JP3763651B2 - Aluminum material excellent in high temperature strength and processing method thereof - Google Patents

Aluminum material excellent in high temperature strength and processing method thereof Download PDF

Info

Publication number
JP3763651B2
JP3763651B2 JP28689497A JP28689497A JP3763651B2 JP 3763651 B2 JP3763651 B2 JP 3763651B2 JP 28689497 A JP28689497 A JP 28689497A JP 28689497 A JP28689497 A JP 28689497A JP 3763651 B2 JP3763651 B2 JP 3763651B2
Authority
JP
Japan
Prior art keywords
less
aluminum material
strength
high temperature
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28689497A
Other languages
Japanese (ja)
Other versions
JPH11124648A (en
Inventor
賢二 冨田
良知 加藤
雅司 坂口
祐一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
NGK Insulators Ltd
Original Assignee
Showa Denko KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, NGK Insulators Ltd filed Critical Showa Denko KK
Priority to JP28689497A priority Critical patent/JP3763651B2/en
Publication of JPH11124648A publication Critical patent/JPH11124648A/en
Application granted granted Critical
Publication of JP3763651B2 publication Critical patent/JP3763651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【0001】
【発明の属する技術分野】
【0002】
この発明は、高温域において優れた強度を有するアルミニウム材、およびアルミニウム材の加工方法に関する。
【0003】
なお、この明細書において、「アルミニウム」の語はアルミニウムおよびその合金を含む意味で用いられる。
【従来の技術】
【0004】
Al−Mn系合金は、優れた強度を有することから各種器物、建材等の材料として広く用いられている。また、押出性や加工性が良好であることから、これらの製品は、押出後にさらに引抜等の冷間加工を施して所要形状に製造されることも多い。
【発明が解決しようとする課題】
【0005】
しかし、一般に冷間加工を行うと再結晶温度が低くなるため、製品を300〜400℃程度の高温域で長期間使用すると、焼きなましたと同じ状態となり強度が著しく低下するという問題点があった。
【0006】
そこで、本出願人は先に、高温強度に優れたAl−Mn系アルミニウム材として、金属間化合物の大きさおよび数を規制した出願を行った(特願平9−127037号)。具体的には、長径1μm以上の金属間化合物を1×104個/mm2未満に規定した。
【0007】
しかしながら、その後の研究により、金属間化合物のうち、晶出物については高温環境下において再結晶の核となり再結晶を促進して強度を低下させることから、確かに上記に規定するのが良いが、Al−Mn系析出物については、小さなものが一定以上に存在していた方が高温強度を向上しうる点で望ましいことがわかった。
【0008】
この発明は、このような技術背景に鑑み、高温域で使用しても強度低下の少ない高温強度に優れたアルミニウム材、およびアルミニウム材の加工方法の提供を目的とする。
【課題を解決するための手段】
【0009】
この発明の高温強度に優れたアルミニウム材は、前記目的を達成するために、ビレットを熱間で押出した後に冷間加工を行うことにより製作されたアルミニウム材であって、合金組成において、Mn:0.5〜1.8wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、Cuが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、合金組織において、Al−Mn系析出物は長径が0.4μm以下であり、かつ1個/μm2以上存在することを特徴とする。
【0010】
また、前記アルミニウム材は、前記ビレットに対し均質化処理を施すことなく熱間押出が行われることが好ましい。さらに、前記熱間押出は、500℃以下で押出速度20m/min以上で行われることが好ましい。またさらに、前記冷間加工は、加工率が5%以上かつ35%未満で行われることが好ましい。
【0011】
この発明のアルミニウム材の加工方法は、ビレットを熱間押出した後に冷間加工を行うアルミニウム材の加工方法であって、合金組成において、Mn:0.5〜1.8 wt %を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4 wt %以下、Siが0.4 wt %以下、Mgが0.5 wt %以下、Cuが0.5 wt %以下、他元素がそれぞれ0.2 wt %以下に規制されてなり、前記ビレットに対し均質化処理を施すことなく熱間押出を行うことを特徴とする。
【0012】
前記加工方法において、前記熱間押出は、500℃以下で押出速度20m/min以上で行うことが好ましい。
【0013】
また、前記冷間加工は、5%以上かつ35%未満の加工率で行うことが好ましい。
【0014】
この発明のアルミニウム材の合金組成において、各元素の添加意義および含有量の限定理由、ならびに不純物の規制理由は次のとおりである。
【0015】
Mnは、再結晶粒の成長を抑制して再結晶粒を微細化するとともに粒界移動を抑止することにより、強度向上に寄与する元素である。Mn含有量は、0.5wt%未満では前記効果に乏しく、一方1.5wt%を超えると固溶されないMn量がが増加して粗大な金属間化合物を生成し、再結晶粒を成長させて強度を低下させるおそれがある。従って、Mn含有量は0.5〜1.8wt%とする必要がある。Mn含有量の好ましい下限値は0.8wt%であり、好ましい上限値は1.3wt%である。
【0016】
また、Mnの残部はAlと不純物である。合金中に不純物としてFeおよびSiが存在すると、Al−Fe−Mn、Fe−Si等の晶出物を増加させるとともに、Al−Mn系析出物も粗大化させる原因となる。そのため、FeおよびSiはそれぞれ0.4wt%以下に規制する必要がある。Fe含有量の好ましい上限値は0.3wt%であり、Siの好ましい上限値は0.2wt%である。また、不純物としてのMgの含有が多いと冷間加工時に変形抵抗が大きくなり生産性が悪化するため0.5wt%以下に規制する必要がある。Mgの好ましい上限値は0.1wt%である。また、Cuは強度向上に寄与する元素であるが、含有量が多くなると粗大晶出物を生じさせる原因となるため、0.5wt%以下に規制する必要がある。Cuの好ましい上限値は0.3wt%である。その他の不純物元素は、粗大晶出物を抑制するために、それぞれ0.2wt%以下に規制する必要があり、特に0.1wt%以下が好ましい。
【0017】
このような組成のアルミニウム材の合金組織において、Al−Mn系析出物は、冷間加工後の高温環境による再結晶粒の成長を抑制するために、微細かつ数多く密に存在することが必要である。具体的には、析出物は長径が0.4μm以下で、かつ1個/μm2以上存在する必要である。好ましくは、0.3μm以下、2個/μm2以上存在することが好ましい。このように、Al−Mn系析出物を微細かつ密に存在させることにより、高温環境下での再結晶粒の成長を抑制できる理由は定かではないが、これらAl−Mn系析出物により結晶粒界のピンニング効果が発揮されているからと推測される。なお、アルミニウム材中の晶出物は、長径1μm以上のものが1×104個/mm2未満に規制されているのが望ましい。
【0018】
また、この発明のアルミニウム材はビレットを熱間押出後に冷間加工を施して所要形状の製品に形成されるが、Al−Mn系析出物を上述したように微細かつ密に分布させるために、次のような方法で加工することが好ましい。
【0019】
まず、ビレットの均質化処理は行わないことが好ましい。均質化処理を行うと、処理時の加熱およびその後の冷却過程においてAl−Mn系化合物が粗大結晶として析出するおそれがあるためである。
【0020】
また、押出条件は、押出温度が500℃以下で、押出速度が製品速度として20m/min以上の条件を推奨できる。これは、低温低速の押出では結晶組織が繊維状となり高温環境下における強度低下が著しく、また高温の押出では、Mnの析出および結晶粒の粗大化が進み、特に高温における強度が低下する傾向にあるためである。特に好ましい押出温度の上限値は450℃であり、下限値は400℃である。また、特に好ましい押出速度の下限値は30m/minである。
【0021】
また、冷間加工は、引抜、圧延等のいかなる加工法も適用でき、次式で表される冷間加工率を5%以上かつ35%未満とすることが好ましい。
【0022】
冷間加工率(%)=(1−A1/A0)×100
ただし、A0:冷間加工前の断面積
1:冷間加工後の断面積
冷間加工率が5%未満では加工硬化が不十分であって冷間加工後の強度が不足し、それに伴って高温保持後の強度も不足する。かつ、Al−Mn系析出物が十分に微細化されず、高温保持後の強度不足の原因となる。一方、冷間加工率が35%以上になると、加工硬化により強度は高くなるが、高温保持による強度の低下率が高くなるため、高温で長時間使用したときの強度が不足する。
【0023】
この発明のアルミニウム材においては、合金組成において所定量のMnを含有するとともに、不純物としてのFe、Si、Mg、Cuの含有量が規制されているのみならず、Al−Mn系析出物が微細かつ密に分布するようになされているため、高温環境で長時間使用しても再結晶温度の低下が少なく、再結晶の成長が抑制されて強度低下は小さい。
【実施例】
【0024】
次に、この発明のアルミニウム材の具体的実施例について説明する。
[実験I]
まず、後掲の表1に示す各合金組成のビレットを鋳造した。これらのビレットのうち、各実施例および比較例7〜10については均質化処理することなく、また、比較例1〜6については610℃×16時間の均質化処理を行った。そして、450℃に予備加熱して押出速度60m/minの一定条件で外径72mm×肉厚2.0mmの管を押出した。さらに、これらの押出管をリダクション(冷間加工率)20%、外径落とし量3mmの一定条件で引抜いた。これらの引抜管の合金組織において、Al−Mn系析出物の長径および個数を調べたところ、表1のとおりであった。なお、晶出物については、いずれも長径1×104個/mm2未満であった。
【0025】
こうして得られた各引抜管について、引抜直後、500℃で3時間保持後および327℃で4400時間保持後にそれぞれ耐力を常法により測定した。これらの結果を表1に併せて示す。なお、良否判定は、500℃で短時間および327℃で長時間の高温保持後のいずれにおいても70MPa以上の耐力を維持したものを良品(○)とし、それ以外を不良品(×)とした。
【0026】
【表1】

Figure 0003763651
【0027】
表1の結果から、アルミニウム材の合金組成、Al−Mn系析出物の分布状態を本発明の範囲内とすることにより、長時間高温で保持しても高い耐力を維持できることを確認できた。また、このような析出物の分布状態は、ビレットに対して均質化処理を行わないことにより達成できることを確認できた。
[実験II]
次に、前述の実施例4と同一組成のビレットについて、均質化処理を行うことなく、押出および引抜を行った。押出条件は、表2に示すとおりビレットの予備加熱温度および押出速度を変化させるものとし、引抜条件は実験Iと同一とした。そして、各引抜管について、Al−Mn系析出物の分布状態を調べるとともに、引抜直後、500℃で3時間保持後、327℃で4400時間保持後の耐力を常法により測定した。また、4400時間保持後に金属組織を調べた。これらの結果を表2の示す。なお、表2中、実施例14は表1の実施例4の再掲である。また、引抜管の晶出物については、いずれも長径1×104個/mm2未満であった。
【0028】
【表2】
Figure 0003763651
【0029】
表2の結果から、押出条件を本発明の範囲内とすることにより、Al−Mn系析出物を微細かつ密に分布させることができ、長時間高温で保持しても耐力を維持できることを確認できた。
[実験III]
次に、前述の実施例4と同一組成の合金を用い、均質化処理を行うことなく実験Iと同一条件で押出し、さらに表3に示す各リダクションで引抜いた。そして、引抜管について、Al−Mn系析出物の分布状態を調べるとともに、得られた各引抜管について、引抜直後、500℃で3時間保持後、327℃で4400時間保持後の耐力を常法により測定した。これらの結果を表3に示す。なお、表3中、実施例24は表1の実施例4の再掲である。また、引抜管の晶出物については、いずれも長径1×104個/mm2未満であった。
【0030】
【表3】
Figure 0003763651
【0031】
表3の結果より、本発明の範囲内の条件で冷間加工を行うことにより、Al−Mn系析出物を微細かつ密に分布させることができ、長時間高温で保持しても耐力を維持できることを確認できた。
【発明の効果】
【0032】
以上の次第で、この発明のアルミニウム材は、ビレットを熱間で押出した後に冷間加工を行うことにより製作されたアルミニウム材であって、合金組成において、Mn:0.5〜1.8wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、Cuが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、合金組織において、Al−Mn系析出物は長径が0.4μm以下であり、かつ1個/μm2以上存在する微細かつ密な組織であるから、高温環境下にあっても再結晶の成長が抑制される。そのため、強度低下が抑制され、高温域においても長時間安定して高い強度を維持することができる。また、不純物としてのMg含有量が規制されているため、加工性が損なわれるおそれもない。
【0033】
また、上述のようなAl−Mn析出物の微細かつ密な組織は、この発明のアルミニウム材の加工方法に基づいて、前記ビレットに対し均質化処理を施すことなく熱間押出を行うこと、前記熱間押出を500℃以下で押出速度20m/min以上で行うこと、あるいはさらに前記冷間加工を加工率5%以上かつ35%未満で行うことにより得られ、優れた高温強度を確実に得られる。[0001]
BACKGROUND OF THE INVENTION
[0002]
The present invention relates to an aluminum material having excellent strength in a high temperature region and a method for processing the aluminum material .
[0003]
In this specification, the term “aluminum” is used to include aluminum and its alloys.
[Prior art]
[0004]
Al-Mn alloys are widely used as materials for various types of equipment and building materials because of their excellent strength. In addition, since extrudability and workability are good, these products are often manufactured in a required shape by further cold working such as drawing after extrusion.
[Problems to be solved by the invention]
[0005]
However, in general, when cold working is performed, the recrystallization temperature is lowered. Therefore, when the product is used in a high temperature range of about 300 to 400 ° C. for a long period of time, there is a problem in that the strength is remarkably lowered due to the same state as annealing.
[0006]
Therefore, the present applicant has previously filed an application in which the size and number of intermetallic compounds are regulated as an Al—Mn-based aluminum material excellent in high-temperature strength (Japanese Patent Application No. 9-1207037). Specifically, an intermetallic compound having a major axis of 1 μm or more was defined to be less than 1 × 10 4 pieces / mm 2 .
[0007]
However, as a result of subsequent research, among the intermetallic compounds, the crystallized product becomes the nucleus of recrystallization in a high temperature environment and promotes recrystallization to reduce the strength. As for the Al—Mn-based precipitates, it has been found that it is desirable that a small amount of the precipitate is present in a certain amount or more because the high temperature strength can be improved.
[0008]
In view of such a technical background, an object of the present invention is to provide an aluminum material excellent in high-temperature strength with little decrease in strength even when used in a high-temperature region , and a method for processing the aluminum material .
[Means for Solving the Problems]
[0009]
The aluminum material having excellent high-temperature strength according to the present invention is an aluminum material manufactured by performing cold working after extruding a billet hot in order to achieve the above-mentioned object. Containing 0.5 to 1.8 wt%, the balance is made of Al and impurities, Fe as impurities is 0.4 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, and Cu is 0 .5 wt% or less and other elements are restricted to 0.2 wt% or less, respectively, and in the alloy structure, Al-Mn precipitates have a major axis of 0.4 μm or less and 1 piece / μm 2 or more. It is characterized by.
[0010]
Moreover, it is preferable that the said aluminum material is hot-extruded without performing a homogenization process with respect to the said billet. Furthermore, the hot extrusion is preferably performed at 500 ° C. or less and an extrusion speed of 20 m / min or more. Still further, the cold working is preferably performed at a working rate of 5% or more and less than 35%.
[0011]
The processing method of the aluminum material of this invention is a processing method of the aluminum material that performs cold processing after hot extruding the billet, and contains Mn: 0.5 to 1.8 wt % in the alloy composition , The balance is made of Al and impurities, Fe as impurities is 0.4 wt % or less, Si is 0.4 wt % or less, Mg is 0.5 wt % or less, Cu is 0.5 wt % or less, and other elements are Each is regulated to 0.2 wt % or less, and hot extrusion is performed without homogenizing the billet.
[0012]
In the processing method, the hot extrusion is preferably performed at 500 ° C. or less and an extrusion speed of 20 m / min or more.
[0013]
The cold working is preferably performed at a working rate of 5% or more and less than 35%.
[0014]
In the alloy composition of the aluminum material of the present invention, the significance of addition of each element, the reason for limiting the content, and the reason for regulating impurities are as follows.
[0015]
Mn is an element that contributes to strength improvement by suppressing the growth of recrystallized grains to refine the recrystallized grains and inhibiting grain boundary migration. If the Mn content is less than 0.5 wt%, the above effect is poor. On the other hand, if it exceeds 1.5 wt%, the amount of Mn that is not solid-solved increases and a coarse intermetallic compound is formed, and recrystallized grains are grown. May reduce strength. Therefore, the Mn content needs to be 0.5 to 1.8 wt%. A preferred lower limit of the Mn content is 0.8 wt%, and a preferred upper limit is 1.3 wt%.
[0016]
The balance of Mn is Al and impurities. When Fe and Si are present as impurities in the alloy, crystallized substances such as Al—Fe—Mn and Fe—Si are increased, and Al—Mn based precipitates are also coarsened. Therefore, Fe and Si must be regulated to 0.4 wt% or less, respectively. A preferable upper limit of the Fe content is 0.3 wt%, and a preferable upper limit of Si is 0.2 wt%. In addition, if the content of Mg as an impurity is large, deformation resistance increases during cold working and productivity is deteriorated, so that it is necessary to regulate to 0.5 wt% or less. A preferred upper limit of Mg is 0.1 wt%. Further, Cu is an element that contributes to strength improvement, but if the content increases, it causes coarse crystals to be produced, so it is necessary to regulate it to 0.5 wt% or less. A preferable upper limit of Cu is 0.3 wt%. In order to suppress coarse crystallized substances, other impurity elements need to be regulated to 0.2 wt% or less, and preferably 0.1 wt% or less.
[0017]
In the alloy structure of an aluminum material having such a composition, Al-Mn-based precipitates need to be fine and dense in order to suppress the growth of recrystallized grains due to the high temperature environment after cold working. is there. Specifically, the precipitate needs to have a major axis of 0.4 μm or less and 1 / μm 2 or more. Preferably, it is preferably 0.3 μm or less, 2 / μm 2 or more. Thus, the reason why the growth of recrystallized grains in a high-temperature environment can be suppressed by making Al-Mn-based precipitates fine and dense is not clear, but these Al-Mn-based precipitates make crystal grains It is presumed that the pinning effect of the world is being demonstrated. In addition, it is desirable that the crystallized substance in the aluminum material is regulated to be less than 1 × 10 4 pieces / mm 2 with a major axis of 1 μm or more.
[0018]
In addition, the aluminum material of the present invention is formed into a product of a required shape by performing cold processing after hot extrusion of the billet, but in order to finely and densely distribute the Al-Mn based precipitate as described above, It is preferable to process by the following method.
[0019]
First, it is preferable not to perform a billet homogenization process. This is because when the homogenization treatment is performed, the Al—Mn compound may be precipitated as coarse crystals in the heating and subsequent cooling processes.
[0020]
As the extrusion conditions, it can be recommended that the extrusion temperature is 500 ° C. or less and the extrusion speed is 20 m / min or more as the product speed. This is because in low-temperature and low-speed extrusion, the crystal structure becomes fibrous, and the strength decreases significantly in a high-temperature environment. In high-temperature extrusion, precipitation of Mn and coarsening of crystal grains progress, and the strength at high temperatures tends to decrease. Because there is. A particularly preferable upper limit of the extrusion temperature is 450 ° C., and a lower limit is 400 ° C. A particularly preferred lower limit of the extrusion speed is 30 m / min.
[0021]
Further, any working method such as drawing or rolling can be applied to the cold working, and the cold working rate represented by the following formula is preferably 5% or more and less than 35%.
[0022]
Cold working rate (%) = (1−A 1 / A 0 ) × 100
Where A 0 : cross-sectional area before cold working
A 1 : Cross-sectional area after cold working If the cold working rate is less than 5%, work hardening is insufficient, the strength after cold working is insufficient, and accordingly the strength after holding at high temperature is also insufficient. Moreover, the Al—Mn-based precipitate is not sufficiently refined, which causes insufficient strength after holding at a high temperature. On the other hand, when the cold working rate is 35% or more, the strength is increased by work hardening, but the strength decreasing rate by holding at a high temperature is increased, so that the strength when used at a high temperature for a long time is insufficient.
[0023]
In the aluminum material of the present invention, the alloy composition contains a predetermined amount of Mn and not only the contents of Fe, Si, Mg, and Cu as impurities are regulated, but also Al-Mn based precipitates are fine. In addition, since it is densely distributed, even if it is used for a long time in a high temperature environment, the recrystallization temperature is hardly lowered, the growth of recrystallization is suppressed, and the strength is reduced little.
【Example】
[0024]
Next, specific examples of the aluminum material of the present invention will be described.
[Experiment I]
First, billets having respective alloy compositions shown in Table 1 below were cast. Among these billets, each example and comparative examples 7 to 10 were not homogenized, and comparative examples 1 to 6 were subjected to 610 ° C. × 16 hours of homogenization. A tube having an outer diameter of 72 mm and a wall thickness of 2.0 mm was extruded under a constant condition of preheating to 450 ° C. and an extrusion speed of 60 m / min. Further, these extruded tubes were drawn out under constant conditions of a reduction (cold working rate) of 20% and an outer diameter drop of 3 mm. In the alloy structure of these drawn tubes, the major axis and the number of Al—Mn-based precipitates were examined. The crystallized product was less than 1 × 10 4 major axis / mm 2 in all cases.
[0025]
With respect to each drawn tube thus obtained, the yield strength was measured by a conventional method immediately after drawing, after holding at 500 ° C. for 3 hours, and after holding at 327 ° C. for 4400 hours. These results are also shown in Table 1. In addition, the pass / fail judgment was determined to be a non-defective product (O) that maintained a proof stress of 70 MPa or more after holding at a high temperature for a short time at 500 ° C. and for a long time at 327 ° C., and a non-defective product (×). .
[0026]
[Table 1]
Figure 0003763651
[0027]
From the results of Table 1, it was confirmed that the high proof stress can be maintained even when kept at a high temperature for a long time by setting the alloy composition of the aluminum material and the distribution state of the Al—Mn based precipitates within the range of the present invention. Moreover, it has confirmed that such a distribution state of the precipitate could be achieved by not performing a homogenization process with respect to a billet.
[Experiment II]
Next, the billet having the same composition as in Example 4 was extruded and drawn without performing a homogenization treatment. As shown in Table 2, the extrusion conditions were such that the billet preheating temperature and the extrusion speed were changed, and the drawing conditions were the same as those in Experiment I. And about each drawn tube, while examining the distribution state of the Al-Mn type | system | group deposit, the yield strength after hold | maintaining for 3 hours at 327 degreeC after 3 hours hold | maintaining at 500 degreeC was measured by the conventional method immediately after drawing. The metal structure was examined after holding for 4400 hours. These results are shown in Table 2. In Table 2, Example 14 is a reprint of Example 4 in Table 1. Further, the crystallized material of the drawn tube was less than 1 × 10 4 major axis / mm 2 in all cases.
[0028]
[Table 2]
Figure 0003763651
[0029]
From the results in Table 2, it was confirmed that by making the extrusion conditions within the range of the present invention, Al-Mn-based precipitates can be finely and densely distributed, and the proof stress can be maintained even if kept at a high temperature for a long time. did it.
[Experiment III]
Next, an alloy having the same composition as in Example 4 described above was used and extruded under the same conditions as in Experiment I without performing a homogenization treatment. Further, each of the reductions shown in Table 3 was drawn. And about the drawing tube, while investigating the distribution state of the Al-Mn system precipitate, about each obtained drawing tube, after drawing for 3 hours at 500 degreeC, after pulverization holding for 4400 hours, it is the usual method. It was measured by. These results are shown in Table 3. In Table 3, Example 24 is a reprint of Example 4 in Table 1. Further, the crystallized material of the drawn tube was less than 1 × 10 4 major axis / mm 2 in all cases.
[0030]
[Table 3]
Figure 0003763651
[0031]
From the results in Table 3, it is possible to finely and densely distribute Al-Mn-based precipitates by performing cold working under the conditions within the scope of the present invention, and maintain the yield strength even if kept at a high temperature for a long time. I was able to confirm that I could do it.
【The invention's effect】
[0032]
As described above, the aluminum material of the present invention is an aluminum material manufactured by performing cold working after extruding a billet hot, and in the alloy composition, Mn: 0.5 to 1.8 wt% The balance is made of Al and impurities, Fe as impurities is 0.4 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, Cu is 0.5 wt% or less, and other elements are Each is regulated to 0.2 wt% or less, and in the alloy structure, the Al—Mn-based precipitate is a fine and dense structure having a major axis of 0.4 μm or less and 1 / μm 2 or more. Recrystallization growth is suppressed even in a high temperature environment. Therefore, strength reduction is suppressed, and high strength can be maintained stably for a long time even in a high temperature range. Moreover, since Mg content as an impurity is regulated, there is no possibility that workability is impaired.
[0033]
Further, the fine and dense structure of the Al-Mn precipitate as described above is based on the processing method of the aluminum material of the present invention, and performs hot extrusion without performing homogenization treatment on the billet, It is obtained by performing hot extrusion at 500 ° C. or less at an extrusion speed of 20 m / min or more, or by further performing the cold working at a processing rate of 5% or more and less than 35%, and can reliably obtain excellent high-temperature strength. .

Claims (5)

ビレットを450℃以下の熱間において押出速度20m/min以上で押出した後に冷間加工を行うことにより製作されたアルミニウム材であって、
合金組成において、Mn:0.5〜1.8wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、Cuが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、
合金組織において、Al−Mn系析出物は長径が0.4μm以下であり、かつ1個/μm2以上存在することを特徴とする高温強度に優れたアルミニウム材。
An aluminum material manufactured by performing cold working after extruding a billet at an extrusion speed of 20 m / min or more in a hot state of 450 ° C. or less ,
In the alloy composition, Mn: 0.5 to 1.8 wt% is contained, the balance is made of Al and impurities, Fe as impurities is 0.4 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% % Or less, Cu is 0.5 wt% or less, and other elements are regulated to 0.2 wt% or less,
An aluminum material excellent in high-temperature strength, characterized in that, in the alloy structure, the Al—Mn-based precipitate has a major axis of 0.4 μm or less and 1 piece / μm 2 or more.
前記ビレットに対し均質化処理を施すことなく熱間押出が行われる請求項1に記載の高温強度に優れたアルミニウム材。  The aluminum material excellent in high temperature strength according to claim 1, wherein hot extrusion is performed without subjecting the billet to homogenization. 前記冷間加工は、加工率が5%以上かつ35%未満で行われる請求項1または2に記載の高温強度に優れたアルミニウム材。The aluminum material excellent in high-temperature strength according to claim 1 or 2, wherein the cold working is performed at a working rate of 5% or more and less than 35%. ビレットを熱間で押出した後に冷間加工を行うアルミニウム材の加工方法であって、A method of processing an aluminum material that performs cold processing after extruding a billet hot,
合金組成において、Mn:0.5〜1.8  In the alloy composition, Mn: 0.5 to 1.8 wtwt %を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4%, The balance is made of Al and impurities, and Fe as impurities is 0.4%. wtwt %以下、Siが0.4% Or less, Si is 0.4 wtwt %以下、Mgが0.5%, Mg is 0.5 wtwt %以下、Cuが0.5% Or less, Cu is 0.5 wtwt %以下、他元素がそれぞれ0.2%, 0.2% for other elements wtwt %以下に規制されてなり、前記ビレットに対し均質化処理を施すことなく、450℃以下の熱間において、押出速度20m/min以上で押出を行うことを特徴とするアルミニウム材の加工方法。%, And the extrusion is performed at an extrusion speed of 20 m / min or more at a temperature of 450 ° C. or less without subjecting the billet to homogenization.
前記冷間加工は、5%以上かつ35%未満の加工率で行う請求項4に記載のアルミニウム材の加工方法。The aluminum material processing method according to claim 4, wherein the cold processing is performed at a processing rate of 5% or more and less than 35%.
JP28689497A 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof Expired - Lifetime JP3763651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28689497A JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28689497A JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Publications (2)

Publication Number Publication Date
JPH11124648A JPH11124648A (en) 1999-05-11
JP3763651B2 true JP3763651B2 (en) 2006-04-05

Family

ID=17710383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28689497A Expired - Lifetime JP3763651B2 (en) 1997-10-20 1997-10-20 Aluminum material excellent in high temperature strength and processing method thereof

Country Status (1)

Country Link
JP (1) JP3763651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004207223A1 (en) * 2003-01-27 2004-08-12 Showa Denko K.K. Heat exchanger and process for fabricating same
JP5822562B2 (en) * 2011-07-01 2015-11-24 昭和電工株式会社 Aluminum alloy for photosensitive drum substrate and method for producing aluminum alloy extruded tube for photosensitive drum substrate

Also Published As

Publication number Publication date
JPH11124648A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP2697400B2 (en) Aluminum alloy for forging
EP1359232B1 (en) Method of improving fracture toughness in aluminium-lithium alloys
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JPH0713281B2 (en) Method for manufacturing aluminum-based alloy processed products
JPH01242750A (en) Production of al base alloy and al base alloy product
AU2021103058A4 (en) Aluminum alloy, and manufacturing process and use thereof
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP3763651B2 (en) Aluminum material excellent in high temperature strength and processing method thereof
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JPH0874012A (en) Production of superplastic aluminum alloy
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JPH08232053A (en) Production of high strength aluminum alloy extruded material
JP3690897B2 (en) Aluminum material with excellent high-temperature strength
JP3379901B2 (en) Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JP3303682B2 (en) Superplastic aluminum alloy and method for producing the same
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JP2003164903A (en) Method for manufacturing aluminium foil
JP2000303157A (en) Production of high strength aluminum alloy extruded material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term