C / N ratio of 49 dB was obtained.

【0038】この0.4μmのマークで記録された上記
記録媒体を、MFMにより記録磁区形状を観察した。こ
のとき、d/L×100=0(%)であった。
With respect to the recording medium recorded with the 0.4 μm mark, the recording magnetic domain shape was observed by MFM. At this time, d / L × 100 = 0 (%).

【0039】<実施例7>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー9mWで行ったこと以外は、実施例5と同じよう
にして、作製、測定を行った。このとき、48dBのC
/N比、および、d/L×100=7(%)であった。
<Example 7> Preparation and measurement were performed in the same manner as in Example 5 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 9 mW. Was done. At this time, 48 dB C
/ N ratio and d / L × 100 = 7 (%).

【0040】<実施例8>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー8mWで行ったこと以外は、実施例5と同じよう
にして、作製、測定を行った。このとき、47dBのC
/N比、および、d/L×100=13(%)であっ
た。
Example 8 Preparation and measurement were performed in the same manner as in Example 5 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 8 mW. Was done. At this time, 47 dB C
/ N ratio and d / L × 100 = 13 (%).

【0041】<実施例9>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー7mWで行ったこと以外は、実施例5と同じよう
にして、作製、測定を行った。このとき、46dBのC
/N比、および、d/L×100=20(%)であっ
た。
<Example 9> Preparation and measurement were performed in the same manner as in Example 5 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove in such a direction as to lose the magnetic properties was performed at a laser power of 7 mW. Was done. At this time, C of 46 dB
/ N ratio and d / L × 100 = 20 (%).

【0042】<比較例3>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程を省いたこ
と以外は、実施例5と同じようにして、作製、測定を行
った。このとき、43dBのC/N比、および、d/L
×100=29(%)であった。
<Comparative Example 3> Preparation and measurement were performed in the same manner as in Example 5 except that the pretreatment step of changing the magnetic properties of the magnetic layer on the groove so as to lose the magnetic properties was omitted. At this time, a C / N ratio of 43 dB and d / L
× 100 = 29 (%).

【0043】<比較例4>グルーブ上の磁性層の磁気的
性質を失わせる方向に変質させる前処理工程をレーザー
パワー6mWで行ったこと以外は、実施例5と同じよう
にして、作製、測定を行った。このとき、44dBのC
/N比、および、d/L×100=25(%)であっ
た。
<Comparative Example 4> Preparation and measurement were performed in the same manner as in Example 5 except that the pretreatment step for changing the magnetic properties of the magnetic layer on the groove in a direction to lose the magnetic properties was performed at a laser power of 6 mW. Was done. At this time, C of 44 dB
/ N ratio and d / L × 100 = 25 (%).

【0044】<実施例10>トラックピッチが0.9μ
mであるポリカーボネート基板を使用したこと以外は、
比較例4と同じようにして、作製、測定を行った。この
とき、46dBのC/N比、および、d/L×100=
18(%)であった。
<Embodiment 10> Track pitch is 0.9 μm
m, except that a polycarbonate substrate was used.
Production and measurement were performed in the same manner as in Comparative Example 4. At this time, a C / N ratio of 46 dB and d / L × 100 =
18 (%).

【0045】以上、実施例6〜10、および、比較例
3,4の結果から、(d/L×100)に対するC/N
比の依存性をグラフにした場合、図12のような結果が
得られる。図12から、d/L×100≦20(%)で
あるとき、少なくとも45dB以上のC/N比が得られ
ている。
From the results of Examples 6 to 10 and Comparative Examples 3 and 4, the C / N ratio for (d / L × 100) was determined.
When the dependence of the ratio is graphed, a result as shown in FIG. 12 is obtained. From FIG. 12, when d / L × 100 ≦ 20 (%), a C / N ratio of at least 45 dB or more is obtained.

【0046】[0046]

【発明の効果】本発明の光磁気記録媒体によれば、超解
像度光磁気記録再生方式の場合は、複数の記録磁区によ
る信号再生の影響を抑制でき、更に、アパーチャー内の
再生すべき記録磁区面積が従来例よりも大きくなり、信
号振幅の増加とともに信号品質の改善を可能にする。磁
壁移動磁区拡大再生方式の場合は、ここでも複数の記録
磁区による信号再生の影響を抑制でき、また、再生信号
の立ち上がり、立ち下がりも従来例に比べ急峻にするこ
とを可能にし、信号品質の改善を可能にする。
According to the magneto-optical recording medium of the present invention, in the case of the super-resolution magneto-optical recording / reproducing method, the influence of signal reproduction by a plurality of recording magnetic domains can be suppressed. The area is larger than that of the conventional example, and the signal quality can be improved as the signal amplitude increases. In the case of the domain wall displacement magnetic domain expansion reproduction method, the effect of signal reproduction by a plurality of recording magnetic domains can be suppressed, and the rise and fall of the reproduction signal can be made steeper than in the conventional example. Enable improvements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1例を示す光磁気記録媒体の模式図で
ある。
FIG. 1 is a schematic view of a magneto-optical recording medium showing one example of the present invention.

【図2】本発明の他の例を示す光磁気記録媒体の模式図
である。
FIG. 2 is a schematic view of a magneto-optical recording medium showing another example of the present invention.

【図3】超解像度光磁気記録再生方式の原理図である。FIG. 3 is a principle diagram of a super-resolution magneto-optical recording / reproducing method.

【図4】図4(a)〜(c)は磁壁移動磁区拡大再生方
式の原理図である。
FIGS. 4 (a) to 4 (c) are principle diagrams of a domain wall moving magnetic domain expansion reproduction method.

【図5】従来の矢羽根形状磁区の超解像度光磁気記録再
生現象の説明図である。
FIG. 5 is an explanatory diagram of a super resolution magneto-optical recording / reproducing phenomenon of a conventional arrow feather-shaped magnetic domain.

【図6】本発明による記録磁区の超解像度光磁気記録再
生現象の説明図である。
FIG. 6 is an explanatory diagram of a super-resolution magneto-optical recording / reproducing phenomenon of a recording magnetic domain according to the present invention.

【図7】従来の矢羽根形状磁区の磁壁移動磁区拡大再生
現象の説明図である。
FIG. 7 is an explanatory view of a domain wall moving magnetic domain expansion reproduction phenomenon of a conventional arrow blade-shaped magnetic domain.

【図8】本発明による記録磁区の磁壁移動磁区拡大再生
現象の説明図である。
FIG. 8 is an explanatory diagram of a domain wall displacement magnetic domain expansion reproduction phenomenon of a recording magnetic domain according to the present invention.

【図9】実施例1の光磁気記録媒体に形成された記録磁
区のMFM像である。
FIG. 9 is an MFM image of a recording magnetic domain formed on the magneto-optical recording medium of Example 1.

【図10】比較例1の光磁気記録媒体に形成された記録
磁区のMFM像である。
FIG. 10 is an MFM image of a recording magnetic domain formed on the magneto-optical recording medium of Comparative Example 1.

【図11】信号品質(C/N)の形状(d/L×10
0)依存性(磁壁移動磁区拡大再生方式)を示すグラフ
である。
FIG. 11 shows the shape (d / L × 10) of signal quality (C / N).
0) It is a graph which shows dependence (domain wall moving magnetic domain expansion reproduction method).

【図12】信号品質(C/N)の形状(d/L×10
0)依存性(超解像度光磁気記録再生方式)を示すグラ
フである。
FIG. 12 shows the shape (d / L × 10) of signal quality (C / N).
0) Graph showing dependence (super-resolution magneto-optical recording / reproducing method).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光照射による温度分布と磁界発
生装置による外部印加磁界を利用して、記録磁区を形成
し、情報を記録する光磁気記録媒体において、任意の記
録磁区の開始位置から、該記録磁区の磁区幅が最大値を
示す、あるいは最大値を示し始める位置までの距離を
d、記録磁区幅の最大幅の長さをLとしたとき、d/L
×100<20(%)である記録磁区により情報を記録
することを特徴とする光磁気記録媒体。
In a magneto-optical recording medium for recording information by forming a recording magnetic domain by using a temperature distribution by laser beam irradiation and an externally applied magnetic field by a magnetic field generator, the recording magnetic domain starts from an arbitrary recording magnetic domain starting position. When the distance to the position where the magnetic domain width of the recording magnetic domain indicates the maximum value or starts to show the maximum value is d, and the maximum width of the recording magnetic domain width is L, d / L
A magneto-optical recording medium for recording information in a recording magnetic domain in which × 100 <20 (%).
【請求項2】 情報の記録前に、記録領域間の未記録領
域において磁気的性質が失われる方向に変質する処理を
施した、請求項1記載の光磁気記録媒体。
2. The magneto-optical recording medium according to claim 1, wherein before the recording of the information, a process of changing the magnetic properties in a direction in which the magnetic properties are lost in an unrecorded area between the recording areas is performed.
【請求項3】 請求項2記載の記録前の処理を、記録領
域間の未記録領域の磁気的性質を失う方向に変質させる
温度まで加熱する、請求項1記載の光磁気記録媒体。
3. The magneto-optical recording medium according to claim 1, wherein the pre-recording processing according to claim 2 is heated to a temperature at which the magnetic properties of the unrecorded areas between the recording areas are changed in a direction in which the magnetic properties are lost.
【請求項4】 請求項3記載の記録前の処理を、レーザ
ーを利用して加熱することにより行う、請求項1記載の
光磁気記録媒体。
4. The magneto-optical recording medium according to claim 1, wherein the processing before recording according to claim 3 is performed by heating using a laser.
【請求項5】 少なくとも第1、第2、第3の磁性層が
順次積層されている光磁気記録媒体であって、周囲温度
近傍の温度において該第3の磁性層に比べ相対的に磁壁
抗磁力が小さく磁壁移動度が大きな垂直磁化膜からな
る、該第1の磁性層、および、該第1の磁性層および第
3の磁性層よりもキュリー温度の低い磁性層からなる、
該第2の磁性層、および、垂直磁化膜である該第3の磁
性層により構成される、請求項1記載の光磁気記録媒
体。
5. A magneto-optical recording medium in which at least a first, a second and a third magnetic layer are sequentially laminated, wherein at a temperature near an ambient temperature, a domain wall resistance is relatively higher than that of the third magnetic layer. A first magnetic layer composed of a perpendicular magnetization film having a small magnetic force and a large domain wall mobility, and a magnetic layer having a lower Curie temperature than the first magnetic layer and the third magnetic layer;
2. The magneto-optical recording medium according to claim 1, comprising the second magnetic layer and the third magnetic layer, which is a perpendicular magnetization film.
【請求項6】 少なくとも、第1、第2の磁性層が順次
積層されている光磁気記録媒体であって、少なくとも上
記第2磁性層に情報を記録し、該記録情報を上記第1磁
性層の磁化状態を変化させながら読み出す、請求項1記
載の光磁気記録媒体。
6. A magneto-optical recording medium in which at least first and second magnetic layers are sequentially laminated, wherein information is recorded on at least the second magnetic layer, and the recorded information is transferred to the first magnetic layer. 2. The magneto-optical recording medium according to claim 1, wherein the reading is performed while changing the magnetization state of the recording medium.
JP28848597A 1997-10-21 1997-10-21 Magneto-optical recording medium and recording method Expired - Fee Related JP3416490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28848597A JP3416490B2 (en) 1997-10-21 1997-10-21 Magneto-optical recording medium and recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28848597A JP3416490B2 (en) 1997-10-21 1997-10-21 Magneto-optical recording medium and recording method

Publications (2)

Publication Number Publication Date
JPH11126381A true JPH11126381A (en) 1999-05-11
JP3416490B2 JP3416490B2 (en) 2003-06-16

Family

ID=17730829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28848597A Expired - Fee Related JP3416490B2 (en) 1997-10-21 1997-10-21 Magneto-optical recording medium and recording method

Country Status (1)

Country Link
JP (1) JP3416490B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343052B1 (en) 1999-04-15 2002-01-29 Canon Kabushiki Kaisha Magneto-optical medium having film with rounded upper corner and thickness decreasing to the side end on lands
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same
US7180831B2 (en) 2001-11-29 2007-02-20 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having a recording layer of columnar structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343052B1 (en) 1999-04-15 2002-01-29 Canon Kabushiki Kaisha Magneto-optical medium having film with rounded upper corner and thickness decreasing to the side end on lands
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same
US7180831B2 (en) 2001-11-29 2007-02-20 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having a recording layer of columnar structure

Also Published As

Publication number Publication date
JP3416490B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP2001307393A (en) Magneto-optical reproducing device
JP3416548B2 (en) Magnetic recording medium, reproducing method and reproducing apparatus
KR100478684B1 (en) Domain wall-displacement type magneto-optical medium and reproducing method for the same
US5493545A (en) Magnetooptical recording medium with overwrite capabilities and method for using the same
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3416490B2 (en) Magneto-optical recording medium and recording method
JPH08147777A (en) Optical recording medium, recording and reproducing method and reproducing device
JP3472158B2 (en) Magneto-optical recording medium
JPH11110839A (en) Magneto-optical recording medium
JPH11126386A (en) Magneto-optical recording medium
JPH10340493A (en) Magneto-optical recording medium
JP3412879B2 (en) Magneto-optical recording medium
JP3210178B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JPH11312342A (en) Magneto-optical recording medium
JPH11306607A (en) Magneto-optical record medium and reproducing method
KR100531275B1 (en) Optical magnetic disk
KR100304873B1 (en) magneto-optical recording medium and method for reading of the same
JP3328989B2 (en) Magneto-optical recording medium
JP3071246B2 (en) Magneto-optical recording method
JP2001189042A (en) Magneto optical recording medium
Wang et al. Magnetic field modulated direct overwrite with pulsed laser irradiation for TbFeCo magneto-optical disks
JPH11328760A (en) Magneto-optical recording medium
JP2004139696A (en) Magnetic wall moving magneto-optical recording medium, manufacturing method of the medium, and recording and reproducing device of the medium
JP2005293786A (en) Anneal treatment method for magnetic domain wall moving type magneto-optical recording medium and magnetic domain wall moving type magneto-optical recording medium treated with the same
JP2000242983A (en) Magneto-optical recording medium and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees