JP3690897B2 - Aluminum material with excellent high-temperature strength - Google Patents

Aluminum material with excellent high-temperature strength Download PDF

Info

Publication number
JP3690897B2
JP3690897B2 JP12703797A JP12703797A JP3690897B2 JP 3690897 B2 JP3690897 B2 JP 3690897B2 JP 12703797 A JP12703797 A JP 12703797A JP 12703797 A JP12703797 A JP 12703797A JP 3690897 B2 JP3690897 B2 JP 3690897B2
Authority
JP
Japan
Prior art keywords
less
strength
aluminum material
extrusion
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12703797A
Other languages
Japanese (ja)
Other versions
JPH10317081A (en
Inventor
賢二 冨田
良知 加藤
雅司 坂口
祐一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
NGK Insulators Ltd
Original Assignee
Showa Denko KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, NGK Insulators Ltd filed Critical Showa Denko KK
Priority to JP12703797A priority Critical patent/JP3690897B2/en
Publication of JPH10317081A publication Critical patent/JPH10317081A/en
Application granted granted Critical
Publication of JP3690897B2 publication Critical patent/JP3690897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高温域において優れた強度を有するアルミニウム材に関する。
【0002】
なお、この明細書において、「アルミニウム」の語はアルミニウムおよびその合金を含む意味で用いられる。
【0003】
【従来の技術】
一般に、Al−Mn系合金は、Mnの添加により純アルミニウムの加工性や耐食性を低下させることなく強度の改善を図ったものであり、各種器物、建材等に広く用いられている。そして、これらの製品は、引抜きや圧延等の冷間加工により、所要形状や寸法を形成するとともに、加工硬化による強度調整が行われ、さらに加工歪を解消するための焼鈍を経て製造される。
【0004】
【発明が解決しようとする課題】
しかし、一般に、冷間加工を行うと再結晶温度が低くなるため、製品を300〜400℃程度の高温域で長期間使用すると、焼きなましたと同じ状態となり強度が低下するという問題点があった。
【0005】
なお、一般に、強度向上のためには多量のMgを添加することが知られているが、Mg添加により強度が向上する反面、加工時の変形抵抗が大きくなり生産性が悪くなるという問題がある。
【0006】
この発明は、このような技術背景に鑑み、現状のAl−Mn系合金の加工性を損なうことなく、高温強度に優れたアルミニウム合金材の提供を目的とする。
【0007】
【課題を解決するための手段】
この発明の高温強度に優れたアルミニウム材は、前記目的を達成するために、
熱間押出後に冷間加工を施すアルミニウム材であって、合金組成において、Mn:0.5〜1.5wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、合金組織において、Mn固溶量が0.3wt%以上であり、長径1μm以上の金属間化合物が1×104 個/mm2 未満であることを特徴とする。
【0008】
また、前記熱間押出後の合金組織が再結晶組織であり、かつ前記冷間加工の加工率が5〜30%であることが好ましい。
【0009】
この発明のアルミニウム材の合金組成において、各元素の添加意義および含有量の限定理由、ならびに不純物の規制理由は次のとおりである。
【0010】
Mnは、再結晶粒の成長を抑制して再結晶粒を微細化するとともに粒界移動を抑止することにより、強度向上に寄与する元素である。Mn含有量は、0.5wt%未満では前記効果に乏しく、一方1.5wt%を超えると固溶されないMn量がが増加して粗大な金属間化合物を生成し、再結晶粒を成長させて強度を低下させるおそれがある。従って、Mn含有量は0.5〜1.5wt%とする必要がある。Mn含有量の好ましい下限値は0.8wt%であり、好ましい上限値は1.3wt%である。
【0011】
また、前記元素の残部はAlと不純物である。合金中に不純物としてFeおよびSiが存在すると、Fe−Si、Fe−Mn等の金属間化合物が晶出し、ひいては結晶粒を粗大化させる原因となる。そのため、FeおよびSiはそれぞれ0.4wt%以下に規制する必要がある。Fe含有量の好ましい上限値は0.3wt%であり、Siの好ましい上限値は0.2wt%である。また、不純物としてのMgの含有が多いと冷間加工時に変形抵抗が大きくなり生産性が悪化するため0.5wt%以下に規制する必要がある。Mgの好ましい上限値は0.1wt%である。また、Cuは強度向上に寄与する元素であるが、含有量が多くなると粗大粒子を晶出させる原因となるため、0.5wt%以下に規制する必要がある。Cuの好ましい上限値は0.3wt%である。その他の不純物元素は、粗大粒子の晶出を抑制するために、それぞれ0.2wt%以下に規制する必要があり、特に0.1wt%以下が好ましい。
【0012】
このような組成のアルミニウム材の合金組織において、固溶されないMnは、粗大な金属間化合物を形成して強度を低下させる原因となる。そこで、この発明では、Mn含有量を上記範囲に定めるとともにMn固溶量を合金全体の0.3wt%以上と定め、粗大金属化合物の生成を抑制している。好ましいMn固溶量は0.5wt%以上である。
【0013】
さらに、再結晶粒の粗大化を抑制するためには、金属間化合物は長径1μm以上の粗大なものを1×104 個/mm2 未満とする必要があり、特に0.8×104 個/mm2 未満が好ましい。
【0014】
また、この発明のアルミニウム材は熱間押出後に冷間加工を施して所要形状の製品に形成されるが、この発明では高い強度を得るために熱間押出後の合金組織および冷間加工率を定めている。
【0015】
即ち、熱間押出後の合金組織は、再結晶組織であることが好ましく、その後の冷間加工および高温域での製品使用中における結晶粒の粗大化を抑制して強度を維持する。また、強度保持のために、この再結晶粒は微細粒であることが好ましく、具体的には結晶粒径10mm以下が好ましい。このような再結晶組織を得るための押出条件として、押出温度が350〜550℃、押出速度が製品速度として20m/min以上の条件を推奨できる。これは、低温低速の押出では結晶組織が繊維状となり焼鈍による強度低下が著しく、また高温の押出では、Mnの析出および結晶粒の粗大化が進み、特に高温における強度が低下する傾向にあるためである。
【0016】
また、冷間加工は、引抜、圧延等のいかなる加工法法も適用でき、次式で表される冷間加工率を5〜30%とすることが好ましい。
【0017】
冷間加工率(%)=(1−A1 /A0 )×100
ただし、A0 :冷間加工前の断面積
1 :冷間加工後の断面積
冷間加工率が5%未満では加工硬化が不十分であって冷間加工後の強度が不足し、それに伴って高温保持後の強度も不足する。かつ、再結晶粒が十分に微細化されず、高温保持後の強度不足の原因となる。一方、冷間加工率が30%を超えると、加工硬化により強度は高くなるが、高温保持による強度の低下率が高くなるため、高温で長時間使用したときの強度が不足する。また、冷間加工が引抜である場合、冷間加工率が同じでも、外径落とし量が大きいほど引抜き後の強度は高くなるが、その一方で高温保持後の強度の低下率も大きくなる。そのため、外径落とし量の大小による強度の高低と高温保持後の強度の高低とが逆転することがある。従って、高温使用時に高い強度を得るために、冷間加工率とともに外径の落とし量を調節することが好ましい。
【0018】
【実施例】
次に、この発明のアルミニウム材の具体的実施例について説明する。
【0019】
まず、後掲の表1に示す各合金組成およびMn固溶量のビレットを鋳造し、該ビレットを450℃に加熱し、押出速度60m/分の一定条件で外径72mm×肉厚2.0mmの管を押出した。これらの押出管の合金組織において、長径が1μm以上の金属間化合物量、合金組織、結晶粒径を調べたところ、合金組織はいずれも再結晶組織であり、結晶粒径はいずれも10mm以下の微細結晶であった。また、1μm以上の粗大な金属間化合物量は表1に示すとおりであった。さらに、これらの押出管をリダクション(冷間加工率)20%、外径落とし量3mmの一定条件で引抜いた。
【0020】
得られた各引抜管について、引抜直後および500℃で3時間保持したのちの耐力を常法により測定した。これらの結果を表1に併せて示す。
【0021】
【表1】

Figure 0003690897
【0022】
表1の結果から、合金組成、Mn固溶量、および1μm以上の金属間化合物量を本発明の範囲内とすることにより、高温保持後も高い耐力を維持できることを確認できた。
【0023】
次に、前述の実施例5と同一組成の合金を用い、押出温度および押出速度を変えて製作した押出管について、結晶組織および結晶粒径を調べた。そして、さらに各押出管をリダクション20%、外径落とし量3mmの一定条件で引抜いた。
【0024】
得られた引抜管について、引抜直後および500℃で3時間保持したのちの耐力を常法により測定した。押出条件および引抜管の耐力を表2に示す。
【0025】
【表2】
Figure 0003690897
【0026】
次に、前述の実施例5と同一組成の合金を用い、ビレット450℃、押出速度60m/分の一定条件で押出した多数の同一押出管について、表3に示す各条件で引抜いた。得られた引抜管について、引抜直後および500℃で3時間保持したのちの耐力を常法により測定した。引抜条件および引抜管の耐力を表3に示す。
【0027】
【表3】
Figure 0003690897
【0028】
表2および表3の結果より、本発明の合金組成、Mn固溶量を有し、粗大金属間化合物が規制された合金について、熱間押出後の合金組織を再結晶組織とするとともに冷間加工率を所定範囲とすることにより、高温保持後も高い耐力を維持できることを確認できた。
【0029】
【発明の効果】
以上の次第で、この発明のアルミニウム材は、熱間押出後に冷間加工を施すアルミニウム材であって、合金組成において、Mn:0.5〜1.5wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.4wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、合金組織において、Mn固溶量が0.3wt%以上であり、長径1μm以上の金属間化合物が1×104 個/mm2 未満であるため、結晶粒が微細化され、かつ冷間加工後の結晶粒の成長が抑制される。そのため、高温保持による強度低下が抑制され、高温域においても安定して高い強度を保持することができる。また、不純物としてのMg含有量が規制されているため、加工性が損なわれるおそれもない。
【0030】
さらに前記アルミニウム材において、熱間押出後の合金組織が再結晶組織であり、かつ前記冷間加工の加工率が5〜30%である場合、上述の冷間加工後の再結晶粒の成長抑制効果が顕著であり、優れた高温強度が確実に得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum material having excellent strength in a high temperature range.
[0002]
In this specification, the term “aluminum” is used to include aluminum and its alloys.
[0003]
[Prior art]
In general, Al—Mn-based alloys have been improved in strength without decreasing the workability and corrosion resistance of pure aluminum by the addition of Mn, and are widely used in various types of equipment and building materials. These products are manufactured through cold working such as drawing and rolling to form the required shape and dimensions, and the strength is adjusted by work hardening, followed by annealing for eliminating work strain.
[0004]
[Problems to be solved by the invention]
However, generally, when cold working is performed, the recrystallization temperature is lowered. Therefore, when the product is used in a high temperature range of about 300 to 400 ° C. for a long period of time, there is a problem that the strength is lowered because it is in the same state as annealed.
[0005]
In general, it is known that a large amount of Mg is added to improve the strength. However, while the strength is improved by adding Mg, there is a problem that the deformation resistance at the time of processing increases and the productivity deteriorates. .
[0006]
In view of such a technical background, an object of the present invention is to provide an aluminum alloy material excellent in high-temperature strength without impairing the workability of the current Al—Mn alloy.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an aluminum material excellent in high temperature strength according to the present invention is provided.
An aluminum material that is subjected to cold working after hot extrusion, and contains Mn: 0.5 to 1.5 wt% in the alloy composition, the balance is made of Al and impurities, and Fe as impurities is 0.4 wt% Hereinafter, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, and other elements are restricted to 0.2 wt% or less, respectively. In the alloy structure, the Mn solid solution amount is 0.3 wt% or more, The number of intermetallic compounds having a major axis of 1 μm or more is less than 1 × 10 4 pieces / mm 2 .
[0008]
Moreover, it is preferable that the alloy structure after the hot extrusion is a recrystallized structure, and the processing rate of the cold working is 5 to 30%.
[0009]
In the alloy composition of the aluminum material of the present invention, the significance of addition of each element, the reason for limiting the content, and the reason for regulating impurities are as follows.
[0010]
Mn is an element that contributes to strength improvement by suppressing the growth of recrystallized grains to refine the recrystallized grains and inhibiting grain boundary migration. If the Mn content is less than 0.5 wt%, the above effect is poor. On the other hand, if it exceeds 1.5 wt%, the amount of Mn that is not solid-solved increases and a coarse intermetallic compound is formed, and recrystallized grains are grown. May reduce strength. Therefore, the Mn content needs to be 0.5 to 1.5 wt%. A preferred lower limit of the Mn content is 0.8 wt%, and a preferred upper limit is 1.3 wt%.
[0011]
The balance of the elements is Al and impurities. When Fe and Si are present as impurities in the alloy, intermetallic compounds such as Fe—Si and Fe—Mn are crystallized, which causes coarsening of crystal grains. Therefore, Fe and Si must be regulated to 0.4 wt% or less, respectively. A preferable upper limit of the Fe content is 0.3 wt%, and a preferable upper limit of Si is 0.2 wt%. In addition, if the content of Mg as an impurity is large, deformation resistance increases during cold working and productivity is deteriorated. A preferred upper limit of Mg is 0.1 wt%. Further, Cu is an element that contributes to strength improvement. However, if the content increases, it causes coarse particles to crystallize, so it is necessary to regulate to 0.5 wt% or less. A preferable upper limit of Cu is 0.3 wt%. In order to suppress the crystallization of coarse particles, other impurity elements must be regulated to 0.2 wt% or less, and particularly preferably 0.1 wt% or less.
[0012]
In the alloy structure of an aluminum material having such a composition, Mn that is not solid-dissolved forms a coarse intermetallic compound and causes a decrease in strength. Therefore, in the present invention, the Mn content is set within the above range, and the Mn solid solution amount is set to 0.3 wt% or more of the entire alloy to suppress the formation of a coarse metal compound. A preferable Mn solid solution amount is 0.5 wt% or more.
[0013]
Furthermore, in order to suppress the coarsening of recrystallized grains, it is necessary to make the intermetallic compound coarse with a major axis of 1 μm or more, and less than 1 × 10 4 pieces / mm 2 , especially 0.8 × 10 4 pieces. / Mm 2 is preferred.
[0014]
In addition, the aluminum material of the present invention is formed into a product having a required shape by performing cold working after hot extrusion. In this invention, in order to obtain high strength, the alloy structure and the cold working rate after hot extrusion are reduced. It has established.
[0015]
That is, the alloy structure after hot extrusion is preferably a recrystallized structure, and the strength is maintained by suppressing the coarsening of crystal grains during subsequent cold working and use of the product in a high temperature range. In order to maintain the strength, the recrystallized grains are preferably fine grains, and specifically, the crystal grain diameter is preferably 10 mm or less. As an extrusion condition for obtaining such a recrystallized structure, it is possible to recommend an extrusion temperature of 350 to 550 ° C. and an extrusion speed of a product speed of 20 m / min or more. This is because the crystal structure becomes fibrous in low-temperature low-speed extrusion, and the strength is significantly reduced by annealing. In high-temperature extrusion, precipitation of Mn and coarsening of crystal grains progress, and the strength at high temperatures tends to decrease. It is.
[0016]
In addition, any working method such as drawing or rolling can be applied to the cold working, and the cold working rate represented by the following formula is preferably 5 to 30%.
[0017]
Cold working rate (%) = (1−A 1 / A 0 ) × 100
However, A 0 : Cross-sectional area before cold working A 1 : Cross-sectional area after cold working If the cold working rate is less than 5%, work hardening is insufficient and strength after cold working is insufficient. Along with this, the strength after holding at high temperature is also insufficient. In addition, the recrystallized grains are not sufficiently refined, which causes insufficient strength after holding at a high temperature. On the other hand, if the cold work rate exceeds 30%, the strength increases due to work hardening, but the strength decrease rate due to holding at a high temperature increases, so that the strength when used at a high temperature for a long time is insufficient. Further, when cold working is drawing, even if the cold working rate is the same, the strength after drawing increases as the outer diameter drop amount increases, but on the other hand, the rate of decrease in strength after holding at high temperature also increases. For this reason, the strength level due to the amount of outer diameter drop and the strength level after holding at high temperature may be reversed. Therefore, in order to obtain high strength during high temperature use, it is preferable to adjust the amount of outer diameter drop along with the cold work rate.
[0018]
【Example】
Next, specific examples of the aluminum material of the present invention will be described.
[0019]
First, billets of each alloy composition and Mn solid solution amount shown in Table 1 below are cast, the billets are heated to 450 ° C., and the outer diameter is 72 mm × the wall thickness is 2.0 mm under a constant condition of an extrusion speed of 60 m / min. The tube was extruded. In the alloy structure of these extruded tubes, the amount of intermetallic compound having a major axis of 1 μm or more, the alloy structure, and the crystal grain size were examined. The alloy structure was a recrystallized structure, and the crystal grain size was 10 mm or less. It was a fine crystal. Moreover, the amount of coarse intermetallic compounds of 1 μm or more was as shown in Table 1. Further, these extruded tubes were drawn out under constant conditions of a reduction (cold working rate) of 20% and an outer diameter drop of 3 mm.
[0020]
About each obtained drawn tube, the yield strength after hold | maintaining at 500 degreeC immediately after drawing for 3 hours was measured by the conventional method. These results are also shown in Table 1.
[0021]
[Table 1]
Figure 0003690897
[0022]
From the results in Table 1, it was confirmed that a high yield strength could be maintained even after holding at a high temperature by setting the alloy composition, the Mn solid solution amount, and the amount of intermetallic compounds of 1 μm or more within the scope of the present invention.
[0023]
Next, the crystal structure and the crystal grain size of the extruded tube manufactured by using the alloy having the same composition as in Example 5 and changing the extrusion temperature and the extrusion speed were examined. Further, each extruded tube was pulled out under constant conditions of 20% reduction and 3 mm outer diameter drop.
[0024]
The yield strength of the obtained drawn tube was measured by a conventional method immediately after drawing and after holding at 500 ° C. for 3 hours. Table 2 shows the extrusion conditions and the yield strength of the drawn tube.
[0025]
[Table 2]
Figure 0003690897
[0026]
Next, using the alloy having the same composition as in Example 5 described above, a number of the same extruded tubes extruded at a constant condition of a billet of 450 ° C. and an extrusion speed of 60 m / min were drawn under the conditions shown in Table 3. The yield strength of the obtained drawn tube was measured by a conventional method immediately after drawing and after holding at 500 ° C. for 3 hours. Table 3 shows the drawing conditions and the yield strength of the drawn tube.
[0027]
[Table 3]
Figure 0003690897
[0028]
From the results of Tables 2 and 3, the alloy composition of the present invention, the amount of Mn solid solution, and the alloy in which the coarse intermetallic compound is regulated, the alloy structure after hot extrusion is recrystallized and cold. It was confirmed that by setting the processing rate within a predetermined range, high proof stress can be maintained even after holding at high temperature.
[0029]
【The invention's effect】
As described above, the aluminum material of the present invention is an aluminum material that is subjected to cold working after hot extrusion, and contains Mn: 0.5 to 1.5 wt% in the alloy composition, with the balance being Al and impurities. In the alloy structure, Fe is 0.4 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, and other elements are each 0.2 wt% or less. Since the amount of solid solution is 0.3 wt% or more and the intermetallic compound with a major axis of 1 μm or more is less than 1 × 10 4 pieces / mm 2 , the crystal grains are refined and the crystal grains grow after cold working Is suppressed. Therefore, strength reduction due to high temperature holding is suppressed, and high strength can be stably maintained even in a high temperature range. Moreover, since Mg content as an impurity is regulated, there is no possibility that the workability is impaired.
[0030]
Further, in the aluminum material, when the alloy structure after hot extrusion is a recrystallized structure and the processing rate of the cold working is 5 to 30%, the growth suppression of the recrystallized grains after the cold working is performed. The effect is remarkable, and excellent high temperature strength can be obtained with certainty.

Claims (2)

熱間押出後に冷間加工を施すアルミニウム材であって、
合金組成において、Mn:0.5〜1.5wt%を含有し、残部がAlおよび不純物からなり、不純物としてのFeが0.wt%以下、Siが0.4wt%以下、Mgが0.5wt%以下、Cuが0.5wt%以下、他元素がそれぞれ0.2wt%以下に規制されてなり、
熱間押出が、押出温度400〜450℃、押出速度40m/min以上でなされ、
熱間押出後で冷間加工前の合金組織において、Mn固溶量が0.3wt%以上であり、長径1μm以上の金属間化合物が1×104個/mm2未満であり、かつ結晶粒径が10 mm 以下の再結晶組織であることを特徴とする高温強度に優れたアルミニウム材。
An aluminum material that is cold worked after hot extrusion,
In the alloy composition, Mn: 0.5 to 1.5 wt% is contained, the balance is made of Al and impurities, and Fe as impurities is 0.8. 3 wt% or less, Si is 0.4 wt% or less, Mg is 0.5 wt% or less, Cu is 0.5 wt% or less, and other elements are restricted to 0.2 wt% or less,
Hot extrusion is performed at an extrusion temperature of 400 to 450 ° C. and an extrusion speed of 40 m / min or more,
In cold working before the alloy structure after hot extruding, and the Mn solid solution amount is more than 0.3 wt%, Ri between long diameter 1μm or more metal compounds 1 × 10 4 cells / mm 2 less der, and crystal aluminum material having a particle size and an excellent high temperature strength, characterized by the following recrystallized structure der Rukoto 10 mm.
記冷間加工の加工率が5〜30%である請求項1に記載の高温強度に優れたアルミニウム材。Excellent aluminum material to high temperature strength according to claim 1 before Kihiya rolling working ratio is 5-30%.
JP12703797A 1997-05-16 1997-05-16 Aluminum material with excellent high-temperature strength Expired - Lifetime JP3690897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12703797A JP3690897B2 (en) 1997-05-16 1997-05-16 Aluminum material with excellent high-temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12703797A JP3690897B2 (en) 1997-05-16 1997-05-16 Aluminum material with excellent high-temperature strength

Publications (2)

Publication Number Publication Date
JPH10317081A JPH10317081A (en) 1998-12-02
JP3690897B2 true JP3690897B2 (en) 2005-08-31

Family

ID=14950087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12703797A Expired - Lifetime JP3690897B2 (en) 1997-05-16 1997-05-16 Aluminum material with excellent high-temperature strength

Country Status (1)

Country Link
JP (1) JP3690897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116255B2 (en) * 2005-06-09 2013-01-09 東洋アルミニウム株式会社 Packaging material and electrical / electronic structure member using aluminum alloy

Also Published As

Publication number Publication date
JPH10317081A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP2697400B2 (en) Aluminum alloy for forging
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
AU2021103058A4 (en) Aluminum alloy, and manufacturing process and use thereof
JPH108172A (en) Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP3324444B2 (en) Manufacturing method of extruded aluminum material with excellent bending workability
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
JP3690897B2 (en) Aluminum material with excellent high-temperature strength
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP4145454B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP3763651B2 (en) Aluminum material excellent in high temperature strength and processing method thereof
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JP3379901B2 (en) Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JP2004277786A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPS6158546B2 (en)
JPH09176805A (en) Production of aluminum fin material
JP3148097B2 (en) Method for producing aluminum alloy having high proof stress during long-term storage at high temperature
JP3892179B2 (en) Extruded tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term