JPH11116696A - Member for precision equipment - Google Patents
Member for precision equipmentInfo
- Publication number
- JPH11116696A JPH11116696A JP9287374A JP28737497A JPH11116696A JP H11116696 A JPH11116696 A JP H11116696A JP 9287374 A JP9287374 A JP 9287374A JP 28737497 A JP28737497 A JP 28737497A JP H11116696 A JPH11116696 A JP H11116696A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- precision equipment
- fiber reinforced
- reinforced composite
- precision
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭素繊維補強複合
部材(CFRP)を利用した精密機器部材に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision equipment member using a carbon fiber reinforced composite member (CFRP).
【0002】[0002]
【従来の技術】精密測定器や精密加工器の開発が急速に
行われる中で、それらを構成する各種部材は熱膨張、熱
収縮に耐え、しかも高剛性と高い寸法精度が要求され
る。この例として、炭素繊維補強複合材(CFRP)を
精密機器の部材に利用することが最近精密機器製造分野
で採用されつつある。その代表的な精密機器としては、
特開平6−331870号公報に開示されているよう
に、熱硬化性樹脂を炭素繊維に含浸させて成形した炭素
繊維補強複合材を光学機器用定盤に利用する技術が開発
されている。2. Description of the Related Art With the rapid development of precision measuring devices and precision processing devices, various members constituting them are required to withstand thermal expansion and thermal shrinkage, as well as high rigidity and high dimensional accuracy. As an example of this, the use of carbon fiber reinforced composite material (CFRP) for components of precision equipment has recently been adopted in the field of precision equipment manufacturing. As the representative precision equipment,
As disclosed in Japanese Patent Application Laid-Open No. Hei 6-331870, a technique has been developed in which a carbon fiber reinforced composite material formed by impregnating a thermosetting resin with carbon fiber and molded is used for a surface plate for an optical device.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、炭素繊
維補強複合材を精密機器部材に使用した例は、前述した
先行例で開示されたような定盤のみで、それ以外の精密
機器部材は依然としてその殆どがアルミナ、サイアロ
ン、SiC等のセラミックスで製造された部材である。
しかしながら、これらのセラミックスで製造された部材
においては、従来の石質材料、金属材料まはたアルミニ
ウム材料で製造された部材に比較し、重量の点では改善
されているとは言え、依然として重量があり更に重量軽
減が求められている。特に、精密機器測定機器或いは検
査機器においては物によっては相当大型かつ大重量にも
なり、中には重量で数トンになるものもある。しかも、
このような大型の精密機器においては各部材サイズも大
きいためにセラミックスでは製造できないという問題が
ある。例えば、これら精密機器の部材としては、ガイ
ド、ステージ(テーブル)、ロータリーテーブル、ウエ
ハーチャック、フレーム等が挙げられる。これら部材
は、軽量化もさることながら強度、剛性、寸法精度、低
熱膨張性、精密加工性等の特性がが要求されるため、こ
れを満足する材料が求められていた。However, an example in which a carbon fiber reinforced composite material is used for a precision instrument member is only a surface plate as disclosed in the above-mentioned prior art, and other precision instrument members are still used for the precision instrument member. Most are members made of ceramics such as alumina, sialon, and SiC.
However, although members made of these ceramics have been improved in terms of weight compared to members made of conventional stone materials, metal materials, or aluminum materials, the weight still remains. There is a need for further weight reduction. In particular, precision equipment measuring equipment or inspection equipment can be quite large and heavy, depending on the object, and some can be several tons in weight. Moreover,
In such a large precision instrument, there is a problem that it cannot be manufactured from ceramics because each member is large in size. For example, members of these precision instruments include guides, stages (tables), rotary tables, wafer chucks, frames, and the like. Since these members are required to have properties such as strength, rigidity, dimensional accuracy, low thermal expansion, and precision workability, as well as weight reduction, materials satisfying these requirements have been demanded.
【0004】[0004]
【課題を解決するための手段】本発明は、上記問題点を
解決すると同時に、上記要求を満足するもので、炭素繊
維補強複合部材が、弾性率:50〜200GPa熱膨張
率:2〜−1×10-6/Kを持つ特性を有する炭素繊維
補強複合部材を用いた精密機器用部材である。SUMMARY OF THE INVENTION The present invention solves the above problems and satisfies the above requirements, and the carbon fiber reinforced composite member has an elastic modulus of 50 to 200 GPa and a thermal expansion coefficient of 2 to -1. It is a member for precision equipment using a carbon fiber reinforced composite member having characteristics of × 10 -6 / K.
【0005】[0005]
【発明の実施の形態】次に、本発明を具体的に説明す
る。図1に本発明による平面度測定装置を一例として、
その概略を示した。この平面度測定装置は、平面度±
0.2μmという高精度で測定可能な機器である。本発
明による炭素繊維補強複合部材で製作された平面度測定
装置用部材として最適な部材としては、特に、精密位置
決め用部材である。この精密位置決め用部材は、X−Y
ステージと称するテーブルを有し、リニアサーボモータ
でX方向に移動可能なXステージの上部または下部にパ
ルスモータとボールネジによりY方向に移動可能なYス
テージを設けて相互に独立してX方向、Y方向に移動さ
せることにより位置決めを行い平面度を測定するもので
ある。このように、X−Yステージは、X方向、Y方向
への移動が頻繁に行われるため、従来の素材である金属
あるいはセラミックスで製造された部材では、重量的に
動きに負荷がかかり迅速に対応できないという問題に比
較し、炭素繊維補強複合部材で製作したX−Yステージ
においては軽量化が実現でき、従来の素材に対し、約1
/2軽減できる。Next, the present invention will be described specifically. FIG. 1 shows an example of a flatness measuring device according to the present invention.
The outline is shown. This flatness measuring device has a flatness ±
It is a device that can measure with high accuracy of 0.2 μm. The most suitable member as a member for a flatness measuring device made of the carbon fiber reinforced composite member according to the present invention is a member for precise positioning. This precision positioning member is XY
There is a table called a stage, and a Y stage movable in the Y direction by a pulse motor and a ball screw is provided above or below the X stage movable in the X direction by the linear servo motor, and the X stage and the Y direction are independent of each other. The positioning is performed by moving in the direction, and the flatness is measured. As described above, since the XY stage frequently moves in the X direction and the Y direction, a heavy load is applied to the movement of a member made of a metal or ceramic which is a conventional material, and the member is quickly moved. Compared to the problem that it cannot be dealt with, the XY stage made of the carbon fiber reinforced composite member can achieve weight reduction, and is about 1
/ 2 can be reduced.
【0006】本発明で使用する炭素繊維補強複合部材と
しては、熱硬化性樹脂または熱可塑性樹脂を組み合わせ
て用い、剛性および熱膨張率は炭素繊維の弾性率、炭素
繊維の角度(+90°〜0°〜−90°の範囲)および
炭素繊維の体積含有率(70〜40容量%の範囲)等を
組み合わせて設計することが望ましいが、特に、炭素繊
維の弾性率は200〜800GPaの範囲、また熱膨張
率は−0.5〜−1.6×10-6/Kに範囲内にある必
要がある。具体的な各特性の比較を以下の表に示した。As the carbon fiber reinforced composite member used in the present invention, a thermosetting resin or a thermoplastic resin is used in combination, and the rigidity and the coefficient of thermal expansion are determined by the elastic modulus of the carbon fiber and the angle of the carbon fiber (+ 90 ° to 0 °). ° to -90 °) and the volume content of carbon fiber (in the range of 70 to 40% by volume), and the like, but it is particularly desirable to design the elastic modulus of the carbon fiber in the range of 200 to 800 GPa. The coefficient of thermal expansion needs to be in the range of -0.5 to -1.6 x 10-6 / K. The comparison of specific characteristics is shown in the following table.
【0007】[0007]
【表1】 [Table 1]
【0008】上述の平面度測定装置用部材は単なる本発
明の1例に過ぎず、その他の精密機器用のガイド、ステ
ージ(テーブル)、ロータリーテーブル、ウエハーチャ
ック、フレーム等、適用範囲は無限に拡大できるもので
ある。The above-mentioned members for a flatness measuring device are merely examples of the present invention, and the applicable range of guides, stages (tables), rotary tables, wafer chucks, frames, etc. for other precision instruments is infinitely expanded. You can do it.
【0009】[0009]
【発明の効果】以上説明したように、本発明による炭素
繊維補強部材で製作した精密機器用各種部材は、軽量、
かつ高精度で、しかも高い剛性等の特性を有する部材を
提供することが可能となる。更に、アルミナをCFRP
部材に変更した図1に示す平面度測定装置用Xステージ
のガイド部材のたわみが2μmから0.5μmに減少す
る効果が得られた。As described above, various members for precision equipment manufactured with the carbon fiber reinforced member according to the present invention are lightweight,
In addition, it is possible to provide a member having characteristics such as high accuracy and high rigidity. In addition, alumina is CFRP
The effect of reducing the deflection of the guide member of the flatness measuring apparatus X stage shown in FIG. 1 changed from 2 μm to 0.5 μm was obtained.
【図1】本発明による一例としての平面度測定装置にお
けるX−Yステージの概略を示す図。FIG. 1 is a diagram schematically showing an XY stage in a flatness measuring apparatus as an example according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 浩巳 東京都千代田区大手町2丁目6番3号 新 日本製鐵株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiromi Kimura 2-6-3 Otemachi, Chiyoda-ku, Tokyo New Nippon Steel Corporation
Claims (2)
からなることを特徴とする精密機器用部材。1. A member for precision equipment, wherein the member for precision equipment is a carbon fiber reinforced composite member.
50〜200GPa熱膨張率:2〜−1×10-6/Kを
持つ特性を有することを特徴とする請求項1記載の精密
機器用部材。2. The carbon fiber reinforced composite member has an elastic modulus:
The member for precision equipment according to claim 1, wherein the member has a characteristic of having a coefficient of thermal expansion of 50 to 200 GPa: 2 to -1 x 10-6 / K.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9287374A JPH11116696A (en) | 1997-10-20 | 1997-10-20 | Member for precision equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9287374A JPH11116696A (en) | 1997-10-20 | 1997-10-20 | Member for precision equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11116696A true JPH11116696A (en) | 1999-04-27 |
Family
ID=17716542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9287374A Withdrawn JPH11116696A (en) | 1997-10-20 | 1997-10-20 | Member for precision equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11116696A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005288619A (en) * | 2004-03-31 | 2005-10-20 | Nippon Oil Corp | Cfrp surface table |
KR100712025B1 (en) * | 2004-07-30 | 2007-05-02 | 레이저프론트 테크놀로지스 가부시키가이샤 | Gantry type xy stage |
KR100712680B1 (en) * | 2005-12-14 | 2007-05-02 | 주식회사 로보스타 | Xy feeding device girder and xy feeding device thereby |
EP2042929A1 (en) * | 2007-09-26 | 2009-04-01 | ASML Netherlands BV | Lithographic apparatus having a Lorentz actuator with a composite carrier |
-
1997
- 1997-10-20 JP JP9287374A patent/JPH11116696A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005288619A (en) * | 2004-03-31 | 2005-10-20 | Nippon Oil Corp | Cfrp surface table |
KR100712025B1 (en) * | 2004-07-30 | 2007-05-02 | 레이저프론트 테크놀로지스 가부시키가이샤 | Gantry type xy stage |
US7239161B2 (en) | 2004-07-30 | 2007-07-03 | Laserfront Technologies, Inc. | Gantry-type XY stage |
KR100712680B1 (en) * | 2005-12-14 | 2007-05-02 | 주식회사 로보스타 | Xy feeding device girder and xy feeding device thereby |
EP2042929A1 (en) * | 2007-09-26 | 2009-04-01 | ASML Netherlands BV | Lithographic apparatus having a Lorentz actuator with a composite carrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6193199B1 (en) | Sample stage including a slider assembly | |
US7348709B2 (en) | Heavy-load nanopositioner with dual-parallel flexure design | |
US10239167B2 (en) | Stiffness-frequency adjustable XY micromotion stage based on stress stiffening | |
US6353271B1 (en) | Extreme-UV scanning wafer and reticle stages | |
Ling et al. | Development of a multistage compliant mechanism with new boundary constraint | |
CN105252285A (en) | Piezoelectric-driven three-dimensional elliptic micro-feed motion platform | |
US5013958A (en) | X-Y stage with ultrasonic actuator | |
Sugihara et al. | Piezoelectrically driven XYθ table for submicron lithography systems | |
JPH11116696A (en) | Member for precision equipment | |
US10393242B2 (en) | Method and apparatus for implementing ultra-high stability long-vertical travel stage | |
Hsiao et al. | Analysis of a novel flexure hinge with three degrees of freedom | |
CN103219049A (en) | Precise positioning one-dimensional platform | |
CN204332383U (en) | High precision Z axis forward amplifies one-dimensional precise locating platform | |
JP2002158274A (en) | Positioning device | |
TWI410295B (en) | Two - degree - of - freedom nano - level piezoelectric alignment platform mechanism | |
US20100068551A1 (en) | Mechanical design of laminar weak-link mechanisms with centimeter-level travel range and sub-nanometer positioning resolution | |
JP2000214280A (en) | Stage mechanism | |
JPH11124693A (en) | Member for precision equipment | |
Kurisaki et al. | A newly developed XY planar nano-motion table system with large travel ranges | |
CN115773445A (en) | Multi-degree-of-freedom gantry air floatation motion system for precise optical detection imaging | |
Chen et al. | Design of a novel 5-DOF flexure-based compound alignment stage for Roll-to-Roll Printed Electronics | |
CN104505127A (en) | Z-axis positive direction amplifying one-dimensional precise positioning platform | |
JPS60223119A (en) | Noncontacting driving type precise moving base | |
Yang et al. | Research on the structure of high-speed large-scale ultra-precision positioning system | |
Herpe et al. | Design, fabrication and testing of a hybrid micro-motion XY stage driven by voice coil actuators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050104 |