JPH11126386A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH11126386A
JPH11126386A JP29265297A JP29265297A JPH11126386A JP H11126386 A JPH11126386 A JP H11126386A JP 29265297 A JP29265297 A JP 29265297A JP 29265297 A JP29265297 A JP 29265297A JP H11126386 A JPH11126386 A JP H11126386A
Authority
JP
Japan
Prior art keywords
recording
center
magneto
track
recording track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29265297A
Other languages
Japanese (ja)
Inventor
Yasushi Hozumi
靖 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29265297A priority Critical patent/JPH11126386A/en
Publication of JPH11126386A publication Critical patent/JPH11126386A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the quality of a reproduced signal by making a coercive force expressing the stability of the preservation of the recorded domain of a recording magnetic layer in the radial direction of a recording track maximum at the center of the track or the neighboorhood of the center and making the force gradually smaller as a place is sepatrated from the center. SOLUTION: In order to make a coercive force expressing the stability of the preservation of the recorded domain of a recording magnetic layer in the radial direction of a recording track maximum at the center of the recording track or the neighboorhood of the center and to make the force gradually smaller as the place is sepatrated from the center, the coercive force is made gradually smaller as the place is separated from the center of the recording track by making the track surface of the center of the recording track or the neighboorhood the center roughly parallel with respect to the back of a substrate and making the inclination with respect to the back of the substrate of the recording track surface larger as the place is separated from the center and, moreover, by making the surface roughness of the center of the track or the neighboorhood of the center maximum and by making the surface roughness smaller as the place is separated from the center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザー光により記
録・再生を行う光磁気記録媒体、更に詳しくは媒体の高
密度記録化を可能とする光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing with a laser beam, and more particularly to a magneto-optical recording medium capable of high-density recording of the medium.

【0002】[0002]

【従来の技術】情報の書き換え可能な大容量メモリの一
つとして、レーザー光を用いて再生、記録を行う光磁気
記録媒体が注目されている。再生光学系のレーザー波長
λと対物レンズの開口数NAによりビームウェストの径
が決まるので、光磁気記録媒体は信号再生時の空間周波
数が2NA/λ程度まで検出可能である。しかしなが
ら、光磁気記録媒体のさらなる大容量化への要求は高ま
る一方である。この要求を満たす目的で、すなわち、光
磁気記録媒体の記録密度を波長λと開口数NAで決まる
回折限界を超える密度にまで高めるために、記録媒体の
構成や読み取り方法を工夫し、記録密度を改善する技術
が開発されている。
2. Description of the Related Art As one of large-capacity memories in which information can be rewritten, a magneto-optical recording medium that performs reproduction and recording using a laser beam has attracted attention. Since the beam waist diameter is determined by the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens, the magneto-optical recording medium can detect a spatial frequency of about 2 NA / λ during signal reproduction. However, the demand for further increasing the capacity of the magneto-optical recording medium is increasing. For the purpose of satisfying this requirement, that is, in order to increase the recording density of the magneto-optical recording medium to a density exceeding the diffraction limit determined by the wavelength λ and the numerical aperture NA, the recording medium configuration and reading method are devised to reduce the recording density. Improved techniques are being developed.

【0003】以下に、光学的な回折限界を超えた微小記
録磁区長まで記録密度を上げた光磁気記録媒体の例を示
す。例えば、特開平3−93058号、特開平6−12
4500号において、磁気的に結合される再生層と記録
保持層とを有してなる多層膜の、記録保持層に信号記録
を行うとともに、レーザー光を照射して加熱し、再生層
の昇温領域に記録保持層に記録された信号を転写しなが
ら読み取る信号再生方法が提案されている(図4参
照)。
The following is an example of a magneto-optical recording medium in which the recording density is increased to a minute recording magnetic domain length exceeding the optical diffraction limit. For example, JP-A-3-93058 and JP-A-6-12
No. 4500, a signal is recorded on a recording holding layer of a multilayer film having a reproducing layer and a recording holding layer which are magnetically coupled to each other, and the recording layer is heated by irradiating a laser beam to raise the temperature of the reproducing layer. A signal reproducing method for reading a signal recorded on a recording holding layer in an area while transferring the signal has been proposed (see FIG. 4).

【0004】この方法によれば、再生用のレーザーのス
ポット径に対して、このレーザーによって加熱されて転
写温度に達し信号が検出される領域(アパーチャー)
は、より小さな領域に限定できるため、再生時の符号間
干渉を減少させ、光学的な検出限界λ/2NA以下のピ
ット周期の信号が再生可能となる。
According to this method, an area (aperture) where a spot diameter of a reproducing laser is heated by the laser to reach a transfer temperature and a signal is detected.
Can be limited to a smaller area, so that intersymbol interference during reproduction can be reduced, and a signal having a pit period equal to or less than the optical detection limit λ / 2NA can be reproduced.

【0005】また、別の例として、上記超解像度光磁気
記録再生方式の欠点を補った、光磁気記録媒体、再生方
法および再生装置として特開平6−290496号が提
案されている。
As another example, JP-A-6-290496 has been proposed as a magneto-optical recording medium, a reproducing method, and a reproducing apparatus which compensate for the disadvantages of the super-resolution magneto-optical recording / reproducing method.

【0006】特開平6−290496号においては、磁
気的な交換結合を利用した少なくとも3層から構成する
多層膜からなる光磁気記録媒体により、再生信号振幅を
低下させることなく光学的な検出限界以下の周期の信号
が高速で再生可能となり、記録密度並びに転送速度を大
幅に向上できる光磁気記録媒体、再生方法および再生装
置が提案されている。
In Japanese Patent Application Laid-Open No. 6-290496, a magneto-optical recording medium comprising a multilayer film composed of at least three layers utilizing magnetic exchange coupling is used to reduce the reproduction signal amplitude below the optical detection limit. A magneto-optical recording medium, a reproducing method, and a reproducing apparatus capable of reproducing a signal having a period of at a high speed and greatly improving a recording density and a transfer speed are proposed.

【0007】すなわち、付属の加熱装置により再生記録
マークに温度分布をもたせ、この温度分布と再生記録マ
ーク中の磁壁エネルギーの温度依存性とにより、磁壁に
再生光スポット内へ移動する圧力が誘発される(図5参
照)。この結果、磁壁が瞬間的に再生光スポット内へ移
動し、再生光スポット内の原子スピンの向きが反転して
全て一方向に揃い、再生信号振幅は記録されている磁壁
の間隔(即ち記録マーク長)によらず、常に一定かつ最
大の振幅になり、光学的な回折限界に起因した波形干渉
等の問題から完全に解放されるのである。以上の再生方
法を磁壁移動磁区拡大再生方式と呼ぶことにする。
That is, a temperature distribution is given to the read / write mark by the attached heating device, and the temperature distribution and the temperature dependence of the domain wall energy in the read / write mark induce a pressure on the domain wall to move into the read light spot. (See FIG. 5). As a result, the domain wall instantaneously moves into the reproduction light spot, the direction of the atomic spins in the reproduction light spot is reversed, and all are aligned in one direction, and the reproduction signal amplitude is the distance between the recorded domain walls (that is, the recording mark). Regardless of the length, the amplitude is always constant and maximum, and the problem of waveform interference and the like due to the optical diffraction limit is completely eliminated. The above-mentioned reproducing method will be referred to as a domain wall moving magnetic domain expansion reproducing method.

【0008】[0008]

【発明が解決しようとする課題】上記、超解像度光磁気
記録再生方式、磁壁移動磁区拡大再生方式は、ともに光
学的な回折限界を超えた再生方式であり、これらの性能
を十分に発揮するためには、回折限界を超えた微小記録
磁区が形成されていることが前提になっている。この回
折限界を超えた微小磁区の記録は、大きく分けて、光変
調記録方式と磁界変調記録方式の2方式がある。
The super-resolution magneto-optical recording / reproducing system and the domain wall moving magnetic domain enlarging / reproducing system are both reproducing systems which exceed the optical diffraction limit. Is based on the premise that minute recording magnetic domains exceeding the diffraction limit are formed. The recording of a minute magnetic domain exceeding the diffraction limit can be roughly classified into two methods, an optical modulation recording method and a magnetic field modulation recording method.

【0009】光変調記録方式の場合は、レーザー光のガ
ウシアン強度分布の先端を利用する。記録媒体に回折限
界を超えた、微小な記録温度以上の温度分布領域を生じ
させ、印加磁界一定のもとレーザー光の強度を変調する
ことにより記録を行う。
In the case of the light modulation recording system, the tip of the Gaussian intensity distribution of the laser light is used. Recording is performed by generating a temperature distribution region exceeding the diffraction limit and exceeding a minute recording temperature on the recording medium and modulating the intensity of the laser beam under a constant applied magnetic field.

【0010】一方、磁界変調記録方式においては、記録
媒体に形成される、レーザー光による温度分布が常に同
一分布になるようにレーザー光を照射し(例えば、記録
パワーでのレーザー光の連続照射)、外部磁界を変調す
ることにより記録を行う。この時、磁界の変調速度を高
速に設定することにより、微小磁区の記録を可能にす
る。
On the other hand, in the magnetic field modulation recording method, a laser beam is irradiated so that the temperature distribution formed by the laser beam formed on the recording medium always becomes the same distribution (for example, continuous irradiation of the laser beam at a recording power). Recording is performed by modulating an external magnetic field. At this time, by setting the modulation speed of the magnetic field to be high, it is possible to record a minute magnetic domain.

【0011】以上のような、光変調記録方式、磁界変調
記録方方式においては、ガウシアン強度分布を示すレー
ザー光による温度分布を反映した形状の記録磁区が形成
される。すなわち、光変調記録方式では、円形あるいは
長円形状に記録磁区が形成され、磁界変調記録方式で
は、矢羽根状の記録磁区が形成される。
In the light modulation recording method and the magnetic field modulation recording method as described above, a recording magnetic domain having a shape reflecting a temperature distribution by a laser beam showing a Gaussian intensity distribution is formed. That is, in the optical modulation recording method, a recording magnetic domain is formed in a circular or elliptical shape, and in the magnetic field modulation recording method, an arrow-shaped recording magnetic domain is formed.

【0012】このような、円弧状の形状を有する記録磁
区は、特に、光学的な回折限界を超えた再生方式を実現
する超解像度光磁気記録再生方式、磁壁移動磁区拡大再
生方式において、情報の再生の際に、再生信号品質に悪
影響を及ぼす。以下に図面を参照して、矢羽根形状の記
録磁区が再生信号品質に与える影響を説明する。図6と
図7は超解像度光磁気記録再生方式、図8と図9は磁壁
移動磁区拡大再生方式における円弧状の記録磁区の再生
信号品質への影響を説明した模式図である。
[0012] Such a recording magnetic domain having an arc shape is particularly useful in a super-resolution magneto-optical recording / reproducing method for realizing a reproducing method exceeding the optical diffraction limit and a domain wall moving magnetic domain enlarging / reproducing method. At the time of reproduction, it adversely affects reproduction signal quality. In the following, with reference to the drawings, an explanation will be given of the influence of the arrow-shaped recording magnetic domain on the reproduction signal quality. FIGS. 6 and 7 are schematic diagrams for explaining the influence of the arc-shaped recording magnetic domain on the reproduction signal quality in the super-resolution magneto-optical recording / reproducing system, and FIGS. 8 and 9 in the domain wall moving magnetic domain enlarging / reproducing system.

【0013】超解像度光磁気記録再生方式においては、
例えば、図6で示されているような磁界変調記録方式で
微小磁区を記録したとき、矢羽根状の磁区形状であるこ
とから、記録磁区情報の再生の役割を果たすアパーチャ
ー領域に複数の記録磁区が入り込み、再生信号に悪影響
を及ぼす。
In the super-resolution magneto-optical recording / reproducing method,
For example, when a small magnetic domain is recorded by a magnetic field modulation recording method as shown in FIG. 6, since the magnetic domain shape is an arrow feather shape, a plurality of recording magnetic domains are provided in an aperture area which plays a role of reproducing recorded magnetic domain information. And adversely affect the reproduced signal.

【0014】一方、図8に示すような磁壁移動磁区拡大
再生方式においては、記録磁区が円弧状であることによ
り、磁壁の移動、磁区の拡大現象が起こりにくいものと
なり、再生信号の立ち上がり、立ち下がりが鈍くなる。
この再生方式は、媒体への加熱により、磁壁の移動を可
能とする温度(磁壁移動温度)の等温線が記録磁区形状
を形成する磁壁全体を包括したときに、磁壁が移動し磁
区を拡大して情報を再生する。従って、図8のような記
録磁区の磁壁の円弧状の形状と磁壁移動温度の等温線の
形状とが交わる関係になる場合、等温線が記録磁区に接
し始めた段階(図中実線で示す等温線)では磁壁の移
動、磁区の拡大は、磁壁エネルギーの増加をもたらし、
困難なものとなる。図中破線で示す位置にまで等温線が
移ったときに、磁壁全体が移動することになる。このよ
うな現象は、磁界変調記録方式で記録された場合だけで
はなく、光変調記録方式で記録された場合にも同様のこ
とが言える。そして、図8に示すような磁界変調記録方
式による記録磁区の再生においては、任意の記録磁区に
よる十分な再生信号が得られる前に、次の記録磁区に再
生スポットあるいは磁壁移動温度の等温線が入り込み、
後者の記録磁区の情報も再生してしまい、再生特性に影
響を及ぼす。
On the other hand, in the domain wall moving domain expansion / reproducing system as shown in FIG. 8, since the recording magnetic domain has an arc shape, the movement of the domain wall and the phenomenon of magnetic domain expansion are unlikely to occur, and the rise and fall of the reproduction signal are caused. The decline slows down.
In this reproducing method, when the isotherm of the temperature at which the domain wall can be moved (domain wall moving temperature) covers the entire domain wall forming the recording domain shape by heating the medium, the domain wall moves and expands the domain. To play the information. Therefore, when the arcuate shape of the domain wall of the recording magnetic domain intersects with the shape of the isotherm of the domain wall moving temperature as shown in FIG. 8, the stage at which the isotherm starts to contact the recording magnetic domain (the isothermal line shown by the solid line in the drawing) Line), the movement of the domain wall and the expansion of the magnetic domain lead to an increase in the domain wall energy,
It will be difficult. When the isotherm moves to the position indicated by the broken line in the figure, the entire domain wall moves. Such a phenomenon can be said not only when recording is performed by the magnetic field modulation recording method but also when recording is performed by the light modulation recording method. Then, in the reproduction of the recording magnetic domain by the magnetic field modulation recording method as shown in FIG. 8, before a sufficient reproduction signal by an arbitrary recording magnetic domain is obtained, a reproduction spot or an isotherm of a domain wall moving temperature is formed in the next recording magnetic domain. Ingress,
The information of the latter recorded magnetic domain is also reproduced, which affects reproduction characteristics.

【0015】以上のような課題を鑑み、本発明の目的
は、特に記録磁区の微小化にともなう記録密度の高密度
化を実現する光磁気記録媒体において、記録磁区形状の
観点から、再生信号品質の向上を達成するものである。
In view of the above-mentioned problems, an object of the present invention is to provide a magneto-optical recording medium which achieves a higher recording density in accordance with the miniaturization of the recording magnetic domain, and in particular, the reproduction signal quality from the viewpoint of the recording magnetic domain shape. Is achieved.

【0016】[0016]

【課題を解決するための手段】前記の目的は以下の手段
によって達成される。
The above object is achieved by the following means.

【0017】すなわち、本発明は、記録トラックの径方
向において、記録磁性層の記録磁区保存の安定性を示す
保磁力を、記録トラックの中心または中心近傍で最大と
して、該中心から離れるにしたがい、該保磁力が徐々に
小さくなることを特徴とする光磁気記録媒体を提案する
ものであり、記録トラックの径方向において、記録トラ
ックの中心または中心近傍の記録トラック面を基板裏面
に対して略平行にし、該中心または該中心近傍から離れ
るにしたがい・該記録トラック面の基板裏面に対する傾
きが大きくなること、記録トラックの径方向において、
記録トラツクの中心または中心近傍の表面粗度を最大に
し、該中心または該中心近傍から離れるにしたがい、該
表面粗度を小さくさせることにより、該中心または該中
心近傍から離れるにしたがい、上記保磁力が徐々に小さ
くなることを含む。
That is, according to the present invention, in the radial direction of the recording track, the coercive force indicating the stability of storage of the recording magnetic domain of the recording magnetic layer is maximized at or near the center of the recording track, and as the distance from the center increases, This invention proposes a magneto-optical recording medium characterized in that the coercive force gradually decreases, and in the radial direction of the recording track, the recording track surface at or near the center of the recording track is substantially parallel to the back surface of the substrate. As the distance from the center or the vicinity of the center increases, the inclination of the recording track surface with respect to the back surface of the substrate increases, and in the radial direction of the recording track,
By increasing the surface roughness at or near the center of the recording track and decreasing the surface roughness as the distance from or near the center increases, the coercive force increases as the distance from the center or near the center decreases. , Which gradually decreases.

【0018】本発明は、図1に示すように、記録磁性層
の記録磁区保存の安定性を示す保磁力を、記録トラック
の径方向において記録トラックの中心または中心近傍で
最大として、該中心から離れるにしたがい、該保磁力を
徐々に小さくすることにより、保磁力分布を持たないと
きに比べ、記録磁区形状の、円弧状の度合いを、小さく
することを可能にする。
According to the present invention, as shown in FIG. 1, the coercive force indicating the stability of storage of the recording magnetic domain of the recording magnetic layer is maximized at or near the center of the recording track in the radial direction of the recording track. By gradually decreasing the coercive force as the distance increases, it becomes possible to reduce the degree of the arc shape of the recording magnetic domain shape as compared with when the coercive force distribution is not provided.

【0019】従って、本発明による記録磁区の再生にお
いては、超解像度光磁気記録再生方式の場合は、図7に
示すように複数の記録磁区による信号再生の影響を抑制
でき、さらに、アパーチャー内の再生すべき記録磁区面
積が従来例よりも大きくなり、信号振幅の増加とともに
信号品質を改善できる。磁壁移動磁区拡大再生方式の場
合は、図9に示すように、ここでも複数の記録磁区によ
る信号再生の影響を抑制でき、また、再生信号の立ち上
がり、立ち下がりも従来例に比べ急峻にすることを可能
にし、信号品質を改善できる。上記磁壁移動磁区拡大再
生方式で得られた、本発明の再生信号の立ち上がり、立
ち下がりがより急峻になるという効果は、通常再生方式
においても同様の効果を奏し、ジッター改善による信号
品質向上をもたらす。
Therefore, in the reproduction of the recording magnetic domain according to the present invention, in the case of the super-resolution magneto-optical recording / reproducing method, the influence of the signal reproduction by a plurality of recording magnetic domains can be suppressed as shown in FIG. The recording magnetic domain area to be reproduced is larger than in the conventional example, and the signal quality can be improved with an increase in the signal amplitude. In the case of the domain wall displacement magnetic domain expansion reproduction method, as shown in FIG. 9, the influence of signal reproduction by a plurality of recording magnetic domains can also be suppressed, and the rise and fall of the reproduction signal should be steeper than in the conventional example. And improve the signal quality. The effect that the rising and falling edges of the reproduction signal of the present invention obtained by the domain wall displacement magnetic domain expansion reproduction method become steeper also exerts the same effect in the normal reproduction method, and leads to an improvement in signal quality due to an improvement in jitter. .

【0020】上記円弧状の度合いの小さい記録磁区の形
成においては、例えば、図2、図3に示すような断面形
状を有する基板上に記録膜を成膜し、記録することによ
り達成される。すなわち、図2、図3に示すような断面
形状を有する基板上に記録膜を成膜することにより、記
録トラックの径方向の保磁力の分布においては、記録ト
ラックの中心または中心近傍で最大を示し、トラックの
中心から離れるにつれ保磁力が徐々に小さくなり、円弧
状の度合いの小さい記録磁区が形成され、本発明の目的
を達成する。
The formation of the recording magnetic domain having a small degree of arc shape is achieved, for example, by forming a recording film on a substrate having a cross-sectional shape as shown in FIGS. That is, by forming a recording film on a substrate having a cross-sectional shape as shown in FIGS. 2 and 3, the distribution of the coercive force in the radial direction of the recording track has a maximum at or near the center of the recording track. As shown, the coercive force gradually decreases as the distance from the center of the track increases, and a recording magnetic domain having a small degree of arc shape is formed, thereby achieving the object of the present invention.

【0021】[0021]

【発明の実施の形態】以下、本発明を適用した実施例に
ついて図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】[0022]

【実施例】【Example】

[実施例1]本実施例で使用した基板の断面形状を図1
0に示す。図10に示すような断面形状の基板を作製す
るためのスタンパは、従来からの原盤スタンパ作製方法
を用いて作製することができた。ただし、基板上の凹部
(いわゆるグルーブ部)において、トラックの径方向の
凹部の中心または中心近傍から離れるにしたがい基板裏
面に対する傾きを大きくするために、レジスト原盤作製
の際に、凹部の中心部から端部にかけて露光量を調節し
て行う。本実施例では、レジスト層としてキノンジアジ
ド系感光剤おおびノボラック樹脂からなるポジ型フォト
レジストを使用したので、レジスト原盤の凹部の中心部
から端部にかけて徐々に露光量が小さくなるように調節
してレジスト原盤を作製した。上記レジスト原盤からス
タンパを作製し、該スタンパから基板を作製した。
Example 1 FIG. 1 shows a cross-sectional shape of a substrate used in this example.
0 is shown. A stamper for manufacturing a substrate having a sectional shape as shown in FIG. 10 could be manufactured by using a conventional master stamper manufacturing method. However, in order to increase the inclination of the concave portion (so-called groove portion) on the substrate with respect to the back surface of the substrate as the distance from the center or near the center of the radial concave portion of the track increases, the center portion of the concave portion must be The exposure is controlled by adjusting the exposure amount to the end. In the present embodiment, since a positive photoresist made of a quinonediazide-based photosensitizer and a novolak resin was used as the resist layer, the exposure was adjusted so that the exposure amount was gradually reduced from the center to the end of the concave portion of the resist master. A resist master was prepared. A stamper was manufactured from the resist master, and a substrate was manufactured from the stamper.

【0023】本実施例で使用した基板は、ポリカーボネ
ート(PC)を用いて射出成形により作製した。トラッ
クピッチは1.1μm、溝深さは0.3μmであり、こ
の基板上に磁性膜を成膜したとき隣接する記録トラック
間で磁気的結合を分断することを可能にしている。ま
た、基板裏面に対し平行なグルーブ部分の平坦部の幅は
0.3μmであり、グルーブ部中心近傍に位置してい
る。そして、グルーブ部分の中心近傍に位置する該平坦
部から外側に向かって、0.3μmの幅で基板裏面に対
し傾斜している。その勾配は、グルーブ部分の外側に向
かうほど大きくなっている。本実施例では射出成形基板
にポリカーボネート(PC)を用いたが、ポリメチルメ
タクリレート(PMMA)、アモルファスポリオレフィ
ン(APO)等を成形材料として用いてもよい。また、
紫外線効果樹脂による、いわゆる2P成形基板を使用す
ることもできる。
The substrate used in this example was manufactured by injection molding using polycarbonate (PC). The track pitch is 1.1 μm and the groove depth is 0.3 μm. When a magnetic film is formed on this substrate, it is possible to break magnetic coupling between adjacent recording tracks. The width of the flat portion of the groove portion parallel to the back surface of the substrate is 0.3 μm, and is located near the center of the groove portion. Then, it is inclined with respect to the back surface of the substrate by a width of 0.3 μm outward from the flat portion located near the center of the groove portion. The gradient increases toward the outside of the groove portion. In this embodiment, polycarbonate (PC) is used for the injection molded substrate, but polymethyl methacrylate (PMMA), amorphous polyolefin (APO), or the like may be used as a molding material. Also,
A so-called 2P molded substrate made of an ultraviolet effect resin can also be used.

【0024】以上のようにして作製した基板上に特開平
6−290496号で提案されているような記録膜をス
パッタ法により成膜した。記録膜としては基板上に第1
の誘電体層(SiN)、第1の磁性層(GdFe)、第
2の磁性層(TbFe)、第3の磁性層(TbFeC
o)、第2の誘電体層(SiN)が順次積層されてい
る。各誘電体層としては、上記誘電体層の他に、例え
ば、AlN、SiO2、SiO、ZnS、MgFなど
の透明誘電材料が使用できる。また、各磁性層として
は、上記磁性材料を含む種々の磁性材料によって構成す
ることが考えられるが、例えば、Pr、Nd、Sm、G
d、Tb、Dy、Hoなどの希土類金属元素の一種類あ
るいは二種類以上が10〜40at%と、Fe、Co、
Niなどの遷移金族の一種類あるいは二種類以上が60
〜90%at%とで構成される希土類−遷移金属非晶質
合金によって構成し得る。また、耐食性向上などのため
に、こにCr、Mn、Cu、Ti、Al、Si、Pt、
Inなどの元素を少量添加してもよい。
A recording film as proposed in JP-A-6-290496 was formed on the substrate thus prepared by sputtering. As the recording film, the first
Dielectric layer (SiN), first magnetic layer (GdFe), second magnetic layer (TbFe), third magnetic layer (TbFeC)
o), a second dielectric layer (SiN) is sequentially laminated. As each dielectric layer, besides the above-mentioned dielectric layer, for example, a transparent dielectric material such as AlN, SiO 2 , SiO, ZnS, MgF 2 or the like can be used. Each magnetic layer may be made of various magnetic materials including the above magnetic materials. For example, Pr, Nd, Sm, G
One or more rare earth metal elements such as d, Tb, Dy, and Ho are 10 to 40 at%, and Fe, Co,
One or two or more transition metals such as Ni
It can be constituted by a rare earth-transition metal amorphous alloy composed of 9090% at%. In order to improve corrosion resistance, Cr, Mn, Cu, Ti, Al, Si, Pt,
A small amount of an element such as In may be added.

【0025】以上の光磁気記録媒体のグルーブ部に情報
を記録し、光磁気ディスク記録再生装置の光学系に加熱
用レーザーを付加した測定装置を用いてC/N比(キャ
リアレベル対ノイズレベルの比)を測定した。記録情報
は、レーザーパワー3.5mW(λ=680nm、NA
=0.55)のレーザー光を照射しながら外部磁界20
0Oeを変調して、ディスク回転速度2m/sec、記
録周波数5MHz、0.2μmでキャリア信号を書き込
んだ。情報の再生は、λ=680nm、NA=0.5
5、レーザーパワー2mWで行った場合、50dBのC
/N比が得られた。
Information is recorded in the groove portion of the above-described magneto-optical recording medium, and the C / N ratio (carrier level versus noise level) is measured using a measuring device having a heating laser added to the optical system of the magneto-optical disk recording / reproducing device. Ratio) was measured. Recorded information was a laser power of 3.5 mW (λ = 680 nm, NA
= 0.55) while irradiating a laser beam of 20
0 Oe was modulated, and a carrier signal was written at a disk rotation speed of 2 m / sec, a recording frequency of 5 MHz, and 0.2 μm. For information reproduction, λ = 680 nm, NA = 0.5
5. When the laser power is 2 mW, the C of 50 dB
/ N ratio was obtained.

【0026】この0.2μmマーク長で記録された上記
記録媒体を、MFM(磁気力顕微鏡)により記録磁区形
状を観察した。得られたMFM観察像より、記録磁区の
開始位置から該記録磁区の磁区幅が最大値を示す、ある
いは、最大値を示し始める位置までの距離をd、記録磁
区幅の最大幅の長さを1としたとき、(図13参照)、
d/1×100=6(%)であった。 [実施例2]本実施例で使用した基板は、実施例1と同
様のものを使用した。
The recording medium recorded with the 0.2 μm mark length was observed for its magnetic domain shape by MFM (magnetic force microscope). From the obtained MFM observation image, the distance from the start position of the recording magnetic domain to the position where the magnetic domain width of the recording magnetic domain shows the maximum value, or the position where the magnetic domain width starts to show the maximum value is d, and the length of the maximum width of the recording magnetic domain width is When 1 (see FIG. 13),
d / 1 × 100 = 6 (%) Example 2 The substrate used in this example was the same as that used in Example 1.

【0027】上記基板上に特開平6−124500号で
提案されているような記録膜をスパッタ法により成膜し
た。記録膜としては基板上に第1の誘電体層(Si
N)、第1の磁性層(GdFeCo)、第2の磁性層
(TbFeCo)、第2の誘電体層(SiN)が順次積
層されている。各誘電体層としては、上記誘電体層の他
に、例えば、AlN、SiO、SiO、ZnS、Mg
などの透明誘電材料が使用できる。また、各磁性層
としては、上記磁性材料を含む種々の磁性材料によって
構成することが考えられるが、例えば、Pr、Nd、S
m、Gd、Tb、Dy、Hoなどの希土類金属元素の一
種類あるいは二種類以上が10〜40at%と、Fe、
Co、Niなどの遷移金属の一種類あるいは二種類以上
が90〜60at%とで構成される希土類−遷移金属非
晶質合金によって構成し得る。また、耐食性向上などの
ために、これにCr、Mn、Cu、Ti、Al、Si、
Pt、Inなどの元素を少量添加してもよい。
A recording film as proposed in JP-A-6-124500 was formed on the substrate by a sputtering method. As a recording film, a first dielectric layer (Si
N), a first magnetic layer (GdFeCo), a second magnetic layer (TbFeCo), and a second dielectric layer (SiN). As each dielectric layer, in addition to the above-described dielectric layer, for example, AlN, SiO 2 , SiO, ZnS, Mg
Transparent dielectric material, such as F 2 can be used. Each magnetic layer may be made of various magnetic materials including the above-described magnetic materials. For example, Pr, Nd, S
one or two or more rare earth metal elements such as m, Gd, Tb, Dy, and Ho are 10 to 40 at%;
One or more transition metals such as Co and Ni may be composed of a rare earth-transition metal amorphous alloy composed of 90 to 60 at%. In addition, Cr, Mn, Cu, Ti, Al, Si,
Elements such as Pt and In may be added in small amounts.

【0028】以上の光磁気記録媒体に情報をグルーブ部
に記録し、C/N比(キャリアレベル対ノイズレベルの
比)を測定した。記録情報は、レーザーパワー3.5m
W(λ=680nm、NA=0.55)のレーザー光を
照射しながら外部磁界2000eを変調して、ディスク
回転速度2m/sec、記録周波数2.5MHz、記録
マーク長0.4μmでキャリア信号を書き込んだ。情報
の再生は、λ=680nm、NA=0.55、レーザー
パワー2mWで行った場合、47dBのC/N比が得ら
れた。
Information was recorded in the groove portion on the above-described magneto-optical recording medium, and the C / N ratio (the ratio of carrier level to noise level) was measured. Recorded information is laser power 3.5m
While irradiating a laser beam of W (λ = 680 nm, NA = 0.55), the external magnetic field 2000e is modulated to generate a carrier signal at a disk rotation speed of 2 m / sec, a recording frequency of 2.5 MHz, and a recording mark length of 0.4 μm. I wrote it. When information was reproduced at λ = 680 nm, NA = 0.55, and laser power of 2 mW, a C / N ratio of 47 dB was obtained.

【0029】この0.4μmのマーク長で記録された上
記記録媒体を、MFM(磁気力顕微鏡)により記録磁区
形状を観察した。この時、d/1×100=5(%)で
あった。 [実施例3]本実施例で使用した基板の断面形状を図1
1に示す。図11に示すような断面形状の基板を作製す
るためのスタンパは、従来からの原盤スタンパ作製方法
を用いて作製することができる。ただし、基板上の凹部
(いわゆるグルーブ部)において、トラックの径方向の
凹部の中心または中心近傍から離れるにしたがい表面粗
度を小さくするために、レジスト原盤作製の際に、表面
粗度(Ra>1nm)の大きいガラス原盤を使用し、凹
部の中心部から端部にかけて露光量を調節して行う。本
実施例では、レジスト層としてキノンジアジド系感光剤
およびノボラック樹脂からなるポジ型フォトレジストを
使用したので、レジスト原盤の凹部の中心部から端部に
かけて徐々に露光量が小さくなるように調節してレジス
ト原盤を作製した。上記レジスト原盤からスタンパを作
製し、該スタンパから基板を作製した。
With respect to the recording medium recorded with the mark length of 0.4 μm, the shape of the recorded magnetic domain was observed by MFM (magnetic force microscope). At this time, d / 1 × 100 = 5 (%). [Embodiment 3] The cross-sectional shape of the substrate used in this embodiment is shown in FIG.
It is shown in FIG. A stamper for manufacturing a substrate having a sectional shape as shown in FIG. 11 can be manufactured by using a conventional master stamper manufacturing method. However, in order to reduce the surface roughness of the concave portion (so-called groove portion) on the substrate as the distance from the center or near the center of the concave portion in the radial direction of the track decreases, the surface roughness (Ra> A large glass master (1 nm) is used, and the exposure is adjusted from the center to the end of the recess. In this embodiment, since a positive type photoresist made of a quinonediazide-based photosensitizer and a novolak resin was used as the resist layer, the exposure was adjusted so that the exposure amount gradually decreased from the center to the end of the concave portion of the resist master. A master was produced. A stamper was manufactured from the resist master, and a substrate was manufactured from the stamper.

【0030】本実施例で使用した基板は、ポリカーボネ
ート(PC)を用いて射出成形により作製した。トラッ
クピッチは1.1μm、溝深さは0.3μmであり、こ
の基板上に磁性膜を成膜したとき隣接する記録トラック
間で磁気的結合を分断することを可能にしている。ま
た、グルーブ部分の表面粗度はグルーブ部中心でRa=
0.95nmで最も粗く、グルーブ部分の外側に向かっ
て、表面粗度はRa−0.35nm程度まで徐々に小さ
くなっている。本実施例では射出成形基板にポリカーボ
ネート(PC)を用いたが、ポリメチルメタクリレート
(PMMA)、アモルファスポリオレフィン(APO)
等を成形材料として用いてもよい。また、紫外線硬化樹
脂による、いわゆる2P成形基板を使用することもでき
る。
The substrate used in this example was manufactured by injection molding using polycarbonate (PC). The track pitch is 1.1 μm and the groove depth is 0.3 μm. When a magnetic film is formed on this substrate, it is possible to break magnetic coupling between adjacent recording tracks. The surface roughness of the groove portion is Ra =
The roughness is the coarsest at 0.95 nm, and the surface roughness gradually decreases to about Ra-0.35 nm toward the outside of the groove portion. In this embodiment, polycarbonate (PC) is used for the injection molded substrate, but polymethyl methacrylate (PMMA), amorphous polyolefin (APO)
Etc. may be used as a molding material. Also, a so-called 2P molded substrate made of an ultraviolet curable resin can be used.

【0031】以上のようにして作製した基板上に実施例
1と同様の記録膜を成膜し、情報をグルーブ部に記録
し、光磁気ディスク記録再生装置の光学系に加熱用レー
ザーを付加した測定装置を用いてC/N比(キャリアレ
ベル対ノイズレベルの比)を測定した。記録情報は、レ
ーザーパワー3.5mW(λ=680nm、NA=0.
55)のレーザー光を照射しながら外部磁界を200O
e変調して、ディスク回転速度2m/sec、記録周波
数5MHz、記録マーク長0.2μmでキャリア信号を
書き込んだ。情報の再生は、λ=680nm、NA=
0.55、レーザーパワー2mWで行った場合、48d
BのC/N比が得られた。
A recording film similar to that of Example 1 was formed on the substrate manufactured as described above, information was recorded in the groove portion, and a heating laser was added to the optical system of the magneto-optical disk recording / reproducing apparatus. The C / N ratio (ratio of carrier level to noise level) was measured using a measuring device. Recorded information was a laser power of 3.5 mW (λ = 680 nm, NA = 0.
55) Apply an external magnetic field of 200
The carrier signal was written by e-modulation at a disk rotation speed of 2 m / sec, a recording frequency of 5 MHz, and a recording mark length of 0.2 μm. Information is reproduced by λ = 680 nm, NA =
48d at 0.55, laser power 2mW
The C / N ratio of B was obtained.

【0032】この0.2μmのマーク長で記録された上
記記録媒体を、MFM(磁気力顕微鏡)により記録磁区
d/1×100=4(%)であった。 [実施例4]本実施例で使用した基板は、実施例3と同
様のものを使用した。
The recording medium recorded with the mark length of 0.2 μm had a recording magnetic domain d / 1 × 100 = 4 (%) by MFM (magnetic force microscope). Example 4 The substrate used in this example was the same as that used in Example 3.

【0033】以上のようにして作製した基板上に実施例
2と同様の記録膜を成膜し、情報をグルーブ部に記録
し、C/N比(キャリアレベル対ノイズレベルの比)を
測定した。記録情報は、レーザーパワー3.5mW(λ
=680nm、NA=0.55)のレーザー光を照射し
ながら外部磁界200Oeを変調して、ディスク回転速
度2m/sec、記録周波数2.5MHz、記録マーク
長0.4μmでキャリア信号を書き込んだ。情報の再生
は、λ=680nm、NA=0.55、レーザーパワー
2mWで行った場合、45dBのC/N比が得られた。
A recording film similar to that of Example 2 was formed on the substrate manufactured as described above, information was recorded in the groove portion, and the C / N ratio (the ratio of carrier level to noise level) was measured. . Recorded information is a laser power of 3.5 mW (λ
(680 nm, NA = 0.55) while modulating the external magnetic field 200 Oe to write a carrier signal at a disk rotation speed of 2 m / sec, a recording frequency of 2.5 MHz, and a recording mark length of 0.4 μm. When information was reproduced at λ = 680 nm, NA = 0.55, and laser power of 2 mW, a C / N ratio of 45 dB was obtained.

【0034】この0.4μmのマーク長で記録された上
記記録媒体を、MFM(磁気力顕微鏡)により記録磁区
形状を観察した。この時、d/1×100=28(%)
であった。 [比較例1]従来からの原盤スタンパ作製方法を用い
て、図12に示す断面形状を有する基板を作製したこと
以外は、実施例1、実施例3と同じようにして、成膜、
測定を行った。トラックピッチは1.1μm、溝深さは
0.3μmであった。この時、3dBのC/N比、及
び、d/1×100=28(%)であった。 [比較例2]従来からの原盤スタンパ作製方法を用い
て、図12に示す断面形状を有する基板を作製したこと
以外は、実施例2、実施例4と同じようにして、成膜、
測定を行った。トラックピッチは1.1μm、溝深さは
0.3μmであった。この時、44dBのC/N比、及
び、d/1×100=27(%)であった。
With respect to the recording medium recorded with the mark length of 0.4 μm, the shape of the recorded magnetic domain was observed by MFM (magnetic force microscope). At this time, d / 1 × 100 = 28 (%)
Met. Comparative Example 1 A film was formed in the same manner as in Examples 1 and 3, except that a substrate having the cross-sectional shape shown in FIG. 12 was manufactured using a conventional master stamper manufacturing method.
A measurement was made. The track pitch was 1.1 μm and the groove depth was 0.3 μm. At this time, the C / N ratio was 3 dB and d / 1 × 100 = 28 (%). Comparative Example 2 A film was formed in the same manner as in Examples 2 and 4, except that a substrate having the cross-sectional shape shown in FIG. 12 was manufactured using a conventional master stamper manufacturing method.
A measurement was made. The track pitch was 1.1 μm and the groove depth was 0.3 μm. At this time, the C / N ratio was 44 dB and d / 1 × 100 = 27 (%).

【0035】[0035]

【発明の効果】本発明の光磁気記録媒体によれば、超解
像度光磁気記録再生法式の場合は、複数の記録磁区によ
る信号再生の影響を抑制でき、さらに、アパーチャ内の
再生すべき記録磁区面積が従来例よりも大きくなり、信
号振幅の増加とともに信号品質を改善を可能にする。磁
壁移動磁区拡大再生法式の場合は、ここでも複数の記録
磁区による信号再生の影響を抑制でき、また、再生信号
の立ち上がり、立ち下がりも従来例に比べ急峻にするこ
とを可能にし、信号品質を改善を可能にする。
According to the magneto-optical recording medium of the present invention, in the case of the super-resolution magneto-optical recording / reproducing method, the influence of signal reproduction by a plurality of recording magnetic domains can be suppressed. The area is larger than in the conventional example, and the signal quality can be improved as the signal amplitude increases. In the case of the domain wall displacement magnetic domain expansion reproduction method, the effect of signal reproduction by a plurality of recording magnetic domains can be suppressed, and the rise and fall of the reproduction signal can be made steeper than in the conventional example. Enable improvements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1例を示す光磁気記録媒体の模式断面
図、及び、保磁力分布図である。
FIG. 1 is a schematic sectional view and a coercive force distribution diagram of a magneto-optical recording medium showing one example of the present invention.

【図2】本発明の他の例を示す光磁気記録媒体の模式断
面図である。
FIG. 2 is a schematic sectional view of a magneto-optical recording medium showing another example of the present invention.

【図3】本発明の他の例を示す光磁気記録媒体の模式断
面図である。
FIG. 3 is a schematic sectional view of a magneto-optical recording medium showing another example of the present invention.

【図4】超解像度光磁気記録再生方式の原理図である。FIG. 4 is a principle diagram of a super-resolution magneto-optical recording / reproducing method.

【図5】図5(a)〜(c)は磁壁移動磁区拡大再生方
式の原理図である。
5 (a) to 5 (c) are principle diagrams of a domain wall moving magnetic domain enlarging reproduction method.

【図6】従来の矢羽根形状磁区の超解像度光磁気記録再
生現象の説明図である。
FIG. 6 is an explanatory diagram of a conventional super-resolution magneto-optical recording / reproducing phenomenon of arrow-shaped magnetic domains.

【図7】本発明による記録磁区の超解像度光磁気記録再
生現象の説明図である。
FIG. 7 is an explanatory diagram of a super-resolution magneto-optical recording / reproducing phenomenon of a recording magnetic domain according to the present invention.

【図8】従来の矢羽根形状磁区の磁壁移動磁区拡大再生
現象の説明図である。
FIG. 8 is an explanatory diagram of a domain wall moving magnetic domain expansion reproduction phenomenon of a conventional arrow feather-shaped magnetic domain.

【図9】本発明による記憶磁区の磁壁移動磁区拡大再生
現象の説明図である。
FIG. 9 is an explanatory view of a domain wall moving magnetic domain expansion reproduction phenomenon of a storage magnetic domain according to the present invention.

【図10】実施例1、及び、実施例2の光磁気記録媒体
に用いた基板の模式断面図である。
FIG. 10 is a schematic cross-sectional view of a substrate used for a magneto-optical recording medium of Examples 1 and 2.

【図11】実施例3、及び、実施例4の光磁気記録媒体
に用いた基板の模式断面図である。
FIG. 11 is a schematic cross-sectional view of a substrate used for a magneto-optical recording medium of Examples 3 and 4.

【図12】比較例1、及び、比較例2の光磁気記録媒体
に用いた基板の模式断面図である。
FIG. 12 is a schematic cross-sectional view of a substrate used for a magneto-optical recording medium of Comparative Examples 1 and 2.

【図13】記録磁区の上面図である。FIG. 13 is a top view of a recording magnetic domain.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 記録トラックの径方向において、記録磁
性層の記録磁区保存の安定性を示す保磁力を、記録トラ
ックの中心または中心近傍で最大として、該中心から離
れるにしたがい、該保磁力が徐々に小さくなることを特
徴とする光磁気記録媒体。
In the radial direction of a recording track, the coercive force indicating the stability of recording magnetic domain preservation of the recording magnetic layer is maximized at or near the center of the recording track, and as the distance from the center increases, the coercive force increases. A magneto-optical recording medium characterized by becoming gradually smaller.
【請求項2】 記録トラックの径方向において、記録ト
ラックの中心または中心近傍の記録トラック面を基板裏
面に対して略平行な面とし、該中心または該中心近傍か
ら離れるにしたがい、該記録トラック面の基板裏面に対
する傾きが大きくなる、請求項1記載の光磁気記録媒
体。
2. The recording track surface at or near the center of the recording track in the radial direction of the recording track is substantially parallel to the back surface of the substrate, and the recording track surface increases as the distance from the center or near the center increases. 2. The magneto-optical recording medium according to claim 1, wherein the tilt of the magneto-optical recording medium with respect to the back surface of the substrate increases.
【請求項3】 記録トラックの径方向において、記録ト
ラックの中心または中心近傍の表面粗度を最大にし、該
中心または該中心近傍から離れるにしたがい、該表面粗
度が小さくなる請求項1記載の光磁気記録媒体。
3. The recording track according to claim 1, wherein the surface roughness at the center or near the center of the recording track is maximized in the radial direction of the recording track, and the surface roughness decreases as the distance from the center or near the center increases. Magneto-optical recording medium.
JP29265297A 1997-10-24 1997-10-24 Magneto-optical recording medium Pending JPH11126386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29265297A JPH11126386A (en) 1997-10-24 1997-10-24 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29265297A JPH11126386A (en) 1997-10-24 1997-10-24 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH11126386A true JPH11126386A (en) 1999-05-11

Family

ID=17784561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29265297A Pending JPH11126386A (en) 1997-10-24 1997-10-24 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH11126386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same

Similar Documents

Publication Publication Date Title
US6177175B1 (en) Magneto-optical medium utilizing domain wall displacement
US6608799B2 (en) Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
EP0525192A1 (en) Optically recording medium
US5493545A (en) Magnetooptical recording medium with overwrite capabilities and method for using the same
JP4350312B2 (en) Domain wall moving magneto-optical recording medium and information reproducing method
WO1997022969A1 (en) Magneto-optic recording medium and reproduction method thereof
JP3416490B2 (en) Magneto-optical recording medium and recording method
JPH11126386A (en) Magneto-optical recording medium
KR100308857B1 (en) Magneto-optical recording medium, magneto-optical recording method, and magneto-optical recording apparatus
JP3472158B2 (en) Magneto-optical recording medium
JPH10340493A (en) Magneto-optical recording medium
JP3412879B2 (en) Magneto-optical recording medium
JPH11312342A (en) Magneto-optical recording medium
JPH10293949A (en) Magneto-optical recording medium
JPH11306607A (en) Magneto-optical record medium and reproducing method
JP2004055047A (en) Magneto-optical recording medium and its manufacturing method
JPH11191245A (en) Magneto-optical recording medium
JPH07302445A (en) Magneto-optical recording medium and method for recording information and reproducing signal using the same
JP2001189042A (en) Magneto optical recording medium
JP2006221703A (en) Magneto-optical recording medium
JPH1092032A (en) Substrate for magneto-optical recording medium and production thereof
JP2000231744A (en) Optical recording medium
JP2007095124A (en) Magneto-optical recording medium
JP2000030305A (en) Information recording medium, reproducing method and reproducing device for the same
JPH11195253A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050420

A521 Written amendment

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060301

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A02