JPH11116359A - Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same - Google Patents

Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same

Info

Publication number
JPH11116359A
JPH11116359A JP9283491A JP28349197A JPH11116359A JP H11116359 A JPH11116359 A JP H11116359A JP 9283491 A JP9283491 A JP 9283491A JP 28349197 A JP28349197 A JP 28349197A JP H11116359 A JPH11116359 A JP H11116359A
Authority
JP
Japan
Prior art keywords
carbon
boron carbide
composite material
thermal conductivity
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9283491A
Other languages
Japanese (ja)
Inventor
Gakunen Ka
楽年 何
Shigeyuki Ukita
茂幸 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP9283491A priority Critical patent/JPH11116359A/en
Publication of JPH11116359A publication Critical patent/JPH11116359A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To provide a carbon-boron carbide composite material that is suitable as a protective material for a variety of instruments arranged in a nuclear fusion reactor, its production and a protective material for instruments in the nuclear fusion reactor using the same. SOLUTION: The objective carbon-boron carbide composite material is prepared by impregnating boron carbide with either thermally decomposed carbon or glassy carbon and has a thermal conductivity of 30 W/mK at room temperature. The carbon-boron carbide composite material is produced by impregnating a body formed by binding carbon fiber with a slurry of boron carbide powder, then impregnating it with thermally decomposed carbon at a temperature of <=1,600 deg.C, or the molded body is impregnated with a slurry of boron carbide powder and with glassy carbon, then treated with heat at a temperature of <=1,600 deg.C thereby giving the objective carbon-boron carbide composite material with a thermal conductivity of <=30 W/mK.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核融合炉内に配置
される種々の機器の保護部材に適した炭素複合材、特に
炭素−炭化ホウ素複合材、その製造方法並びにその用途
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon composite material, particularly a carbon-boron carbide composite material, which is suitable for a protective member of various devices disposed in a nuclear fusion reactor, a method for producing the same, and a use thereof. .

【0002】[0002]

【従来の技術】核融合炉内には、プラズマの発生状況等
を調べるための各種の測定器(付属部品も含めて)を始
めとして種々の機器が配置されているが、これらの機器
を外側から覆って保護するための部材もプラズマに直に
接するため、耐熱性はもちろんプラズマの安定化を阻害
するようなものは好ましくない。そこで、一般には炉壁
内張り用材料として優れた炭素材料がそのまま使用され
ている。
2. Description of the Related Art In a nuclear fusion reactor, various instruments such as various measuring instruments (including attached parts) for examining the state of plasma generation and the like are arranged. Since a member for covering and protecting the substrate comes into direct contact with the plasma, it is not preferable to use a member that inhibits not only heat resistance but also plasma stabilization. Therefore, generally, an excellent carbon material is used as it is as a material for furnace wall lining.

【0003】即ち、従来では、炭素材料の有する耐熱性
(大気圧以下での不溶融性),熱的安定性,耐食性や軽
量でありながら高強度,高靭性等といった特性及びカー
ボンの原子番号が小さく、プラズマ温度の低下を小さく
抑えられること等の利点が着目され、この炭素材料、特
に熱伝導率が比較的大きい炭素繊維フェルトや炭素繊維
強化炭素複合材(以下「C/C材」という。)などの炭
素繊維を結合させた炭素成形体が使用されている。
That is, conventionally, carbon materials have properties such as heat resistance (infusibility at atmospheric pressure or less), thermal stability, corrosion resistance, high strength and high toughness while being lightweight, and the atomic number of carbon. Attention has been paid to advantages such as a small size and a small decrease in plasma temperature, and this carbon material, particularly a carbon fiber felt or a carbon fiber reinforced carbon composite material having a relatively large thermal conductivity (hereinafter referred to as a “C / C material”). ) Is used.

【0004】さらには、炭素材料にホウ素を混入する
と、プラズマ中における酸素等の不純物のゲッタリング
効果や水素プラズマによる化学スパッタリングの抑制効
果が現れ、プラズマの安定化の確保に有効であるという
利点が着目され、上記炭素成形体のいわば改良型材料と
して、炭素繊維を結合させた成形体にホウ素を含浸し固
着してなる炭素−炭化ホウ素複合材が使用されている。
このような炭素−炭化ホウ素複合材は、上述のようにも
ともと核融合炉の炉壁内張り用材料として、より高熱伝
導率のものを指向して開発されたものである。即ち、一
般に得られる炭素−炭化ホウ素複合材でも、熱伝導率が
低くても80〜100W/mK程度には達しており、さ
らに最近では200W/mK以上のものまで開発されて
いる(特開平8−198691号公報)。
Furthermore, when boron is mixed into a carbon material, an effect of gettering impurities such as oxygen in plasma and an effect of suppressing chemical sputtering by hydrogen plasma appear, which is advantageous in that plasma is stabilized. Attention has been paid to a carbon-boron carbide composite material obtained by impregnating and immobilizing boron in a carbon fiber-bonded molded body as a so-called improved material of the carbon molded body.
Such a carbon-boron carbide composite material was originally developed for a material having a higher thermal conductivity as a material for lining the walls of a fusion reactor as described above. That is, even a generally obtained carbon-boron carbide composite material has reached about 80 to 100 W / mK even at a low thermal conductivity, and more recently a carbon-boron carbide composite material having a thermal conductivity of 200 W / mK or more has been developed (Japanese Unexamined Patent Publication No. -198691).

【0005】[0005]

【発明が解決しようとする課題】しかし、各種機器の保
護部材は、その機器を正常に機能させるために炉内の高
温雰囲気から熱をできる限り遮断して機器を守ることを
目的としているため、特性として熱伝導率だけはなるべ
く低いものが好ましい。しかし、従来の炭素−炭化ホウ
素複合材では、熱伝導率が低いといっても80W/mK
前後のレベルにあるため、機器の保護部材としての機能
は小さく、比較的早期に溶損事故等が発生し、このため
機器の交換作業の回数が多くなり、その分メンテナンス
も煩雑になるという問題があった。
However, since the protective member of various equipment is intended to protect the equipment by cutting off as much heat as possible from the high temperature atmosphere in the furnace in order to make the equipment function properly, It is preferable that only the thermal conductivity be as low as possible. However, the conventional carbon-boron carbide composite material has a low thermal conductivity of 80 W / mK.
Since it is at the level before and after, the function as a protection member of the equipment is small, and erosion accidents etc. occur relatively early, so that the number of replacement work of the equipment increases, and the maintenance becomes complicated accordingly. was there.

【0006】本発明は、上記の事情に鑑みてなされたも
のであり、その目的とするところは、核融合炉内に配置
される種々の機器の保護部材として最適な炭素−炭化ホ
ウ素複合材及びその製造方法並びにその複合材を用いた
核融合炉測定器用保護部材を提供する点にある。
[0006] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carbon-boron carbide composite material and a carbon-boron carbide composite material which are most suitable as protection members for various devices arranged in a fusion reactor. It is an object of the present invention to provide a manufacturing method thereof and a protective member for a fusion reactor measuring instrument using the composite material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明のうち、請求項1記載の発明の炭素−炭化ホウ素複
合材は、炭化ホウ素と熱分解炭素又はガラス状炭素のい
ずれか一方が含浸された炭素−炭化ホウ素複合材であっ
て、該炭素−炭化ホウ素複合材の熱伝導率(室温)が3
0W/mK以下であることを特徴とする。これにより、
核融合炉内に配置される種々の機器の保護部材に適した
炭素複合材とすることができる。
The carbon-boron carbide composite material according to the first aspect of the present invention, which has achieved the above object, comprises boron carbide and either one of pyrolytic carbon or glassy carbon. Is a carbon-boron carbide composite material impregnated with a material having a thermal conductivity (room temperature) of 3
0 W / mK or less. This allows
A carbon composite material suitable for protection members of various devices arranged in a fusion reactor can be provided.

【0008】また、請求項2記載の発明の製造方法は、
嵩密度が0.6〜1.3Mg/m3、熱伝導率(室温)
が35W/mK以下の、炭素繊維を結合させた成形体
に、炭化ホウ素粉のスラリーを含浸し、次いで1600
℃以下にて熱分解炭素を含浸することにより、熱伝導率
(室温)が30W/mK以下の炭素−炭化ホウ素複合材
を得ることを特徴とする。これにより、核融合炉内に配
置される種々の機器の保護部材に適した炭素複合材を提
供することができる。
[0008] The manufacturing method according to the second aspect of the present invention is characterized in that:
Bulk density of 0.6 to 1.3 Mg / m 3 , thermal conductivity (room temperature)
Is impregnated with a slurry of boron carbide powder into a compact having a carbon fiber of 35 W / mK or less,
A carbon-boron carbide composite material having a thermal conductivity (room temperature) of 30 W / mK or less is obtained by impregnating pyrolytic carbon at a temperature of not more than ℃. Thereby, it is possible to provide a carbon composite material suitable for a protection member of various devices arranged in the nuclear fusion reactor.

【0009】また、請求項3記載の発明の製造方法は、
嵩密度が0.6〜1.3Mg/m3、熱伝導率(室温)
が35W/mK以下の、炭素繊維を結合させた成形体
に、炭化ホウ素粉のスラリーを含浸した後さらにガラス
状炭素を含浸し、次いで1600℃以下にて熱処理を行
うことにより、熱伝導率(室温)が30W/mK以下の
炭素−炭化ホウ素複合材を得ることを特徴とする。これ
により、核融合炉内に配置される種々の機器の保護部材
に最適な炭素複合材をより安価に提供することができ
る。
[0009] The manufacturing method according to the third aspect of the present invention is characterized in that:
Bulk density of 0.6 to 1.3 Mg / m 3 , thermal conductivity (room temperature)
Is impregnated with a slurry of boron carbide powder, and then further impregnated with vitreous carbon, and then heat-treated at 1600 ° C. or less to obtain a heat conductivity ( (Room temperature) of 30 W / mK or less. Thereby, it is possible to provide a carbon composite material optimal for protection members of various devices disposed in the fusion reactor at a lower cost.

【0010】さらに、請求項4記載の発明は、請求項1
記載の炭素−炭化ホウ素複合材を用いてなることを特徴
とする核融合炉測定器用保護部材である。これにより、
核融合炉測定器の延命化を図ることができ、これに伴い
測定器の交換回数を減らし、メンテナンスの容易化を図
ることができる。
[0010] Further, the invention according to claim 4 is the invention according to claim 1.
A protection member for a nuclear fusion reactor measuring device, characterized by using the carbon-boron carbide composite material described above. This allows
It is possible to extend the life of the fusion reactor measuring instrument, thereby reducing the number of replacements of the measuring instrument and facilitating maintenance.

【0011】以下、本発明を詳しく説明するが、核融合
炉内設置機器の一例である測定器で代表的に説明する。 (1)本発明者らは、上記したように従来の炭素−炭化
ホウ素複合材を核融合炉測定器用保護部材に適したもの
とするためには、核融合炉内配置部材として求められる
耐熱性,高温強度性及びプラズマ安定性という必須かつ
基本的な特性は保持しながらも、熱伝導率だけは低いと
いう特性を有するような炭素−炭化ホウ素複合材に改良
すればよいとの見地に立って、かかる炭素−炭化ホウ素
複合材及びその製法を見い出すべく種々検討を行った。
その結果、C/C材等の基材として、嵩密度及び熱伝導
率(室温)が特定の範囲内にあるものを使用し、かつそ
の基材に炭化ホウ素を含浸し、さらに含浸したホウ素を
固着すると共に基材の表面層を緻密化する作用効果を発
揮しうる炭素材を所定の高温条件下で含浸させることに
より、満足のいく炭素−炭化ホウ素複合材が得られるこ
とを見い出したものである。
Hereinafter, the present invention will be described in detail, but a representative example of a measuring instrument as an example of equipment installed in a fusion reactor will be described. (1) As described above, in order to make the conventional carbon-boron carbide composite material suitable for a protection member for a fusion reactor measuring instrument, the present inventors have found that the heat resistance required for a member arranged in a fusion reactor is required. From the standpoint of improving the carbon-boron carbide composite material, while maintaining the essential and essential properties of high-temperature strength and plasma stability, but having only a low thermal conductivity. Various studies were conducted to find such a carbon-boron carbide composite material and a method for producing the same.
As a result, as a base material such as a C / C material, a material having a bulk density and a thermal conductivity (room temperature) within a specific range is used, and the base material is impregnated with boron carbide. It has been found that a satisfactory carbon-boron carbide composite material can be obtained by impregnating a carbon material capable of exerting an effect of densifying the surface layer of the base material while fixing the same under predetermined high-temperature conditions. is there.

【0012】即ち、本発明の炭素−炭化ホウ素複合材
(請求項1記載の発明)として、「炭化ホウ素と熱分解
炭素又はガラス状炭素のいずれか一方が含浸された炭素
−炭化ホウ素複合材であって、該炭素−炭化ホウ素複合
材の熱伝導率(室温)が30W/mK以下である」との
特有の構成を採用し得たものである。
That is, the carbon-boron carbide composite of the present invention (the invention according to claim 1) is a carbon-boron carbide composite impregnated with boron carbide and either pyrolytic carbon or glassy carbon. And the thermal conductivity (room temperature) of the carbon-boron carbide composite material is 30 W / mK or less. "

【0013】また、上記の炭素−炭化ホウ素複合材の製
造方法として、「嵩密度が0.6〜1.3Mg/m3
熱伝導率(室温)が35W/mK以下の、炭素繊維を結
合させた成形体に、炭化ホウ素粉のスラリーを含浸し、
次いで1600℃以下にて熱分解炭素を含浸する」との
本発明(請求項2記載の発明)特有の構成を採用し得た
ものである。
As a method for producing the carbon-boron carbide composite material, a bulk density of 0.6 to 1.3 Mg / m 3 ,
A slurry of boron carbide powder is impregnated into a carbon fiber-bonded compact having a thermal conductivity (room temperature) of 35 W / mK or less,
Then, impregnated with pyrolytic carbon at 1600 ° C. or lower ”, a configuration unique to the present invention (the invention according to claim 2) can be adopted.

【0014】さらに、熱分解炭素の代用として、似たよ
うな機能を発揮しうるガラス状炭素を使用すると、熱分
解炭素を使用して得られた炭素−炭化ホウ素複合材より
もさらに望ましい特性を有する炭素−炭化ホウ素複合材
がより安価に得られることを知見し、他の製造方法に係
る発明(請求項3記載の発明)として、請求項2記載の
発明の製造方法の構成のうち、熱分解炭素の含浸工程を
ガラス状炭素の含浸工程に変更した構成を採用し得たも
のである。
Further, when glassy carbon capable of performing a similar function is used as a substitute for pyrolytic carbon, more desirable characteristics are obtained than a carbon-boron carbide composite material obtained using pyrolytic carbon. It has been found that the carbon-boron carbide composite material can be obtained at a lower cost, and as an invention according to another manufacturing method (an invention according to claim 3), of the configuration of the manufacturing method according to the invention according to claim 2, It is possible to adopt a configuration in which the impregnating step of decomposed carbon is changed to the impregnating step of glassy carbon.

【0015】(2)本発明で使用する基材となる成形体
について説明する。基材は炭素繊維を結合させた成形体
を用いる。即ち、ピッチ系,PAN(ポリアクリロニト
リル)系,レーヨン系等の炭素繊維を結合させ、必要に
応じて積層させ、さらに必要に応じて熱分解炭素や各種
樹脂の炭化物等をマトリックスとした、炭素繊維フェル
トや、1次元,2次元,3次元等のC/C材等を成形体
として使用することができる。熱伝導率の低下を目的と
する観点からは、ピッチ系のものが望ましい。
(2) A molded article as a substrate used in the present invention will be described. As the base material, a molded body to which carbon fibers are bonded is used. That is, carbon fibers such as pitch-based, PAN (polyacrylonitrile) -based, rayon-based carbon fibers are bonded, laminated as necessary, and, if necessary, pyrolytic carbon or carbides of various resins are used as a matrix. A felt, a one-dimensional, two-dimensional, three-dimensional or other C / C material can be used as the molded body. From the viewpoint of lowering the thermal conductivity, a pitch type is preferable.

【0016】本発明では、嵩密度が0.6〜1.3Mg
/m3 の成形体を使用する必要があるが、この範囲に限
定した理由は次のとおりである。一般に最終製品の熱伝
導率の高低は原料基材の熱伝導率の高低に対応したもの
となり、さらに基材の熱伝導率は嵩密度の大小に応じて
高低の程度が決まる傾向にある。従って、従来の炭素−
炭化ホウ素複合材の熱伝導率を下げるためには、C/C
材等の基材として嵩密度の小さいものを選択すればよい
との解決指針がまず得られる。しかし、基材の嵩密度を
あまり小さくし過ぎると、基材の機械的強度がそれに比
例して低下し加工時に亀裂等が発生しやすくなり、所定
形状の保護部材を得にくくなる。そこで、ある程度良好
な加工性を維持できるという限定条件下で嵩密度を小さ
くできる範囲として、0.6〜1.3Mg/m3 に限定
したものである。なお、確実性を期するという観点から
すれば、0.7〜1.2Mg/m3 が望ましい範囲であ
る。
In the present invention, the bulk density is 0.6 to 1.3 Mg.
/ M 3 must be used, but the reason for limiting to this range is as follows. In general, the level of the thermal conductivity of the final product corresponds to the level of the thermal conductivity of the raw material substrate, and the degree of the level of the thermal conductivity of the substrate tends to be determined according to the magnitude of the bulk density. Therefore, conventional carbon-
To reduce the thermal conductivity of the boron carbide composite, C / C
First, a solution guide is given that a material having a low bulk density may be selected as a base material such as a material. However, if the bulk density of the base material is too low, the mechanical strength of the base material is reduced in proportion thereto, so that cracks or the like are easily generated during processing, and it is difficult to obtain a protective member having a predetermined shape. Therefore, the range in which the bulk density can be reduced under the limited condition that good workability can be maintained to some extent is limited to 0.6 to 1.3 Mg / m 3 . From the viewpoint of ensuring reliability, 0.7 to 1.2 Mg / m 3 is a desirable range.

【0017】さらに、成形体としては、熱伝導率(室
温)が35W/mK以下のものを使用する必要がある
が、この範囲に限定した理由は、最終製品たる炭素−炭
化ホウ素複合材を測定器の保護部材として実効あるもの
とするためである。即ち、その実効を図るためには、炭
素−炭化ホウ素複合材の熱伝導率を30W/mK以下に
まで低くする必要があり、このレベルに対応する基材の
熱伝導率として35W/mK以下でなければならないか
らである。また、成形体の平均気孔半径が1〜50μm
のものが好ましい。1μm未満だと炭化ホウ素や熱分解
炭素等の含浸効率が低くなり、50μmを超えると炭化
ホウ素が偏在しやすくなるからである。なお、平均気孔
半径は水銀圧入法により測定された気孔半径0.01〜
100μmでの累積気孔容積の1/2に相当する気孔半
径である。
Furthermore, it is necessary to use a molded product having a thermal conductivity (room temperature) of 35 W / mK or less. The reason for limiting the range is to measure the carbon-boron carbide composite material as the final product. This is because it is effective as a protective member of the container. That is, in order to achieve the effect, it is necessary to reduce the thermal conductivity of the carbon-boron carbide composite material to 30 W / mK or less, and the thermal conductivity of the base material corresponding to this level is 35 W / mK or less. Because it must be. Further, the average pore radius of the molded body is 1 to 50 μm.
Are preferred. When the thickness is less than 1 μm, the impregnation efficiency of boron carbide, pyrolytic carbon, or the like becomes low, and when it exceeds 50 μm, the boron carbide tends to be unevenly distributed. Incidentally, the average pore radius is from 0.01 to the pore radius measured by the mercury intrusion method.
The pore radius corresponds to 1/2 of the cumulative pore volume at 100 μm.

【0018】(3)成形体に含浸させる炭化ホウ素は、
市販の炭化ホウ素粉などを用いることができる。炭化ホ
ウ素粉を含浸する方法としては、例えば水又はアルコー
ル等の有機溶媒を分散媒とし、炭化ホウ素粉を分散して
スラリーを作製し、成形体に含浸すればよい。この場
合、炭化ホウ素粉の大きさとして平均粒径が20μm以
下のものが好ましく、分散媒に均一に分散し易くなる。
特に5μm以下の炭化ホウ素粉は成形体の開気孔中へ含
浸し易くなるので最適である。一方、20μmを超える
ものは、気孔中に含浸されにくく、基材表面上に残留す
る場合がある。この残留した炭化ホウ素粉は無駄になる
だけでなく、拭き取り作業が煩雑となるため、本発明で
はあまり適していない。
(3) The boron carbide to be impregnated into the molded product is
Commercially available boron carbide powder or the like can be used. As a method for impregnating the boron carbide powder, for example, a slurry is prepared by dispersing the boron carbide powder using an organic solvent such as water or alcohol as a dispersion medium, and the formed body may be impregnated. In this case, the average particle size of the boron carbide powder is preferably 20 μm or less, and the boron carbide powder is easily dispersed uniformly in the dispersion medium.
Particularly, boron carbide powder having a size of 5 μm or less is most suitable because it easily impregnates into the open pores of the molded body. On the other hand, those having a diameter of more than 20 μm are hardly impregnated into pores and may remain on the substrate surface. This residual boron carbide powder is not suitable in the present invention because it is not only wasted but also the wiping operation becomes complicated.

【0019】スラリーを成形体に含浸する際には、スラ
リーの濃度は、分散媒1リットルに対して炭化ホウ素粉
1000g以下とすることが好ましい。1000g/リ
ットルよりも高いとスラリーの粘度が高くなり過ぎ、含
侵が困難となるからである。含浸方法は刷毛やスプレー
を用いる方法、成形体をスラリーに浸漬する方法、真空
含浸法など公知の手段で行えばよい。ここで、含浸条
件,スラリー濃度及び成形体の平均気孔半径を適当に選
択することによって、成形体表層のみならず全体にまで
炭化ホウ素を含浸することができる。炭化ホウ素を含浸
した後は、分散媒を加熱や真空引き等で蒸発させる。
When the slurry is impregnated into the compact, the concentration of the slurry is preferably 1000 g or less of boron carbide powder per liter of the dispersion medium. If it is higher than 1000 g / liter, the viscosity of the slurry becomes too high and impregnation becomes difficult. The impregnation method may be performed by a known method such as a method using a brush or a spray, a method of dipping the molded body in a slurry, and a vacuum impregnation method. Here, by appropriately selecting the impregnation conditions, the slurry concentration, and the average pore radius of the molded product, not only the surface layer of the molded product but also the entire surface can be impregnated with boron carbide. After the impregnation with boron carbide, the dispersion medium is evaporated by heating or evacuation.

【0020】(4)上記のようにして炭化ホウ素を含浸
した成形体に、この後さらに熱分解炭素又はガラス状炭
素のいずれか一方を含浸する作業に移るが、まず熱分解
炭素の含浸作業について説明する。この含浸は、常法に
基づき、炭素発生源(原料ガス)として炭素数1〜8の
炭化水素ガス又は炭化水素化合物を熱分解させて、炭化
ホウ素粉の空隙部分や気孔中に熱分解炭素を浸透させる
方法などで行えばよく、熱分解炭素の含浸作業が終了す
ることにより、熱伝導率(室温)が30W/mK以下
の、測定器用保護部材に適した炭素−炭化ホウ素複合材
(製品)が得られることになる。
(4) After that, the operation of impregnating the molded body impregnated with boron carbide with either pyrolytic carbon or glassy carbon is started. explain. This impregnation is carried out based on a conventional method, by thermally decomposing a hydrocarbon gas or a hydrocarbon compound having 1 to 8 carbon atoms as a carbon generation source (raw material gas), so that pyrolytic carbon is formed in voids and pores of the boron carbide powder. A carbon-boron carbide composite material (product) having a thermal conductivity (room temperature) of 30 W / mK or less and suitable for a protective member for a measuring instrument by completing the impregnation operation of the pyrolytic carbon. Is obtained.

【0021】なお、常法によると、熱分解炭素を含浸す
るときの温度範囲は800〜2500℃位までの広い範
囲で含浸可能であるが、本発明では1600℃以下で熱
分解炭素を含浸する必要がある。その理由は、1600
℃を超えると、黒鉛化が進み過ぎるために得ようとする
炭素−炭化ホウ素複合材の熱伝導率を30W/mK以下
に抑えにくくなるからである。即ち、炭素−炭化ホウ素
複合材としては、核融合炉内配置機器用保護部材として
十分な耐熱性を発揮できる程度に黒鉛化が進行していれ
ば十分であり、それ以上の黒鉛化はむしろ黒鉛化が進行
するほど熱伝導率も高くなって、その分だけ保護部材と
しての性能の低下につながるからである。
According to the conventional method, the temperature range for impregnating the pyrolytic carbon can be in a wide range from about 800 to 2500 ° C., but the present invention impregnates the pyrolytic carbon at 1600 ° C. or less. There is a need. The reason is 1600
If the temperature exceeds ℃, the graphitization proceeds too much, and it is difficult to suppress the thermal conductivity of the carbon-boron carbide composite material to be obtained to 30 W / mK or less. That is, as the carbon-boron carbide composite material, it is sufficient that graphitization has progressed to such an extent that sufficient heat resistance can be exhibited as a protective member for equipment placed in a nuclear fusion reactor, and further graphitization is rather graphite. This is because the thermal conductivity increases as the process progresses, which leads to a decrease in the performance as a protective member.

【0022】(5)次に、他の製法に係るガラス状炭素
の含浸以後の一連の作業について説明する。本発明で使
用するガラス状炭素としては特別の限定条件はない。熱
硬化性樹脂としては、例えばポリカルボジイミド、フェ
ノール、フルフリルアルコール、ポリアミド、ポリアミ
ドイミド、ポリイミドが使用でき、上記(3)の要領で
炭化ホウ素を含浸した成形体に、さらにポリカルボジイ
ミド等を含浸・熱処理(炭素化)すればよい。
(5) Next, a series of operations after the impregnation of glassy carbon according to another production method will be described. There is no particular limitation on the vitreous carbon used in the present invention. As the thermosetting resin, for example, polycarbodiimide, phenol, furfuryl alcohol, polyamide, polyamideimide, or polyimide can be used. The molded article impregnated with boron carbide in the manner described in (3) above is further impregnated with polycarbodiimide or the like. Heat treatment (carbonization) may be performed.

【0023】なお、含浸条件は、上記(4)の熱分解炭
素の含浸の場合と基本的に同一でよい。熱硬化性樹脂の
含浸を終えた成形体は、80〜300℃で十分に乾燥
し、この温度範囲が望ましい。80℃以下では熱処理後
の炭素化率が小さく、300℃を超えると樹脂が酸素と
反応し分解しやすくなるからである。乾燥を終えた成形
体は、さらに1600℃以下の熱処理を行う。熱処理温
度を1600℃以下とするのは、熱分解炭素を含浸する
際に雰囲気温度を1600℃以下とする理由と同一であ
り、1600℃を超えると、黒鉛化が進み過ぎるために
得ようとする炭素−炭化ホウ素複合材の熱伝導率を30
W/mK以下に抑えにくくなるからである。また、熱処
理時の圧力としては、炭素化率の向上及び炭化ホウ素の
蒸発を抑える観点から全圧を0.01〜100Torr
に設定することが望ましい。熱処理作業が終了すること
により、熱伝導率(室温)が30W/mK以下の、測定
器用保護部材に最適な炭素−炭化ホウ素複合材(製品)
が得られることになる。
The conditions for the impregnation may be basically the same as those of the above (4) for the impregnation with the pyrolytic carbon. The molded body after the impregnation of the thermosetting resin is sufficiently dried at 80 to 300 ° C., and this temperature range is desirable. If the temperature is lower than 80 ° C., the carbonization ratio after the heat treatment is small, and if the temperature exceeds 300 ° C., the resin reacts with oxygen and is easily decomposed. The dried compact is further subjected to a heat treatment at 1600 ° C. or lower. The reason why the heat treatment temperature is set to 1600 ° C. or lower is the same as the reason for setting the ambient temperature to 1600 ° C. or lower when impregnating with pyrolytic carbon. The thermal conductivity of the carbon-boron carbide composite is 30
This is because it is difficult to suppress the W / mK or less. As the pressure during the heat treatment, the total pressure is set to 0.01 to 100 Torr from the viewpoint of improving the carbonization rate and suppressing the evaporation of boron carbide.
It is desirable to set to. Completion of the heat treatment operation, the carbon-boron carbide composite material (product) with a thermal conductivity (room temperature) of 30 W / mK or less, which is optimal for a protective member for a measuring instrument
Is obtained.

【0024】[0024]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例1)炭化ホウ素粉(共立窯業原料(株)製、平
均粒径3μm)を分散媒であるメタノール(分散媒)1
リットルに対して200gの割合で分散し、スラリーを
作製した。成形体としては、寸法100×100×10
mmのC/C材(嵩密度1.2Mg/m3 、熱伝導率
(室温)31.32W/mK)を用いた。この成形体全
体に真空含浸法によりスラリーを含浸した後、真空乾燥
中50℃で5時間保持し、メタノールを飛散させた。次
いで真空加熱炉中約1500℃でメタンガス(原料ガ
ス)3l/min、水素ガス(キャリアガス)12l/
minの条件で1時間処理により成形体全体に熱分解炭
素を含浸して、炭素−炭化ホウ素複合材(製品)を得
た。
The present invention will be described more specifically with reference to the following examples. Example 1 Boron carbide powder (manufactured by Kyoritsu Ceramics Ind. Co., Ltd., average particle size: 3 μm) was dispersed in methanol (dispersion medium) 1
The slurry was dispersed at a rate of 200 g per liter to prepare a slurry. As a molded body, dimensions 100 × 100 × 10
mm C / C material (bulk density: 1.2 Mg / m 3 , thermal conductivity (room temperature): 31.32 W / mK) was used. After the slurry was impregnated into the whole of the formed body by a vacuum impregnation method, it was kept at 50 ° C. for 5 hours during vacuum drying to spatter methanol. Then, methane gas (raw material gas) 3 l / min, hydrogen gas (carrier gas) 12 l / min.
The whole molded body was impregnated with pyrolytic carbon by a treatment for 1 hour under the condition of min to obtain a carbon-boron carbide composite material (product).

【0025】(実施例2)実施例1と同様に、同じ炭化
ホウ素粉調整スラリーを同一寸法のC/C材製成形体に
刷毛塗りで全面に塗布した後、実施例1の要領で溶媒を
飛散させた。次にポリカルボジイミドを成形体全体に含
浸させた。この後、大気中100℃まで昇温した後1時
間保持して乾燥した後、加熱炉に導入して、0.01T
orrの下、1500℃の最終熱処理を1時間かけて行
い、炭素−炭化ホウ素複合材(製品)を得た。 (実施例3)成形体のC/C材として、嵩密度0.7M
g/m3 、熱伝導率(室温)19.72W/mK、平均
気孔半径25μmのものを用いる以外は、実施例1と全
く同じ要領で炭化ホウ素及び熱分解炭素を含浸させた炭
素−炭化ホウ素複合材(製品)を得た。 (実施例4)成形体のC/C材として、嵩密度0.7M
g/m3 、熱伝導率(室温)19.72W/mK、平均
気孔半径25μmのものを用いる以外は、実施例2と全
く同じ要領で炭化ホウ素及びガラス状炭素を含浸させた
炭素−炭化ホウ素複合材(製品)を得た。
Example 2 In the same manner as in Example 1, the same boron carbide powder-adjusted slurry was applied to the entire surface of a C / C material compact having the same dimensions by brushing, and the solvent was removed in the same manner as in Example 1. Splashed. Next, polycarbodiimide was impregnated into the entire molded body. Thereafter, the temperature was raised to 100 ° C. in the atmosphere, dried for 1 hour, introduced into a heating furnace, and then heated for 0.01 T.
A final heat treatment at 1500 ° C. was performed over 1 hour under orr to obtain a carbon-boron carbide composite material (product). (Example 3) As a C / C material of a molded body, a bulk density of 0.7 M was used.
g / m 3 , thermal conductivity (room temperature) of 19.72 W / mK, and an average pore radius of 25 μm, except that carbon-boron carbide impregnated with boron carbide and pyrolytic carbon was used in exactly the same manner as in Example 1. A composite material (product) was obtained. (Example 4) As a C / C material of a molded body, a bulk density of 0.7 M was used.
g-m 3 , thermal conductivity (room temperature) 19.72 W / mK, and carbon-boron carbide impregnated with boron carbide and glassy carbon in exactly the same manner as in Example 2 except that a material having an average pore radius of 25 μm was used. A composite material (product) was obtained.

【0026】(比較例1)実施例1と同様に、同じC/
C材成形体を用いて、炭化ホウ素粉を含浸させた。次い
で真空加熱炉中約1700℃で、メタンガス3l/mi
n、水素ガス12l/minの条件で1時間処理により
成形体全体に熱分解炭素を含浸して、炭素−炭化ホウ素
複合材(製品)を得た。 (比較例2)実施例2と同様に、同じC/C材成形体を
用いて、炭化ホウ素及びポリカルボジイミドを含浸させ
乾燥した後、加熱炉に導入して、0.01Torrの
下、1700℃の最終熱処理を1時間かけて行い、炭素
−炭化ホウ素複合材(製品)を得た。 (比較例3)成形体のC/C材として、嵩密度1.4M
g/m3 、熱伝導率(室温)39.18W/mK、平均
気孔半径約13μmのものを用いる以外は、実施例1と
全く同じ要領で炭化ホウ素及びガラス状炭素を含浸させ
た炭素−炭化ホウ素複合材(製品)を得た。
(Comparative Example 1) As in Example 1, the same C /
Boron carbide powder was impregnated using the C material compact. Then, at about 1700 ° C. in a vacuum heating furnace, methane gas 3 l / mi
n, the entire molded body was impregnated with pyrolytic carbon by a treatment for one hour under the conditions of hydrogen gas 12 l / min to obtain a carbon-boron carbide composite material (product). (Comparative Example 2) In the same manner as in Example 2, using the same C / C material compact, impregnated with boron carbide and polycarbodiimide, dried, introduced into a heating furnace, and heated to 1700 ° C under 0.01 Torr. Was performed over 1 hour to obtain a carbon-boron carbide composite material (product). (Comparative Example 3) As a C / C material of a molded body, a bulk density of 1.4 M
g / m 3 , a thermal conductivity (room temperature) of 39.18 W / mK, and an average pore radius of about 13 μm, except that carbon-carbonized carbon fiber impregnated with boron carbide and glassy carbon was used in the same manner as in Example 1. A boron composite material (product) was obtained.

【0027】実施例1〜4及び比較例1〜3で得られた
炭素−炭化ホウ素複合材(製品)の熱伝導率(室温),
耐酸化性,耐熱衝撃性を調べ、その結果を各使用基材の
物性と併せて表1に示す。但し、曲げ強さ,圧縮強さ
は、繊維配向方向とそれに垂直方向の値を測定し、表1
中の「平行」は繊維配向方向と平行の強さを、「垂直」
は繊維配向方向に垂直な方向の強さを示す。また熱伝導
率は、直径φ10×厚み4mmの形状でレーザーフラッ
シュ(Laser Flash )法を用いて測定した値であり、C
/C材における繊維配向方向の熱伝導率を測定したもの
である。また耐酸化性の試験は、酸化に伴う重量増加を
調べて酸素不純物のゲッタリング効果の程度を明らかに
するために行うものであり、700℃の雰囲気下で4.
0l/minの空気を1〜3時間流したときの重量変化
で評価した。さらに、耐熱衝撃性は、電子ビームを18
MW/m3 で10秒間に50回照射したときに製品に亀
裂が発生するかを調べた。
The thermal conductivity (room temperature) of the carbon-boron carbide composite (product) obtained in Examples 1 to 4 and Comparative Examples 1 to 3,
The oxidation resistance and thermal shock resistance were examined, and the results are shown in Table 1 together with the physical properties of each base material used. However, the bending strength and the compressive strength were measured in the direction of the fiber orientation and the value in the direction perpendicular thereto.
"Parallel" in the figure indicates the strength parallel to the fiber orientation direction, "Vertical"
Indicates the strength in the direction perpendicular to the fiber orientation direction. The thermal conductivity is a value measured by a laser flash method in a shape of diameter 10 mm × thickness 4 mm.
The thermal conductivity of the / C material in the fiber orientation direction was measured. The oxidation resistance test is performed to determine the degree of the gettering effect of oxygen impurities by examining the weight increase due to oxidation.
Evaluation was made based on a change in weight when 0 l / min of air was flowed for 1 to 3 hours. Furthermore, the thermal shock resistance is such that the electron beam
It was examined whether the product cracked when irradiated at MW / m 3 50 times for 10 seconds.

【0028】[0028]

【表1】 [Table 1]

【0029】表1からも明らかなように、実施例1〜4
で得られた炭素−炭化ホウ素複合材(製品)は、ゲッタ
リング効果の指標ともなる耐酸化性及び寿命に直結する
耐熱衝撃性の点では従来型の炭素−炭化ホウ素複合材を
示す比較例と同様に優れていながら、製品の熱伝導率は
低く、測定器用保護部材の材料として非常に有効である
ことが分かる。これに対して比較例1〜3では、いずれ
も本発明の要件、即ち基材たる成形体の熱伝導率が35
W/mK以下で嵩密度が0.7〜1.3Mg/m3 であ
ることという要件や熱処理温度が1600℃以下である
ことという要件のいずれかを外れているため、得られた
炭素−炭化ホウ素複合材(製品)はいずれも熱伝導率が
本発明品より高くなっており、測定器用保護部材の材料
として不適であることが分かる。
As is clear from Table 1, Examples 1-4
The carbon-boron carbide composite (product) obtained in the above was compared with a comparative example showing a conventional carbon-boron carbide composite in terms of oxidation resistance which is also an index of the gettering effect and thermal shock resistance which directly relates to the life. Although excellent, the thermal conductivity of the product is low, indicating that the product is very effective as a material for a protective member for a measuring instrument. On the other hand, in Comparative Examples 1 to 3, the requirements of the present invention, that is, the thermal conductivity of the molded body as the base material was 35%.
Since either the requirement that the bulk density is 0.7 to 1.3 Mg / m 3 at W / mK or less or the requirement that the heat treatment temperature is 1600 ° C. or less is deviated, the obtained carbon-carbonized Each of the boron composite materials (products) has a higher thermal conductivity than that of the product of the present invention, indicating that it is unsuitable as a material for a protective member for a measuring instrument.

【0030】また表1からは、同一の物性の成形体を使
用た場合でも、ガラス状炭素を使用した場合(実施例
2,4)の方が、熱分解炭素を使用した場合(実施例
1,3)よりも好ましい特性を有する炭素−炭化ホウ素
複合材(製品)が得られることが分かる。即ち、耐酸化
性の試験では、酸化に伴う重量増加の程度が大きいの
で、その分だけ酸素不純物のゲッタリング効果に優れて
いるといえる。また、炭素−炭化ホウ素複合材(製品)
の熱伝導率がより低いものが得られており、核融合炉内
配置機器の保護部材としてより好ましい特性の炭素複合
材となっていることが分かる。
Also, from Table 1, it can be seen that, even when the molded bodies having the same physical properties are used, the case where glassy carbon is used (Examples 2 and 4) is the case where pyrolytic carbon is used (Example 1). It can be seen that a carbon-boron carbide composite material (product) having more preferable characteristics than that of (3) is obtained. That is, in the oxidation resistance test, since the degree of weight increase due to oxidation is large, it can be said that the gettering effect of oxygen impurities is excellent. Also, carbon-boron carbide composite (product)
Has a lower thermal conductivity, indicating that the carbon composite material has more favorable characteristics as a protective member for equipment placed in a fusion reactor.

【0031】[0031]

【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明は、炭化ホウ素と熱分解炭素又はガラス
状炭素のいずれか一方が含浸された炭素−炭化ホウ素複
合材であって、熱伝導率(室温)が30W/mK以下の
ものである。従って、核融合炉内に配置される種々の機
器の保護部材に適した炭素複合材とすることができる。
As described above, the first aspect of the present invention is a carbon-boron carbide composite material impregnated with boron carbide and either pyrolytic carbon or glassy carbon. And a thermal conductivity (room temperature) of 30 W / mK or less. Therefore, it is possible to provide a carbon composite material suitable for a protection member of various devices arranged in a fusion reactor.

【0032】また、請求項2記載の発明の製造方法は、
嵩密度が0.6〜1.3Mg/m3、熱伝導率(室温)
が35W/mK以下の、炭素繊維を結合させた成形体
に、炭化ホウ素粉のスラリーを含浸し、次いで1600
℃以下にて熱分解炭素を含浸することにより、熱伝導率
(室温)が30W/mK以下の炭素−炭化ホウ素複合材
を得るものである。従って、この方法によれば、核融合
炉内に配置される種々の機器の保護部材に適した炭素複
合材を提供することができる。
Further, the manufacturing method according to the second aspect of the present invention
Bulk density of 0.6 to 1.3 Mg / m 3 , thermal conductivity (room temperature)
Is impregnated with a slurry of boron carbide powder into a compact having a carbon fiber of 35 W / mK or less,
The carbon-boron composite material having a thermal conductivity (room temperature) of 30 W / mK or less is obtained by impregnating pyrolytic carbon at a temperature of not more than ° C. Therefore, according to this method, it is possible to provide a carbon composite material suitable for a protection member of various devices arranged in a fusion reactor.

【0033】また、請求項3記載の発明の製造方法は、
嵩密度が0.6〜1.3Mg/m3、熱伝導率(室温)
が35W/mK以下の、炭素繊維を結合させた成形体
に、炭化ホウ素粉のスラリーを含浸した後さらにガラス
状炭素を含浸し、次いで1600℃以下にて熱処理を行
うことにより、熱伝導率(室温)が30W/mK以下の
炭素−炭化ホウ素複合材を得るものである。ガラス状炭
素は、熱分解炭素に比べてプラズマ安定化能力により優
れ、かつ熱分解炭素含浸の場合よりも熱伝導率がより低
い炭素−炭化ホウ素複合材(製品)の製造が期待できる
炭素材である。しかもガラス状炭素の含浸コストは、熱
分解炭素の含浸コストに比べて約10分の1で済むとい
う利点がある。従って、本製造方法によれば、核融合炉
内に配置される種々の機器の保護部材としてさらに望ま
しい特性を有する炭素複合材をより安価に提供すること
ができる。
Further, the manufacturing method according to the third aspect of the present invention
Bulk density of 0.6 to 1.3 Mg / m 3 , thermal conductivity (room temperature)
Is impregnated with a slurry of boron carbide powder, and then further impregnated with vitreous carbon, and then heat-treated at 1600 ° C. or less to obtain a heat conductivity ( (Room temperature) of 30 W / mK or less. Glassy carbon is a carbon material that is expected to produce carbon-boron carbide composites (products) that are more excellent in plasma stabilizing ability than pyrolytic carbon and have lower thermal conductivity than in the case of pyrolytic carbon impregnation. is there. Moreover, there is an advantage that the impregnation cost of glassy carbon is about one tenth of the impregnation cost of pyrolytic carbon. Therefore, according to the present production method, it is possible to provide a carbon composite material having more desirable characteristics as a protective member for various devices disposed in a nuclear fusion reactor at a lower cost.

【0034】さらに、請求項4記載の発明は、請求項1
記載の炭素−炭化ホウ素複合材を用いた核融合炉測定器
用保護部材である。従って、核融合炉測定器の延命化を
図ることができ、これに伴い測定器の交換回数を減ら
し、メンテナンスの容易化を図ることができる。
Further, the invention described in claim 4 is the same as the claim 1.
It is a protection member for a fusion reactor measuring instrument using the carbon-boron carbide composite material described in the above. Therefore, it is possible to extend the life of the fusion reactor measuring instrument, thereby reducing the number of replacements of the measuring instrument and facilitating maintenance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化ホウ素と熱分解炭素又はガラス状炭
素のいずれか一方が含浸され、熱伝導率(室温)が30
W/mK以下であることを特徴とする炭素−炭化ホウ素
複合材。
1. A method of impregnating boron carbide with one of pyrolytic carbon and glassy carbon and having a thermal conductivity (room temperature) of 30
A carbon-boron carbide composite material having a W / mK or less.
【請求項2】 嵩密度が0.6〜1.3Mg/m3 、熱
伝導率(室温)が35W/mK以下の、炭素繊維を結合
させた成形体に、炭化ホウ素粉のスラリーを含浸し、次
いで1600℃以下にて熱分解炭素を含浸することによ
り、熱伝導率(室温)が30W/mK以下の炭素−炭化
ホウ素複合材を得ることを特徴とする炭素−炭化ホウ素
複合材の製造方法。
2. A carbon fiber-bonded compact having a bulk density of 0.6 to 1.3 Mg / m 3 and a thermal conductivity (room temperature) of 35 W / mK or less is impregnated with a boron carbide powder slurry. A carbon-boron carbide composite material having a thermal conductivity (room temperature) of 30 W / mK or less by impregnating with pyrolytic carbon at 1600 ° C. or less. .
【請求項3】 嵩密度が0.6〜1.3Mg/m3 、熱
伝導率(室温)が35W/mK以下の、炭素繊維を結合
させた成形体に、炭化ホウ素粉のスラリーを含浸した後
さらにガラス状炭素を含浸し、次いで1600℃以下に
て熱処理を行うことにより、熱伝導率(室温)が30W
/mK以下の炭素−炭化ホウ素複合材を得ることを特徴
とする炭素−炭化ホウ素複合材の製造方法。
3. A slurry of boron carbide powder was impregnated into a carbon fiber-bound compact having a bulk density of 0.6 to 1.3 Mg / m 3 and a thermal conductivity (room temperature) of 35 W / mK or less. Thereafter, the glass is further impregnated with glassy carbon, and then heat-treated at 1600 ° C. or lower, so that the thermal conductivity (room temperature) is 30 W.
A method for producing a carbon-boron carbide composite material, which comprises obtaining a carbon-boron carbide composite material having a viscosity of not more than / mK.
【請求項4】 請求項1記載の炭素−炭化ホウ素複合材
を用いてなることを特徴とする核融合炉測定器用保護部
材。
4. A protective member for a nuclear fusion reactor measuring instrument, comprising the carbon-boron carbide composite material according to claim 1.
JP9283491A 1997-10-16 1997-10-16 Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same Pending JPH11116359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9283491A JPH11116359A (en) 1997-10-16 1997-10-16 Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9283491A JPH11116359A (en) 1997-10-16 1997-10-16 Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same

Publications (1)

Publication Number Publication Date
JPH11116359A true JPH11116359A (en) 1999-04-27

Family

ID=17666249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9283491A Pending JPH11116359A (en) 1997-10-16 1997-10-16 Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same

Country Status (1)

Country Link
JP (1) JPH11116359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020261B2 (en) 2001-03-23 2015-04-28 Avigilon Fortress Corporation Video segmentation using statistical pixel modeling
CN113981569A (en) * 2021-10-27 2022-01-28 因达孚先进材料(苏州)有限公司 Method for producing graphite fiber by catalytic graphitization
CN115784759A (en) * 2022-12-07 2023-03-14 湖南金博碳素股份有限公司 Carbon/boron carbide composite material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020261B2 (en) 2001-03-23 2015-04-28 Avigilon Fortress Corporation Video segmentation using statistical pixel modeling
CN113981569A (en) * 2021-10-27 2022-01-28 因达孚先进材料(苏州)有限公司 Method for producing graphite fiber by catalytic graphitization
CN113981569B (en) * 2021-10-27 2023-06-23 因达孚先进材料(苏州)有限公司 Method for producing graphite fibers by catalytic graphitization
CN115784759A (en) * 2022-12-07 2023-03-14 湖南金博碳素股份有限公司 Carbon/boron carbide composite material and preparation method and application thereof
CN115784759B (en) * 2022-12-07 2023-09-26 湖南金博碳素股份有限公司 Carbon/boron carbide composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3652900B2 (en) Fiber composite materials and uses thereof
US20060151912A1 (en) Carbon/ceramic matrix composites and method of making same
GB2064499A (en) Method of making a shaped silicon carbide-silicon matrix composite
Gogotsi et al. Low‐temperature oxidation, hydrothermal corrosion, and their effects on properties of SiC (Tyranno) fibers
EP0714869A2 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
EP1028099B1 (en) Fibrous composite material and process for producing the same
US7897072B2 (en) Densification of carbon fiber preforms with pitches for aircraft brakes
Gajiwala et al. Hybridized resin matrix approach applied for development of carbon/carbon composites—I
US20080220256A1 (en) Methods of coating carbon/carbon composite structures
WO1999019270A1 (en) High thermal conductivity carbon/carbon honeycomb structure
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH11116359A (en) Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same
Marković Use of coal tar pitch in carboncarbon composites
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
CN111132951A (en) Ceramic component
JP4883678B2 (en) Al impregnated three-dimensional C / C composite and method for producing the same
Ho Inhibition of the oxidation of carbon-carbon composites by bromination
RU2170220C1 (en) Method of preparing carbon-carbon composite material
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JPH0987072A (en) Boron carbide combined carbon material, its production and material confronting plasma
JPH0948683A (en) Boron carbide-coated carbon material, its production and plasma opposing material
JPH05132384A (en) Treatment for making carbon composite reinforced with carbon fiber resistant to oxidation
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
Ozaki et al. Pitch-based carbon fiber reinforced SiC composites for space optics
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees