JPS6362836A - Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof - Google Patents

Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof

Info

Publication number
JPS6362836A
JPS6362836A JP20755886A JP20755886A JPS6362836A JP S6362836 A JPS6362836 A JP S6362836A JP 20755886 A JP20755886 A JP 20755886A JP 20755886 A JP20755886 A JP 20755886A JP S6362836 A JPS6362836 A JP S6362836A
Authority
JP
Japan
Prior art keywords
plate
rolling
rolled
heat resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20755886A
Other languages
Japanese (ja)
Inventor
Toshiki Muramatsu
俊樹 村松
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP20755886A priority Critical patent/JPS6362836A/en
Publication of JPS6362836A publication Critical patent/JPS6362836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture, at a low cost, an Al-alloy rolled sheet having high strength and heat resistance in which fine intermetallic compounds are crystallized out, by subjecting a molten Al alloy having a specific composition consisting of Mg, Mn, and Al to continuous casting rolling to proper thickness and further to cold rolling. CONSTITUTION:The molten Al alloy which has a composition consisting of, by weight, 0.10-5.0% Mg, 0.3-3.0% Mn, and the balance Al with inevitable impurities and further containing, if necessary, 0.01-0.30% Zr is cast into a plate of 3-15mm thickness by means of continuous casting rolling in which rolling is carried out simultaneously with cooling and solidification by means of a couple of rotating cooling rolls for casting, etc. Subsequently, the above rolled plate is subjected to cold rolling to the final thickness, so that rolled sheet in which maximum length of the crystallized matter of intermetallic com pound at the sheet surface is regulated to <=10mum can be obtained. The above Al-alloy rolled sheet has high strength and, moreover, it is minimal in deteriora tion in yield strength even if subjected to baking treatment at a temp. as high as >=about 300 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ホーロー焼付けや樹脂焼付けなどの焼付塗
装を施して使用される用途に最適なぜ良好な耐熱性を有
し、かつ高強度のアルミニウム合金圧延板およびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is suitable for applications where a baked coating such as enamel baking or resin baking is applied. The present invention relates to a plate and a method for manufacturing the same.

従来の技術 一般にアルミニウム合金材は、高い温度に曝された時、
回復・再結晶が生じて強度が著しく低下することが知ら
れている。例えばアルミニウム板にホーロー焼付けや樹
脂焼付けなどの焼付塗装を施して使用する用途において
は、焼付処理時に芯材であるアルミニウム板が焼鈍され
て、最終製品の機械的強度が低下してしまうから、この
ような用途には一般にかなりの厚さを有する厚肉材を使
用せざるを得なかった。
Conventional technology Generally, when aluminum alloy materials are exposed to high temperatures,
It is known that recovery and recrystallization occur, resulting in a significant decrease in strength. For example, in applications where an aluminum plate is used with a baked coating such as enamel baking or resin baking, the core aluminum plate is annealed during the baking process, reducing the mechanical strength of the final product. For such applications, it is generally necessary to use thick-walled materials having a considerable thickness.

従来、高温での使用に適したアルミニウム合金材として
は、共晶組成(1,4%Mn)以上のMnを含有させた
高Mn系の1’−Mn合金が知られている。しかしなが
らこのような高Mn系のAl−Mn合金を使用しても、
300 ’Cを越えるような高温に加熱されれば、その
加熱時間が短時間でも耐力が10Kqf/−以下まで低
下してしまうことが往々にしてあり、したがって特にホ
ーロー焼付けのような高温に加熱される用途には不適当
であり、また強度的にも未だ不充分であった。
Conventionally, as an aluminum alloy material suitable for use at high temperatures, a high Mn-based 1'-Mn alloy containing Mn in a eutectic composition (1.4% Mn) or more is known. However, even if such a high Mn-based Al-Mn alloy is used,
If heated to a high temperature exceeding 300'C, the yield strength will often drop to below 10Kqf/- even if the heating time is short, therefore, especially when heated to a high temperature such as enamel baking, It was unsuitable for such uses, and its strength was still insufficient.

一方、特公昭56−11747号公報においては、2〜
2.6%のMnを含有するAid−Mn系合金を連続鋳
造圧延によって製造し、さらに冷間圧延を施すことによ
って300℃以上の温度においても良好な耐熱性を示す
ようにした耐熱アルミニウム合金板の製造方法が提案さ
れている。しかしながらこの提案の方法の場合は、不純
物元素として不可避的に含有されるFe、S iを各々
0.1%以下に規制しなければ、顕著な耐熱性の向上を
期待することができず、そのため溶解材料として地金純
度の高いものを使用せざるを得ず、高コスト化を招いて
おり、また強度的にも不充分であった。
On the other hand, in Japanese Patent Publication No. 56-11747, 2-
A heat-resistant aluminum alloy plate manufactured from an Aid-Mn alloy containing 2.6% Mn by continuous casting and rolling, and further cold-rolled to exhibit good heat resistance even at temperatures of 300°C or higher. A manufacturing method has been proposed. However, in the case of this proposed method, a significant improvement in heat resistance cannot be expected unless Fe and Si, which are unavoidably contained as impurity elements, are controlled to 0.1% or less each. It is necessary to use a metal with high purity as the melting material, resulting in high costs and insufficient strength.

発明が解決すべき問題点 前述のように従来の高Mn系のAl−Mn合金において
は未だ耐熱性が不充分であって強度も充分ではなく、ま
た前記提案のように連続鋳造圧延法を適用したAl−M
n系合金板の製法においてはFe5Siを0.1%以下
に規制しなければならず、コスト高となるとともに、強
度も不充分でおるという問題があった。
Problems to be Solved by the Invention As mentioned above, conventional high-Mn Al-Mn alloys still have insufficient heat resistance and strength, and as proposed above, the continuous casting and rolling method is applied. Al-M
In the method for manufacturing n-based alloy plates, Fe5Si must be regulated to 0.1% or less, resulting in high costs and insufficient strength.

この発明は以上の事情を背景としてなされたもので、従
来の高Mn系のAl−Mn合金よりも耐熱性および強度
が高く、しかもFeや3iを051%以下に規制するこ
となく低コストで優れた耐熱性、高強度が1qられるよ
うにしたアルミニウム合金圧延板、およびその製造方法
を提供することを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and has higher heat resistance and strength than conventional high-Mn-based Al-Mn alloys, and is superior at low cost without restricting Fe or 3i to 0.51% or less. The object of the present invention is to provide an aluminum alloy rolled plate that has improved heat resistance and high strength by 1q, and a method for manufacturing the same.

問題点を解決するための手段 第1発明のアルミニウム合金圧延板は、Mg0.10〜
5.0%およびMn0.3〜3.0%を含有し、残部が
Alおよび不可避的不純物よりなり、しかも板表面の金
属間化合物晶出物の最大長さが10μm以下であること
を特徴とするものである。
Means for Solving the Problems The aluminum alloy rolled plate of the first invention has Mg0.10 to
5.0% and Mn 0.3 to 3.0%, the remainder consists of Al and inevitable impurities, and the maximum length of intermetallic compound crystallization on the plate surface is 10 μm or less. It is something to do.

また第2発明のアルミニウム合金圧延板は、MCI 0
.10〜5.0%、Mn0.3〜3.0%およびZ r
 0.01〜0.30%を含有し、残部が八!および不
可避的不純物よりなり、しかも板表面の金属間化合物晶
出物の最大長さが10pm以下であることを特徴とする
ものである。
Further, the aluminum alloy rolled plate of the second invention has MCI 0
.. 10-5.0%, Mn0.3-3.0% and Zr
Contains 0.01-0.30%, the balance is 8! and unavoidable impurities, and is characterized in that the maximum length of intermetallic compound crystallization on the plate surface is 10 pm or less.

さらに第3発明は、第1発明のアルミニウム合金圧延板
の製造方法であって、Mgo、io〜5.0%およびM
n0.3〜3.0%を含有し、残部がAlおよび不可避
的不純物よりなるアルミニウム合金の溶湯を、連続鋳造
圧延によって板厚が3〜15簡の板に鋳造し、さらに冷
間圧延を施して、板表面の金属間化合物の晶出物の最大
長さがiopm以下の圧延板を得ることを特徴とするも
のである。
Furthermore, a third invention is a method for manufacturing the aluminum alloy rolled sheet of the first invention, which comprises Mgo, io~5.0% and M
A molten aluminum alloy containing 0.3 to 3.0% of aluminum and the remainder consisting of Al and unavoidable impurities is cast into a plate with a thickness of 3 to 15 sheets by continuous casting and rolling, and then cold rolled. The method is characterized in that a rolled sheet is obtained in which the maximum length of crystallized intermetallic compounds on the surface of the sheet is iopm or less.

また第4発明は、第2発明のアルミニウム合金圧延板を
製造する方法であって、Mg o、io〜5.0%、M
n0.3〜3.0%およびZr0.01〜0、30%を
含有し、残部がAllよび不可避的不純物よりなるアル
ミニウム合金の溶湯を、連続鋳造圧延によって板厚が3
〜15履の板に鋳造し、さらに冷間圧延を施して、板表
面の金属間化合物晶出物の最大長さが10μm以下の圧
延板を得ることを特徴とするものでおる。
Further, a fourth invention is a method for manufacturing the aluminum alloy rolled plate of the second invention, comprising: Mgo, io~5.0%, M
A molten aluminum alloy containing 0.3 to 3.0% of n and 0.01 to 0.30% of zr, with the remainder being all and unavoidable impurities, was continuously cast and rolled to a plate thickness of 3.
The method is characterized in that it is cast into a plate of 15 to 15 mm and further subjected to cold rolling to obtain a rolled plate in which the maximum length of intermetallic compound crystallization on the plate surface is 10 μm or less.

作   用 先ずこの発明のアルミニウム合金圧延板の成分限定理由
について説明する。
Function First, the reason for limiting the components of the rolled aluminum alloy plate of the present invention will be explained.

Mq: Mgは圧延板の強度向上に有効な元素であるが、0.1
0%未満では強度向上の効果が少ない。一方5.0%を
越えてMgを含有させれば、連続鋳造圧延での製造が困
難となる。したがってMgの含有量はo、io〜5.0
%の範囲内とした。
Mq: Mg is an effective element for improving the strength of rolled plates, but at 0.1
If it is less than 0%, the effect of improving strength will be small. On the other hand, if Mg is contained in an amount exceeding 5.0%, production by continuous casting and rolling becomes difficult. Therefore, the Mg content is o, io ~ 5.0
It was set within the range of %.

Mn: Mnは圧延板の強度向上および耐熱性向上に有効な元素
であるが、0.3%未満では耐熱性向上効果が充分に得
られない。一方3.0%を越えてMnを含有させれば、
連続鋳造圧延での製造が困難となる。したがってMnの
含有量は0.3〜3.0%の範囲内とした。
Mn: Mn is an element effective in improving the strength and heat resistance of a rolled plate, but if it is less than 0.3%, a sufficient effect of improving heat resistance cannot be obtained. On the other hand, if Mn is contained in excess of 3.0%,
Manufacturing by continuous casting and rolling becomes difficult. Therefore, the Mn content was set within the range of 0.3 to 3.0%.

Zr: Zrは耐熱性向上に著しく有効な元素であり、したがっ
て特に第2発明において添加することとした。Zrが0
.01%未満ではその効果が少なく、一方0.30%を
越えて含有させれば粗大な化合物を生成して、圧延板の
表面品質の低下をもたらすとともに機械的性質が不均一
となるから、第2発明および第4発明におけるZrの含
有量は0.01〜0.30%の範囲内とした。
Zr: Zr is an element that is extremely effective in improving heat resistance, and therefore it was specifically added in the second invention. Zr is 0
.. If the content is less than 0.01%, the effect will be small, while if the content exceeds 0.30%, coarse compounds will be produced, resulting in deterioration of the surface quality of the rolled plate and non-uniform mechanical properties. The Zr content in the second invention and the fourth invention was within the range of 0.01 to 0.30%.

なお上記各成分のほか、工業用アルミニウム合金におい
てはFe、Siが不可避的に含有されるが、これらは各
々0.5%程度以下であれば耐熱性への悪影響は少ない
In addition to the above-mentioned components, industrial aluminum alloys inevitably contain Fe and Si, but if each of these is about 0.5% or less, there will be little adverse effect on heat resistance.

また一般のアルミニウム合金においては鋳塊の結晶粒微
細化のためTiおよび/またはBを添加することが多い
が、この発明の場合も必要に応じてT1および/または
Bを添加しても良く、その場合Ti  0.10 %以
下、30.002%以下テアレば耐熱性に対する悪影響
はない。
Furthermore, in general aluminum alloys, Ti and/or B are often added to refine the crystal grains of the ingot, but in the case of the present invention, T1 and/or B may also be added as necessary. In that case, if the Ti content is 0.10% or less and 30.002% or less is teared, there will be no adverse effect on the heat resistance.

さらに、強度向上および耐熱性向上のために、必要に応
じてOro、25%以下、V 0.20%以下を含有し
ても良い。またさらに、溶湯の酸化防止のために必要に
応じてB e iooppm以下を添加しても良い。
Furthermore, in order to improve strength and heat resistance, it may contain 25% or less of Oro, and 0.20% or less of V, if necessary. Furthermore, B e ioppm or less may be added as necessary to prevent oxidation of the molten metal.

この発明のアルミニウム合金圧延板においては、前述の
ような成分組成を有するのみならず、最終圧延板の表面
の金属間化合物晶出物の最大長さが10JJIT1以下
であることが必要である。このように晶出物の最大長さ
を10pm以下に規制することによって優れた耐熱性を
得ることができ、一方10μmを越える晶出物が存在す
る場合は充分な耐熱性を得ることができない。なお最終
圧延板における金属間化合物晶出物のサイズを10pm
以下に小さくするためには、後述するように、鋳造段階
で連続鋳造圧延を適用して板厚を3〜15t11!nの
板に直接鋳造し、凝固速度を大きくすることが有効でお
る。
In the aluminum alloy rolled sheet of the present invention, it is necessary not only to have the above-mentioned composition, but also to have a maximum length of intermetallic compound crystallization on the surface of the final rolled sheet of 10JJIT1 or less. In this way, by regulating the maximum length of the crystallized material to 10 pm or less, excellent heat resistance can be obtained.On the other hand, if the crystallized material exceeds 10 .mu.m, sufficient heat resistance cannot be obtained. Note that the size of intermetallic compound crystallization in the final rolled plate is 10 pm.
In order to reduce the thickness to below, continuous casting and rolling is applied at the casting stage to reduce the plate thickness from 3 to 15t11!, as will be described later. It is effective to directly cast onto a plate of n and increase the solidification rate.

次に上述のようなアルミニウム合金圧延板の製造方法、
すなわち本願の第3発明および第4発明について説明す
る。
Next, a method for manufacturing an aluminum alloy rolled plate as described above,
That is, the third invention and the fourth invention of the present application will be explained.

この製造方法においては、先ず前述のような成分組成の
アルミニウム合金溶湯を鋳造するにあたって、連続鋳造
圧延によって板厚3〜15#の板を製造する。その具体
的方法としては、例えば内部から冷却された一対の回転
する鋳造用ロールもしくは走行する鋳造用ベルトなどで
構成される鋳型の間に、ノズルを介してアルミニウム合
金溶湯を導入して、その鋳型間で冷却凝固させながら同
時に圧延する方法を適用すれば良い。ここで、連続鋳造
圧延における鋳造速度は、600〜1500m/ n+
in、鋳造時の溶湯温度は680〜720℃の範囲内が
適当でおる。
In this manufacturing method, first, in casting a molten aluminum alloy having the above-mentioned composition, a plate having a thickness of 3 to 15# is manufactured by continuous casting and rolling. A specific method is to introduce molten aluminum alloy through a nozzle between a mold consisting of a pair of rotating casting rolls or a running casting belt that are cooled from the inside. What is necessary is to apply a method in which rolling is performed while cooling and solidifying the material at the same time. Here, the casting speed in continuous casting and rolling is 600 to 1500 m/n+
In, the temperature of the molten metal during casting is suitably within the range of 680 to 720°C.

上述のような肉厚3〜15姻の板への連続鋳造圧延にお
いては、冷却速度が200〜b 半連続鋳造の場合に比較して格段に大きい。したがって
急冷凝固効果によって耐熱性向上に有利なMnの固溶間
が大きくなり、また凝固時の晶出物サイズが著しく小さ
くなり、これらにより優れた耐熱性が得られる。これに
対し半連続鋳造では、Mnを多量に添加しても充分に固
溶されずに金属間化合物として凝固時に晶出し、晶出物
の最大サイズが20〜30J、IIIと大きくなるとと
もに品出聞も多くなって、耐熱性が劣る。本発明者等が
晶出物の最大サイズと耐熱性との関係について調査した
ところ、晶出物の最大サイズが1opm以下であれば良
好な耐熱性が得られることが判明している。したがって
連続鋳造圧延における冷却速度も、最終圧延板における
表面の晶出物最大サイズが10pm以下となるように定
めれば良いが、通常は前述のような200〜b 最大サイズをl0JJII+以下に規制することが可能
である。
In continuous casting and rolling into a plate having a wall thickness of 3 to 15 mm as described above, the cooling rate is much higher than in the case of semi-continuous casting of 200 to 15 mm. Therefore, the solid solution gap of Mn, which is advantageous for improving heat resistance, becomes larger due to the rapid solidification effect, and the size of crystallized substances during solidification becomes significantly smaller, thereby providing excellent heat resistance. On the other hand, in semi-continuous casting, even if a large amount of Mn is added, it is not sufficiently dissolved and crystallizes as an intermetallic compound during solidification. The heat resistance is poor. When the present inventors investigated the relationship between the maximum size of crystallized products and heat resistance, it was found that good heat resistance can be obtained if the maximum size of crystallized products is 1 opm or less. Therefore, the cooling rate in continuous casting and rolling should be determined so that the maximum size of crystallized substances on the surface of the final rolled plate is 10 pm or less, but usually the maximum size is regulated to 200 to 10 pm or less as described above. Is possible.

なお連続鋳造圧延において鋳造板厚が3m未満では鋳造
自体が困難となり、一方15mを越えれば冷却速度が大
きくなってMn固溶量が小さくなるとともに最終圧延板
での晶出物最大サイズを10μm以下に規制することが
困難となり、目的とする耐熱性が得られなくなるおそれ
がある。したがって連続鋳造圧延における鋳造板厚は3
〜15mの範囲内とした。
In continuous casting and rolling, if the thickness of the cast plate is less than 3 m, the casting itself will be difficult, whereas if it exceeds 15 m, the cooling rate will increase, the amount of solid solution of Mn will decrease, and the maximum size of crystallized matter in the final rolled plate will be 10 μm or less. It becomes difficult to regulate the heat resistance, and there is a possibility that the desired heat resistance cannot be obtained. Therefore, the thickness of the cast plate in continuous casting and rolling is 3
It was set within the range of ~15m.

上述のようにして連続鋳造圧延により得られた板厚3〜
15mの板状鋳塊に対しては、冷間圧延を施して最終板
厚とする。この冷間圧延に際しては、その圧延開始前の
板状鋳塊、あるいは圧延途中の板に対して、圧延性の改
良あるいは急速加熱焼付けに対する耐熱性向上のために
350〜550℃の範囲内の温度で中間焼鈍を行なって
も良い。
The plate thickness obtained by continuous casting and rolling as described above is 3~
The 15 m plate-shaped ingot is cold rolled to the final thickness. During this cold rolling, the plate-shaped ingot before rolling or the plate in the middle of rolling is heated to a temperature within the range of 350 to 550°C in order to improve rollability or heat resistance against rapid baking. Intermediate annealing may be performed.

実施例 [実施例1] 第1表に示す5種の成分組成のアルミニウム合金につい
て、それぞれ第1表中に示す方法で鋳造した。連続鋳造
圧延による方法では直径400rwn、幅300#!I
11の内部を水冷した鋳w4製ロールを用い、鋳造時の
溶湯温度100℃、鋳造速度800s/minにて板厚
8#i#Iの板状鋳塊を得た。一方比較のための半連続
鋳造−熱間圧延では、断面寸法が500amX1300
mのスラブを、鋳造速度50rrI!11/ll1lr
11溶11度700℃で鋳造し、続いて500℃に加熱
して熱間圧延し、板厚651I11の熱延板とした。こ
のようにして得られた板厚6IIIRの板状鋳塊もしく
は熱延板を冷間圧延して、最終的に板厚0.6#の圧延
板とした。
Examples [Example 1] Aluminum alloys having the five types of component compositions shown in Table 1 were cast by the methods shown in Table 1, respectively. With continuous casting and rolling, the diameter is 400rwn and the width is 300#! I
A plate-shaped ingot with a plate thickness of 8#i#I was obtained using a casting W4 roll having a water-cooled interior. On the other hand, for comparison, in semi-continuous casting and hot rolling, the cross-sectional dimensions were 500am x 1300mm.
m slab at a casting speed of 50rrI! 11/ll1lr
11 was cast at 700° C., and then heated to 500° C. and hot rolled to obtain a hot rolled sheet with a thickness of 651I11. The plate-shaped ingot or hot-rolled plate having a plate thickness of 6IIIR thus obtained was cold rolled to finally form a rolled plate having a plate thickness of 0.6#.

この板厚0.6mの各圧延板について、300℃、35
0℃、400℃、450℃の種々の温度で各2時間焼鈍
し、耐力を測定した結果を第2表に示す。また板厚0.
6mの圧延板についてその表面の晶出物最大サイズを調
べた結果を第2表中に併せて示す。
For each rolled plate with a thickness of 0.6 m, at 300°C and 35
Table 2 shows the results of annealing at various temperatures of 0°C, 400°C, and 450°C for 2 hours each and measuring the yield strength. Also, the plate thickness is 0.
Table 2 also shows the results of examining the maximum size of crystallized substances on the surface of a 6 m long rolled plate.

第   1   表 第   2   表 注 : 表中のl!i度(’C)はtA鈍湯温度示す。Chapter 1 Table Table 2 Note: l in the table! i degree ('C) indicates tA cold water temperature.

第2表から明らかなように、第1発明の成分組成範囲内
のアルミニウム合金について、連続鋳造圧延を適用して
最終圧延板の金属間化合物晶出物の最大サイズが5μm
となった製造条件Nα1および随2の場合は、いずれも
300〜450℃の焼鈍後も高い耐力を示し、高強度で
かつ耐熱性が優れていることが゛明らかである。これに
対し製造条件Nα3で使用した合金はM(7無添加のも
のであって、この場合は製造条件Nα4、Nα5の場合
と比べて耐熱性はあるが、焼鈍前の強度すなわち圧延の
ままでの強度がMgを添加したものより低いために、N
α1、社2と比較して焼鈍後の強度も低いものとなって
いる。また製造条件Nα4で使用した合金はMn無添加
のものであって、この場合には極めて低い強度しか得ら
れなかった。さらに製造条件Nα5は、合金成分組成は
第1発明の範囲内であるが、半連続鋳造−熱間圧延の適
用によって最大晶出物サイズが大きくなり、そのため充
分な耐熱性、強度が得られなかった。
As is clear from Table 2, for aluminum alloys within the composition range of the first invention, the maximum size of intermetallic compound crystallization in the final rolled plate was 5 μm when continuous casting and rolling was applied.
It is clear that under manufacturing conditions Nα1 and No. 2, both exhibit high yield strength even after annealing at 300 to 450°C, and have high strength and excellent heat resistance. On the other hand, the alloy used under manufacturing condition Nα3 does not contain M(7), and in this case, it has better heat resistance compared to manufacturing conditions Nα4 and Nα5, but the strength before annealing, that is, as rolled, is higher than that under manufacturing conditions Nα4 and Nα5. Since the strength of N is lower than that with Mg added,
The strength after annealing is also lower compared to α1 and Company 2. Further, the alloy used under the manufacturing condition Nα4 did not contain Mn, and in this case only extremely low strength was obtained. Furthermore, for manufacturing condition Nα5, although the alloy composition is within the range of the first invention, the maximum crystallized size increases due to the application of semi-continuous casting and hot rolling, and therefore sufficient heat resistance and strength cannot be obtained. Ta.

[実施例2] 第3表に示す4種の成分組成のアルミニウム合金につい
て、それぞれ第3表中に示す方法で鋳造した。各方法の
詳細な条件は実施例1の場合と同じである。
[Example 2] Aluminum alloys having the four component compositions shown in Table 3 were cast by the methods shown in Table 3, respectively. The detailed conditions for each method are the same as in Example 1.

このようにして得られた板厚6Mの板状鋳塊もしくは熱
延板を冷間圧延して、最終的に板厚0.6mの圧延板と
した。
The plate-shaped ingot or hot-rolled plate having a thickness of 6M thus obtained was cold rolled to finally form a rolled plate having a thickness of 0.6m.

この板厚0.6履の各圧延板について、300℃、35
0℃、400℃、450℃の種々の温度で各2時間焼鈍
し、耐力を測定した結果を第4表に示す。また板厚0.
6mの圧延板についてその表面の晶出物最大サイズを調
べた結果を第4表中に併せて示す。
For each rolled plate with a plate thickness of 0.6 mm, at 300°C, 35
Table 4 shows the results of annealing at various temperatures of 0° C., 400° C., and 450° C. for 2 hours each and measuring the yield strength. Also, the plate thickness is 0.
Table 4 also shows the results of investigating the maximum size of crystallized substances on the surface of a 6 m long rolled plate.

第   3   表 第   4   表 注 二 表中の温度(’C)は焼鈍温度を示す。Table 3 Table 4 Note 2: The temperature ('C) in the table indicates the annealing temperature.

第4表から明らかなように、第2発明の成分組成範囲内
のアルミニウム合金について、連続鋳造圧延を適用して
最終圧延板の金属間化合物用質の最大サイズが8μmと
なった製造条件NQ6の場合は、300〜1150℃の
焼鈍後も高い耐力を示し、強度および耐熱性が優れてい
ることが明らかである。これに対し製造条件Nα7で使
用した合金はMn無添加のものでおって、この場合は連
続鋳造圧延を適用して晶出物最大サイズをioμm以下
としても、300〜450℃の加熱で耐力が大幅に低下
し、充分な強度、耐熱性が得られなかった。また製造条
件Nα8で使用した合金はMg無添加のものであるため
、焼鈍前の強度すなわち圧延のままでの強度がMg添加
のものより低く、そのためNα6の場合と比較して焼鈍
後の強度も低いものとなった。また製造条件Nα9は、
合金成分組成は第2発明の範囲内であるが、半連続鋳造
−熱間圧延の適用によって最大晶出物サイズが大きくな
り、そのため充分な耐熱性、強度が得られなかった。
As is clear from Table 4, for the aluminum alloy within the composition range of the second invention, the manufacturing condition NQ6 was applied where continuous casting and rolling was applied and the maximum size of the intermetallic compound material in the final rolled sheet was 8 μm. It is clear that the case shows high yield strength even after annealing at 300 to 1150°C, and has excellent strength and heat resistance. On the other hand, the alloy used under manufacturing condition Nα7 is one without Mn addition, and in this case, even if continuous casting and rolling is applied and the maximum size of crystallized particles is ioμm or less, the yield strength is increased by heating at 300 to 450°C. The strength and heat resistance decreased significantly, and sufficient strength and heat resistance could not be obtained. In addition, since the alloy used under the manufacturing condition Nα8 does not have Mg added, its strength before annealing, that is, the strength as rolled, is lower than that with Mg added, and therefore the strength after annealing is also lower than that of Nα6. It became low. In addition, the manufacturing condition Nα9 is
Although the alloy composition was within the range of the second invention, the application of semi-continuous casting and hot rolling increased the maximum size of crystallized particles, and therefore sufficient heat resistance and strength could not be obtained.

発明の効果 以上の説明で明らかなようにこの発明によれば、高強度
を有すると同時に、300℃以上の高温に加熱されても
耐力の低下の少ない耐熱性に優れたアルミニウム合金圧
延板を得ることができ、また不可避的不純物として含有
されるFeJcJs tの含有量を著しく微量に規制せ
ずに優れた耐熱性、高強度が得られるため、地金コスト
が増大するおそれもない。
Effects of the Invention As is clear from the above explanation, according to the present invention, an aluminum alloy rolled sheet is obtained which has high strength and excellent heat resistance with little decrease in yield strength even when heated to a high temperature of 300° C. or higher. Moreover, since excellent heat resistance and high strength can be obtained without restricting the content of FeJcJst contained as an unavoidable impurity to a very small amount, there is no fear that the metal cost will increase.

なお、この発明によるアルミニウム合金圧延板は、30
0℃以上の高温で焼付けを行なう用途に最適であるが、
300℃未満の温度で焼付けを行なうブラインド用やカ
ラーアルミ建材用にも適用できることは勿論であり、ま
たこのほか、比較的高温となるエンジンまわりやポンプ
、発熱体の周囲の構造材などにも使用できる。
Note that the aluminum alloy rolled plate according to the present invention has a
It is ideal for applications that involve baking at high temperatures of 0°C or higher, but
Of course, it can be used for blinds and colored aluminum building materials that are baked at temperatures below 300℃, and can also be used for structural materials around engines, pumps, and heating elements that are relatively hot. can.

Claims (4)

【特許請求の範囲】[Claims] (1)Mg0.10〜5.0%(重量%、以下同じ)お
よびMn0.3〜3.0%を含有し、残部がAlおよび
不可避的不純物よりなり、しかも板表面の金属間化合物
晶出物の最大長さが10μm以下であることを特徴とす
る高強度耐熱性アルミニウム合金圧延板。
(1) Contains 0.10 to 5.0% Mg (wt%, same hereinafter) and 0.3 to 3.0% Mn, with the remainder consisting of Al and inevitable impurities, and intermetallic compounds crystallize on the plate surface. A high-strength heat-resistant rolled aluminum alloy plate, characterized in that the maximum length of the object is 10 μm or less.
(2)Mg0.10〜5.0%、Mn0.3〜3.0%
およびZr0.01〜0.30%を含有し、残部がAl
および不可避的不純物よりなり、しかも板表面の金属間
化合物晶出物の最大長さが10μm以下であることを特
徴とする高強度耐熱性アルミニウム合金圧延板。
(2) Mg0.10-5.0%, Mn0.3-3.0%
and 0.01 to 0.30% of Zr, with the remainder being Al.
and unavoidable impurities, and furthermore, the maximum length of intermetallic compound crystallization on the plate surface is 10 μm or less.
(3)Mg0.10〜5.0%およびMn0.3〜3.
0%を含有し、残部がAlおよび不可避的不純物よりな
るアルミニウム合金の溶湯を、連続鋳造圧延によつて板
厚が3〜15mmの板に鋳造し、さらに冷間圧延を施し
て、板表面の金属間化合物の晶出物の最大長さが10μ
m以下の圧延板を得ることを特徴とする高強度耐熱性ア
ルミニウム合金圧延板の製造方法。
(3) Mg0.10-5.0% and Mn0.3-3.
A molten aluminum alloy containing 0% Al and the remainder consisting of Al and unavoidable impurities is cast into a plate with a thickness of 3 to 15 mm by continuous casting and rolling, and then cold rolled to improve the surface of the plate. Maximum length of crystallized intermetallic compound is 10μ
A method for producing a high-strength, heat-resistant aluminum alloy rolled plate, the method comprising obtaining a rolled plate having a thickness of less than m.
(4)Mg0.10〜5.0%、Mn0.3〜3.0%
およびZr0.01〜0.30%を含有し、残部がAl
および不可避的不純物よりなるアルミニウム合金の溶湯
を、連続鋳造圧延によつて板厚が3〜15mmの板に鋳
造し、さらに冷間圧延を施して、板表面の金属間化合物
の晶出物の最大長さが10μm以下の圧延板を得ること
を特徴とする高強度耐熱性アルミニウム合金圧延板の製
造方法。
(4) Mg0.10-5.0%, Mn0.3-3.0%
and 0.01 to 0.30% of Zr, with the remainder being Al.
The molten aluminum alloy containing aluminum and inevitable impurities is cast into a plate with a thickness of 3 to 15 mm by continuous casting and rolling, and then cold rolled to maximize the crystallization of intermetallic compounds on the plate surface. A method for producing a high-strength, heat-resistant aluminum alloy rolled plate, the method comprising obtaining a rolled plate having a length of 10 μm or less.
JP20755886A 1986-09-03 1986-09-03 Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof Pending JPS6362836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20755886A JPS6362836A (en) 1986-09-03 1986-09-03 Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20755886A JPS6362836A (en) 1986-09-03 1986-09-03 Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof

Publications (1)

Publication Number Publication Date
JPS6362836A true JPS6362836A (en) 1988-03-19

Family

ID=16541725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20755886A Pending JPS6362836A (en) 1986-09-03 1986-09-03 Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof

Country Status (1)

Country Link
JP (1) JPS6362836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298132A (en) * 1988-05-26 1989-12-01 Furukawa Alum Co Ltd Aluminum alloy plate for food can
EP0564815A2 (en) * 1992-02-28 1993-10-13 Ykk Corporation High-strength rolled sheet of aluminum alloy and process for producing the same
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
WO2003052154A1 (en) * 2001-12-14 2003-06-26 Eads Deutschland Gmbh Method for the production of a highly fracture-resistant aluminium sheet material alloyed with scandium (sc) and/or zirconium (zr)
JP2010095739A (en) * 2008-10-14 2010-04-30 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent heat resistance and formability and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662952A (en) * 1979-10-24 1981-05-29 Mitsubishi Keikinzoku Kogyo Kk Manufacture of aluminum alloy sheet suitable for bending and baking finish
JPS6296641A (en) * 1985-10-24 1987-05-06 Nippon Light Metal Co Ltd Aluminum alloy for lead frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662952A (en) * 1979-10-24 1981-05-29 Mitsubishi Keikinzoku Kogyo Kk Manufacture of aluminum alloy sheet suitable for bending and baking finish
JPS6296641A (en) * 1985-10-24 1987-05-06 Nippon Light Metal Co Ltd Aluminum alloy for lead frame

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298132A (en) * 1988-05-26 1989-12-01 Furukawa Alum Co Ltd Aluminum alloy plate for food can
EP0564815A2 (en) * 1992-02-28 1993-10-13 Ykk Corporation High-strength rolled sheet of aluminum alloy and process for producing the same
EP0564815A3 (en) * 1992-02-28 1993-11-10 Yoshida Kogyo Kk High-strength rolled sheet of aluminum alloy and process for producing the same
US5318642A (en) * 1992-02-28 1994-06-07 Yoshida Kogyo K.K. High-strength rolled sheet of aluminum alloy and process for producing the same
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
WO2003052154A1 (en) * 2001-12-14 2003-06-26 Eads Deutschland Gmbh Method for the production of a highly fracture-resistant aluminium sheet material alloyed with scandium (sc) and/or zirconium (zr)
JP2010095739A (en) * 2008-10-14 2010-04-30 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent heat resistance and formability and method of producing the same

Similar Documents

Publication Publication Date Title
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JPH07252573A (en) Al-zn-mg-cu alloy excellent in toughness and its production
HU226817B1 (en) High thermal conductivity aluminium fin alloys
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
US5466312A (en) Method for making aluminum foil and cast strip stock for aluminum foilmaking and products therefrom
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JPH0693397A (en) Production of aluminum foil excellent in strength and foil rollability
CA2432694A1 (en) Production of aluminum alloy foils having high strength and good rollability
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof
JP2754263B2 (en) Aluminum foil and its manufacturing method
KR100664362B1 (en) Production of aluminum alloy strip for use in making thin gauge foils
JPH06101003A (en) Production of aluminum foil excellent in strength and foil rollability
JPS62207850A (en) Rolled aluminum alloy sheet for forming and its production
JP3703919B2 (en) Method for producing directly cast and rolled sheet of Al-Mg-Si alloy
JPS6365402B2 (en)
JP3550944B2 (en) Manufacturing method of high strength 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JPS62182257A (en) Manufacture of hard aluminum alloy rolled sheet for forming
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH0693396A (en) Production of aluminum foil excellent in strength and foil rollability
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JPS6141742A (en) High strength aluminum alloy foil and its manufacture