JPH11124648A - Aluminum material excellent in high temperature strength - Google Patents

Aluminum material excellent in high temperature strength

Info

Publication number
JPH11124648A
JPH11124648A JP28689497A JP28689497A JPH11124648A JP H11124648 A JPH11124648 A JP H11124648A JP 28689497 A JP28689497 A JP 28689497A JP 28689497 A JP28689497 A JP 28689497A JP H11124648 A JPH11124648 A JP H11124648A
Authority
JP
Japan
Prior art keywords
less
aluminum material
strength
cold working
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28689497A
Other languages
Japanese (ja)
Other versions
JP3763651B2 (en
Inventor
Kenji Tomita
賢二 冨田
Yoshitomo Kato
良知 加藤
Masashi Sakaguchi
雅司 坂口
Yuichi Takami
祐一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP28689497A priority Critical patent/JP3763651B2/en
Publication of JPH11124648A publication Critical patent/JPH11124648A/en
Application granted granted Critical
Publication of JP3763651B2 publication Critical patent/JP3763651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum material excellent in high temp. strength without deteriorating workability. SOLUTION: This material is an aluminum material produced by subjecting a billet to hot extrusion and then to cold working. This aluminum material has an alloy composition which consists of, by weight, 0.5-1.8% Mn and the balance Al with impurities and in which, as impurities, the contents of Fe, Si, Mg, Cu, and other elements are controlled to <=0.4%, <=0.4%, <=0.5%, <=0.5% and <=0.2 respectively, and also has an alloy structure in which an Al-Mn type precipitate has <=0.4 μm major axis and is present by >=1 piece/μm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高温域において
優れた強度を有するアルミニウム材に関する。
The present invention relates to an aluminum material having excellent strength in a high temperature range.

【0002】なお、この明細書において、「アルミニウ
ム」の語はアルミニウムおよびその合金を含む意味で用
いられる。
[0002] In this specification, the term "aluminum" is used to include aluminum and its alloys.

【0003】[0003]

【従来の技術】Al−Mn系合金は、優れた強度を有す
ることから各種器物、建材等の材料として広く用いられ
ている。また、押出性や加工性が良好であることから、
これらの製品は、押出後にさらに引抜等の冷間加工を施
して所要形状に製造されることも多い。
2. Description of the Related Art Al-Mn alloys are widely used as materials for various objects, building materials and the like because of their excellent strength. In addition, because extrudability and processability are good,
These products are often subjected to cold working such as drawing after extrusion to produce required shapes.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般に冷間加
工を行うと再結晶温度が低くなるため、製品を300〜
400℃程度の高温域で長期間使用すると、焼きなまし
たと同じ状態となり強度が著しく低下するという問題点
があった。
However, since cold working generally lowers the recrystallization temperature, the product must be 300 to
When used in a high temperature range of about 400 ° C. for a long time, there is a problem that the state becomes the same as that of annealed, and the strength is significantly reduced.

【0005】そこで、本出願人は先に、高温強度に優れ
たAl−Mn系アルミニウム材として、金属間化合物の
大きさおよび数を規制した出願を行った(特願平9−1
27037号)。具体的には、長径1μm以上の金属間
化合物を1×104 個/mm2未満に規定した。
Accordingly, the present applicant has previously filed an application as an Al-Mn-based aluminum material having excellent high-temperature strength, in which the size and number of intermetallic compounds are regulated (Japanese Patent Application No. 9-1 / 1991).
No. 27037). Specifically, the number of intermetallic compounds having a major axis of 1 μm or more was specified to be less than 1 × 10 4 / mm 2 .

【0006】しかしながら、その後の研究により、金属
間化合物のうち、晶出物については高温環境下において
再結晶の核となり再結晶を促進して強度を低下させるこ
とから、確かに上記に規定するのが良いが、Al−Mn
系析出物については、小さなものが一定以上に存在して
いた方が高温強度を向上しうる点で望ましいことがわか
った。
However, subsequent studies have shown that, among intermetallic compounds, crystallized substances become nuclei for recrystallization in a high-temperature environment and promote recrystallization to lower the strength. But Al-Mn
It has been found that it is desirable that a small amount of the systemic precipitates be present in a certain amount or more because the high-temperature strength can be improved.

【0007】この発明は、このような技術背景に鑑み、
高温域で使用しても強度低下の少ない高温強度に優れた
アルミニウム材の提供を目的とする。
The present invention has been made in view of such technical background,
It is an object of the present invention to provide an aluminum material excellent in high-temperature strength with little strength reduction even when used in a high-temperature range.

【0008】[0008]

【課題を解決するための手段】この発明の高温強度に優
れたアルミニウム材は、前記目的を達成するために、ビ
レットを熱間で押出した後に冷間加工を行うことにより
製作されたアルミニウム材であって、合金組成におい
て、Mn:0.5〜1.8wt%を含有し、残部がAlお
よび不純物からなり、不純物としてのFeが0.4wt%
以下、Siが0.4wt%以下、Mgが0.5wt%以下、
Cuが0.5wt%以下、他元素がそれぞれ0.2wt%以
下に規制されてなり、合金組織において、Al−Mn系
析出物は長径が0.4μm以下であり、かつ1個/μm
2 以上存在することを特徴とする。
Means for Solving the Problems The aluminum material having excellent high temperature strength according to the present invention is an aluminum material produced by extruding a billet hot and then performing cold working to achieve the above object. In addition, in the alloy composition, Mn: 0.5 to 1.8 wt% is contained, and the balance consists of Al and impurities, and Fe as impurities is 0.4 wt%.
Hereinafter, Si is 0.4 wt% or less, Mg is 0.5 wt% or less,
Cu is regulated to 0.5 wt% or less, and other elements are regulated to 0.2 wt% or less, respectively. In the alloy structure, the Al—Mn-based precipitate has a major axis of 0.4 μm or less and 1 piece / μm.
It is characterized in that there are two or more.

【0009】また、前記アルミニウム材は、前記ビレッ
トに対し均質化処理を施すことなく熱間押出が行われる
ことが好ましい。さらに、前記熱間押出は、500℃以
下で押出速度20m/min以上で行われることが好ま
しい。またさらに、前記冷間加工は、加工率が5%以上
かつ35%未満で行われることが好ましい。
Preferably, the aluminum material is subjected to hot extrusion without subjecting the billet to a homogenizing treatment. Further, the hot extrusion is preferably performed at a temperature of 500 ° C. or less and an extrusion speed of 20 m / min or more. Further, it is preferable that the cold working is performed at a working ratio of 5% or more and less than 35%.

【0010】この発明のアルミニウム材の合金組成にお
いて、各元素の添加意義および含有量の限定理由、なら
びに不純物の規制理由は次のとおりである。
In the alloy composition of the aluminum material according to the present invention, the significance of addition of each element and the reason for limiting the content and the reason for controlling impurities are as follows.

【0011】Mnは、再結晶粒の成長を抑制して再結晶
粒を微細化するとともに粒界移動を抑止することによ
り、強度向上に寄与する元素である。Mn含有量は、
0.5wt%未満では前記効果に乏しく、一方1.5wt%
を超えると固溶されないMn量がが増加して粗大な金属
間化合物を生成し、再結晶粒を成長させて強度を低下さ
せるおそれがある。従って、Mn含有量は0.5〜1.
8wt%とする必要がある。Mn含有量の好ましい下限値
は0.8wt%であり、好ましい上限値は1.3wt%であ
る。
Mn is an element that contributes to an improvement in strength by suppressing the growth of recrystallized grains, making the recrystallized grains finer, and suppressing the movement of grain boundaries. Mn content,
If the content is less than 0.5 wt%, the above effect is poor, while 1.5 wt%
If the amount exceeds Mn, the amount of undissolved Mn increases to generate a coarse intermetallic compound, which may cause recrystallized grains to grow and lower the strength. Therefore, the Mn content is 0.5-1.
It must be 8 wt%. A preferred lower limit of the Mn content is 0.8 wt%, and a preferred upper limit is 1.3 wt%.

【0012】また、Mnの残部はAlと不純物である。
合金中に不純物としてFeおよびSiが存在すると、A
l−Fe−Mn、Fe−Si等の晶出物を増加させると
ともに、Al−Mn系析出物も粗大化させる原因とな
る。そのため、FeおよびSiはそれぞれ0.4wt%以
下に規制する必要がある。Fe含有量の好ましい上限値
は0.3wt%であり、Siの好ましい上限値は0.2wt
%である。また、不純物としてのMgの含有が多いと冷
間加工時に変形抵抗が大きくなり生産性が悪化するため
0.5wt%以下に規制する必要がある。Mgの好ましい
上限値は0.1wt%である。また、Cuは強度向上に寄
与する元素であるが、含有量が多くなると粗大晶出物を
生じさせる原因となるため、0.5wt%以下に規制する
必要がある。Cuの好ましい上限値は0.3wt%であ
る。その他の不純物元素は、粗大晶出物を抑制するため
に、それぞれ0.2wt%以下に規制する必要があり、特
に0.1wt%以下が好ましい。
The balance of Mn is Al and impurities.
When Fe and Si are present as impurities in the alloy, A
This increases the amount of crystallized substances such as l-Fe-Mn and Fe-Si, and also causes Al-Mn-based precipitates to become coarse. Therefore, each of Fe and Si needs to be regulated to 0.4 wt% or less. The preferred upper limit of the Fe content is 0.3 wt%, and the preferred upper limit of Si is 0.2 wt%.
%. Further, when Mg as an impurity is contained in a large amount, deformation resistance at the time of cold working is increased, and productivity is deteriorated. The preferred upper limit of Mg is 0.1% by weight. Cu is an element that contributes to the improvement of the strength. However, if the content is too large, it may cause the formation of coarse crystals, so it is necessary to regulate the content to 0.5 wt% or less. The preferred upper limit of Cu is 0.3 wt%. Other impurity elements must be regulated to 0.2 wt% or less, respectively, in order to suppress coarse crystals, and particularly preferably 0.1 wt% or less.

【0013】このような組成のアルミニウム材の合金組
織において、Al−Mn系析出物は、冷間加工後の高温
環境による再結晶粒の成長を抑制するために、微細かつ
数多く密に存在することが必要である。具体的には、析
出物は長径が0.4μm以下で、かつ1個/μm2 以上
存在する必要である。好ましくは、0.3μm以下、2
個/μm2 以上存在することが好ましい。このように、
Al−Mn系析出物を微細かつ密に存在させることによ
り、高温環境下での再結晶粒の成長を抑制できる理由は
定かではないが、これらAl−Mn系析出物により結晶
粒界のピンニング効果が発揮されているからと推測され
る。なお、アルミニウム材中の晶出物は、長径1μm以
上のものが1×104 個/mm2 未満に規制されているの
が望ましい。
[0013] In the alloy structure of the aluminum material having such a composition, Al-Mn-based precipitates must be fine and numerous densely present in order to suppress the growth of recrystallized grains in a high temperature environment after cold working. is necessary. Specifically, it is necessary that the precipitate has a major axis of 0.4 μm or less and one / μm 2 or more. Preferably, 0.3 μm or less, 2
It is preferable that the number of particles / μm 2 or more be present. in this way,
The reason why the growth of recrystallized grains in a high-temperature environment can be suppressed by making the Al-Mn-based precipitates fine and densely present is not clear, but the pinning effect of the grain boundaries by these Al-Mn-based precipitates is unknown. Is presumed to have been exhibited. In addition, as for the crystallized substance in the aluminum material, those having a major axis of 1 μm or more are desirably regulated to less than 1 × 10 4 particles / mm 2 .

【0014】また、この発明のアルミニウム材はビレッ
トを熱間押出後に冷間加工を施して所要形状の製品に形
成されるが、Al−Mn系析出物を上述したように微細
かつ密に分布させるために、次のような方法で加工する
ことが好ましい。
The aluminum material of the present invention is formed into a product having a required shape by subjecting a billet to cold working after hot extrusion, in which Al-Mn-based precipitates are finely and densely distributed as described above. For this reason, it is preferable to process by the following method.

【0015】まず、ビレットの均質化処理は行わないこ
とが好ましい。均質化処理を行うと、処理時の加熱およ
びその後の冷却過程においてAl−Mn系化合物が粗大
結晶として析出するおそれがあるためである。
First, it is preferable that the billet is not homogenized. This is because, when the homogenization treatment is performed, the Al-Mn-based compound may precipitate as coarse crystals in the heating process and the subsequent cooling process.

【0016】また、押出条件は、押出温度が500℃以
下で、押出速度が製品速度として20m/min以上の
条件を推奨できる。これは、低温低速の押出では結晶組
織が繊維状となり高温環境下における強度低下が著し
く、また高温の押出では、Mnの析出および結晶粒の粗
大化が進み、特に高温における強度が低下する傾向にあ
るためである。特に好ましい押出温度の上限値は450
℃であり、下限値は400℃である。また、特に好まし
い押出速度の下限値は30m/minである。
As for the extrusion conditions, it is recommended that the extrusion temperature is 500 ° C. or less and the extrusion speed is 20 m / min or more as the product speed. This is because, at low temperature and low speed extrusion, the crystal structure becomes fibrous and the strength is significantly reduced in a high temperature environment. Because there is. A particularly preferred upper limit of the extrusion temperature is 450
° C, and the lower limit is 400 ° C. A particularly preferred lower limit of the extrusion speed is 30 m / min.

【0017】また、冷間加工は、引抜、圧延等のいかな
る加工法も適用でき、次式で表される冷間加工率を5%
以上かつ35%未満とすることが好ましい。
For the cold working, any working method such as drawing and rolling can be applied, and the cold working ratio represented by the following equation is reduced to 5%.
It is preferable that the content is not less than 35%.

【0018】 冷間加工率(%)=(1−A1 /A0 )×100 ただし、A0 :冷間加工前の断面積 A1 :冷間加工後の断面積 冷間加工率が5%未満では加工硬化が不十分であって冷
間加工後の強度が不足し、それに伴って高温保持後の強
度も不足する。かつ、Al−Mn系析出物が十分に微細
化されず、高温保持後の強度不足の原因となる。一方、
冷間加工率が35%以上になると、加工硬化により強度
は高くなるが、高温保持による強度の低下率が高くなる
ため、高温で長時間使用したときの強度が不足する。
Cold working rate (%) = (1−A 1 / A 0 ) × 100 where A 0 : cross-sectional area before cold working A 1 : cross-sectional area after cold working Cold working rate is 5 %, The work hardening is insufficient and the strength after cold working is insufficient, and accordingly, the strength after holding at a high temperature is also insufficient. In addition, Al-Mn-based precipitates are not sufficiently refined, which causes insufficient strength after high-temperature holding. on the other hand,
When the cold working ratio is 35% or more, the strength increases due to work hardening, but the strength reduction rate due to holding at a high temperature increases, resulting in insufficient strength when used at a high temperature for a long time.

【0019】この発明のアルミニウム材においては、合
金組成において所定量のMnを含有するとともに、不純
物としてのFe、Si、Mg、Cuの含有量が規制され
ているのみならず、Al−Mn系析出物が微細かつ密に
分布するようになされているため、高温環境で長時間使
用しても再結晶温度の低下が少なく、再結晶の成長が抑
制されて強度低下は小さい。
The aluminum material of the present invention contains not only a predetermined amount of Mn in the alloy composition, but also the contents of Fe, Si, Mg, and Cu as impurities, as well as the Al-Mn-based precipitation. Since the objects are finely and densely distributed, the recrystallization temperature is less reduced even when used for a long time in a high-temperature environment, the growth of recrystallization is suppressed, and the decrease in strength is small.

【0020】[0020]

【実施例】次に、この発明のアルミニウム材の具体的実
施例について説明する。
EXAMPLES Next, specific examples of the aluminum material of the present invention will be described.

【0021】[実験I]まず、後掲の表1に示す各合金
組成のビレットを鋳造した。これらのビレットのうち、
各実施例および比較例7〜10については均質化処理す
ることなく、また、比較例1〜6については610℃×
16時間の均質化処理を行った。そして、450℃に予
備加熱して押出速度60m/minの一定条件で外径7
2mm×肉厚2.0mmの管を押出した。さらに、これらの
押出管をリダクション(冷間加工率)20%、外径落と
し量3mmの一定条件で引抜いた。これらの引抜管の合金
組織において、Al−Mn系析出物の長径および個数を
調べたところ、表1のとおりであった。なお、晶出物に
ついては、いずれも長径1×104 個/mm2 未満であっ
た。
[Experiment I] First, billets having respective alloy compositions shown in Table 1 below were cast. Of these billets,
Each Example and Comparative Examples 7 to 10 were not subjected to the homogenization treatment.
A homogenization treatment for 16 hours was performed. Then, it is preheated to 450 ° C., and has an outer diameter of 7 at a constant extrusion speed of 60 m / min.
A 2 mm x 2.0 mm thick tube was extruded. Further, these extruded tubes were drawn under a constant condition of a reduction (cold working ratio) of 20% and a reduction in outer diameter of 3 mm. Table 1 shows the length and number of Al-Mn-based precipitates in the alloy structures of these drawn tubes. The crystallized product had a major axis of less than 1 × 10 4 particles / mm 2 .

【0022】こうして得られた各引抜管について、引抜
直後、500℃で3時間保持後および327℃で440
0時間保持後にそれぞれ耐力を常法により測定した。こ
れらの結果を表1に併せて示す。なお、良否判定は、5
00℃で短時間および327℃で長時間の高温保持後の
いずれにおいても70MPa以上の耐力を維持したもの
を良品(○)とし、それ以外を不良品(×)とした。
Immediately after drawing, each of the drawn tubes thus obtained was kept at 500 ° C. for 3 hours and at 327 ° C. for 440.
After holding for 0 hours, the proof stress was measured by an ordinary method. The results are shown in Table 1. The pass / fail judgment is 5
Those that maintained a proof stress of 70 MPa or more after both holding at a high temperature of 00 ° C. for a short time and 327 ° C. for a long time were evaluated as good (良), and the others were evaluated as defective (×).

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から、アルミニウム材の合金組
成、Al−Mn系析出物の分布状態を本発明の範囲内と
することにより、長時間高温で保持しても高い耐力を維
持できることを確認できた。また、このような析出物の
分布状態は、ビレットに対して均質化処理を行わないこ
とにより達成できることを確認できた。
From the results shown in Table 1, it was confirmed that by setting the alloy composition of the aluminum material and the distribution state of the Al—Mn-based precipitate within the range of the present invention, it was possible to maintain a high proof stress even at a high temperature for a long time. did it. In addition, it was confirmed that such a distribution state of the precipitate can be achieved by not performing the homogenization treatment on the billet.

【0025】[実験II]次に、前述の実施例4と同一組
成のビレットについて、均質化処理を行うことなく、押
出および引抜を行った。押出条件は、表2に示すとおり
ビレットの予備加熱温度および押出速度を変化させるも
のとし、引抜条件は実験Iと同一とした。そして、各引
抜管について、Al−Mn系析出物の分布状態を調べる
とともに、引抜直後、500℃で3時間保持後、327
℃で4400時間保持後の耐力を常法により測定した。
また、4400時間保持後に金属組織を調べた。これら
の結果を表2の示す。なお、表2中、実施例14は表1
の実施例4の再掲である。また、引抜管の晶出物につい
ては、いずれも長径1×104 個/mm2 未満であった。
[Experiment II] Next, a billet having the same composition as in Example 4 was extruded and drawn without performing homogenization. The extrusion conditions were such that the preheating temperature and the extrusion speed of the billet were changed as shown in Table 2, and the drawing conditions were the same as in Experiment I. Then, for each drawn tube, the distribution state of the Al—Mn-based precipitate was examined, and immediately after drawing, after holding at 500 ° C. for 3 hours, 327
The proof stress after 4400 hours of holding at ℃ was measured by a conventional method.
After holding for 4400 hours, the metal structure was examined. Table 2 shows these results. Note that, in Table 2, Example 14 corresponds to Table 1
Of Example 4 of Example 1. The crystallized product of the drawn tube had a major axis of less than 1 × 10 4 / mm 2 .

【0026】[0026]

【表2】 [Table 2]

【0027】表2の結果から、押出条件を本発明の範囲
内とすることにより、Al−Mn系析出物を微細かつ密
に分布させることができ、長時間高温で保持しても耐力
を維持できることを確認できた。
From the results in Table 2, it can be seen that by setting the extrusion conditions within the range of the present invention, the Al-Mn-based precipitates can be finely and densely distributed, and the proof stress can be maintained even at a high temperature for a long time. I was able to confirm that I could.

【0028】[実験III ]次に、前述の実施例4と同一
組成の合金を用い、均質化処理を行うことなく実験Iと
同一条件で押出し、さらに表3に示す各リダクションで
引抜いた。そして、引抜管について、Al−Mn系析出
物の分布状態を調べるとともに、得られた各引抜管につ
いて、引抜直後、500℃で3時間保持後、327℃で
4400時間保持後の耐力を常法により測定した。これ
らの結果を表3に示す。なお、表3中、実施例24は表
1の実施例4の再掲である。また、引抜管の晶出物につ
いては、いずれも長径1×104 個/mm2 未満であっ
た。
[Experiment III] Next, an alloy having the same composition as that of the above-mentioned Example 4 was extruded under the same conditions as in Experiment I without performing homogenization treatment, and was further extracted at each reduction shown in Table 3. The distribution state of the Al-Mn-based precipitates was examined for the drawn tube, and for each of the obtained drawn tubes, the yield strength immediately after drawing was maintained at 500 ° C. for 3 hours, and then maintained at 327 ° C. for 4400 hours. Was measured by Table 3 shows the results. In addition, in Table 3, Example 24 is a repetition of Example 4 of Table 1. The crystallized product of the drawn tube had a major axis of less than 1 × 10 4 / mm 2 .

【0029】[0029]

【表3】 [Table 3]

【0030】表3の結果より、本発明の範囲内の条件で
冷間加工を行うことにより、Al−Mn系析出物を微細
かつ密に分布させることができ、長時間高温で保持して
も耐力を維持できることを確認できた。
According to the results shown in Table 3, the Al—Mn-based precipitates can be finely and densely distributed by performing cold working under the conditions within the range of the present invention, and even when the alloy is held at a high temperature for a long time. It was confirmed that the proof stress could be maintained.

【0031】[0031]

【発明の効果】以上の次第で、この発明のアルミニウム
材は、ビレットを熱間で押出した後に冷間加工を行うこ
とにより製作されたアルミニウム材であって、合金組成
において、Mn:0.5〜1.8wt%を含有し、残部が
Alおよび不純物からなり、不純物としてのFeが0.
4wt%以下、Siが0.4wt%以下、Mgが0.5wt%
以下、Cuが0.5wt%以下、他元素がそれぞれ0.2
wt%以下に規制されてなり、合金組織において、Al−
Mn系析出物は長径が0.4μm以下であり、かつ1個
/μm2 以上存在する微細かつ密な組織であるから、高
温環境下にあっても再結晶の成長が抑制される。そのた
め、強度低下が抑制され、高温域においても長時間安定
して高い強度を維持することができる。また、不純物と
してのMg含有量が規制されているため、加工性が損な
われるおそれもない。
As described above, the aluminum material of the present invention is an aluminum material manufactured by extruding a billet by hot working and then performing cold working. To 1.8 wt%, the balance consisting of Al and impurities, and Fe as impurities of 0.1 wt%.
4 wt% or less, Si 0.4 wt% or less, Mg 0.5 wt%
Hereinafter, Cu is 0.5 wt% or less, and other elements are 0.2 wt% or less, respectively.
wt% or less.
The Mn-based precipitate has a long diameter of 0.4 μm or less, and has a fine and dense structure of 1 / μm 2 or more. Therefore, the growth of recrystallization is suppressed even in a high temperature environment. Therefore, a decrease in strength is suppressed, and a high strength can be stably maintained for a long time even in a high temperature range. Further, since the Mg content as an impurity is regulated, there is no possibility that the workability is impaired.

【0032】また、上述のようなAl−Mn析出物の微
細かつ密な組織は、前記ビレットに対し均質化処理を施
すことなく熱間押出を行うこと、前記熱間押出を500
℃以下で押出速度20m/min以上で行うこと、ある
いはさらに前記冷間加工を加工率5%以上かつ35%未
満で行うことにより得られ、優れた高温強度を確実に得
られる。
Further, the fine and dense structure of the Al—Mn precipitate as described above may be subjected to hot extrusion without subjecting the billet to a homogenization treatment.
It is obtained by performing the cold working at an extrusion rate of 20 m / min or more at a temperature of not more than 5 ° C. or lower, and furthermore, performing the cold working at a working rate of 5% or more and less than 35%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 650 C22F 1/00 650A 683 683 685 685Z 694 694A 694B (72)発明者 高見 祐一 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code FI C22F 1/00 650 C22F 1/00 650A 683 683 685 685Z 694 694A 694B (72) Inventor Yuichi Takami 6,224 Kaiyamacho, Sakai-shi Showa Aluminum Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ビレットを熱間出押出した後に冷間加工
を行うことにより製作されたアルミニウム材であって、 合金組成において、Mn:0.5〜1.8wt%を含有
し、残部がAlおよび不純物からなり、不純物としての
Feが0.4wt%以下、Siが0.4wt%以下、Mgが
0.5wt%以下、Cuが0.5wt%以下、他元素がそれ
ぞれ0.2wt%以下に規制されてなり、 合金組織において、Al−Mn系析出物は長径が0.4
μm以下であり、かつ1個/μm2 以上存在することを
特徴とする高温強度に優れたアルミニウム材。
An aluminum material manufactured by cold working after hot extruding a billet, the alloy composition containing Mn: 0.5 to 1.8 wt%, with the balance being Al Fe is 0.4 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, Cu is 0.5 wt% or less, and other elements are 0.2 wt% or less. In the alloy structure, the major diameter of the Al-Mn-based precipitate is 0.4
An aluminum material having excellent high-temperature strength, wherein the aluminum material has a size of not more than 1 μm and not less than 1 piece / μm 2 .
【請求項2】 前記ビレットに対し均質化処理を施すこ
となく熱間押出が行われる請求項1に記載の高温強度に
優れたアルミニウム材。
2. The aluminum material having excellent high-temperature strength according to claim 1, wherein hot extrusion is performed without subjecting the billet to a homogenization treatment.
【請求項3】 前記熱間押出は、500℃以下で押出速
度20m/min以上で行われる請求項1または2に記
載の高温強度に優れたアルミニウム材。
3. The aluminum material excellent in high-temperature strength according to claim 1, wherein the hot extrusion is performed at a temperature of 500 ° C. or less and an extrusion speed of 20 m / min or more.
【請求項4】 前記冷間加工は、加工率が5%以上かつ
35%未満で行われる請求項1乃至3のいずれかに記載
の高温強度に優れたアルミニウム材。
4. The aluminum material according to claim 1, wherein the cold working is performed at a working ratio of 5% or more and less than 35%.
JP28689497A 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof Expired - Lifetime JP3763651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28689497A JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28689497A JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Publications (2)

Publication Number Publication Date
JPH11124648A true JPH11124648A (en) 1999-05-11
JP3763651B2 JP3763651B2 (en) 2006-04-05

Family

ID=17710383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28689497A Expired - Lifetime JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Country Status (1)

Country Link
JP (1) JP3763651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068055A1 (en) * 2003-01-27 2004-08-12 Showa Denko K.K. Heat exchanger and process for fabricating same
WO2013005599A1 (en) * 2011-07-01 2013-01-10 昭和電工株式会社 Aluminum alloy and process for producing aluminum alloy extrusions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068055A1 (en) * 2003-01-27 2004-08-12 Showa Denko K.K. Heat exchanger and process for fabricating same
WO2013005599A1 (en) * 2011-07-01 2013-01-10 昭和電工株式会社 Aluminum alloy and process for producing aluminum alloy extrusions
JP2013014797A (en) * 2011-07-01 2013-01-24 Showa Denko Kk Aluminum alloy and method for producing aluminum alloy extruded material
CN103443313A (en) * 2011-07-01 2013-12-11 昭和电工株式会社 Aluminum alloy and process for producing aluminum alloy extrusions
US9885995B2 (en) 2011-07-01 2018-02-06 Showa Denko K.K. Aluminum alloy and process for producing aluminum alloy extrusions

Also Published As

Publication number Publication date
JP3763651B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP0981653B1 (en) Method of improving fracture toughness in aluminum-lithium alloys
JP3194742B2 (en) Improved lithium aluminum alloy system
US5882449A (en) Process for preparing aluminum/lithium/scandium rolled sheet products
US4618382A (en) Superplastic aluminium alloy sheets
JPS63157831A (en) Heat-resisting aluminum alloy
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JPH0713281B2 (en) Method for manufacturing aluminum-based alloy processed products
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
EP0365367A1 (en) Brazeable aluminum alloy sheet and process for its manufacture
JPH01242750A (en) Production of al base alloy and al base alloy product
US5116428A (en) Rolled thin sheets of aluminum alloy
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JPH01225756A (en) Manufacture of high-strength al-mg-si alloy member
AU2021103058A4 (en) Aluminum alloy, and manufacturing process and use thereof
JPH11124648A (en) Aluminum material excellent in high temperature strength
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JP2003164903A (en) Method for manufacturing aluminium foil
JPH10317081A (en) Aluminum material excellent in high temperature strength
JP2000303157A (en) Production of high strength aluminum alloy extruded material
JPS627836A (en) Manufacture of aluminum alloy having fine-grained structure
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term