JP4883678B2 - Al impregnated three-dimensional C / C composite and method for producing the same - Google Patents

Al impregnated three-dimensional C / C composite and method for producing the same Download PDF

Info

Publication number
JP4883678B2
JP4883678B2 JP2006042291A JP2006042291A JP4883678B2 JP 4883678 B2 JP4883678 B2 JP 4883678B2 JP 2006042291 A JP2006042291 A JP 2006042291A JP 2006042291 A JP2006042291 A JP 2006042291A JP 4883678 B2 JP4883678 B2 JP 4883678B2
Authority
JP
Japan
Prior art keywords
dimensional
composite
impregnated
thermal expansion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006042291A
Other languages
Japanese (ja)
Other versions
JP2007217256A (en
Inventor
宏 山内
鈴木  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2006042291A priority Critical patent/JP4883678B2/en
Publication of JP2007217256A publication Critical patent/JP2007217256A/en
Application granted granted Critical
Publication of JP4883678B2 publication Critical patent/JP4883678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Al含浸3次元C/Cコンポジット及びその製造方法に係り、更に詳細には、耐熱性、高強度高剛性、寸法安定性、耐摩耗性、耐化学薬品性などに優れ、例えば、ロケットノズル、ブレーキ材料、高温金型、ガスタービンブレード、再突入カプセル、ヒーター材などに好適に用いられるAl含浸3次元C/Cコンポジット及びその製造方法に関するものである。   The present invention relates to an Al-impregnated three-dimensional C / C composite and a method for producing the same, more specifically, excellent in heat resistance, high strength and high rigidity, dimensional stability, wear resistance, chemical resistance, etc. The present invention relates to an Al-impregnated three-dimensional C / C composite suitably used for rocket nozzles, brake materials, high-temperature molds, gas turbine blades, re-entry capsules, heater materials, and the like, and a method for manufacturing the same.

C/Cコンポジットとは、Carbon Carbon Composite(炭素/炭素複合材料)の略称であり、炭素繊維を強化材とし、炭素マトリクス材とした複合材料であり、炭素繊維の織り構成により1次元、2次元、3次元(多次元)の材料が知られている(例えば、特許文献1〜3参照。)。
特開平8−109076号公報 特開平6−143469号公報 特開平6−116032号公報
C / C composite is an abbreviation for Carbon Carbon Composite (carbon / carbon composite material), which is a composite material using carbon fiber as a reinforcing material and carbon matrix material. Three-dimensional (multi-dimensional) materials are known (for example, see Patent Documents 1 to 3).
JP-A-8-109076 JP-A-6-143469 Japanese Patent Laid-Open No. 6-116032

また、C/Cコンポジットは、高温特性、軽量高剛性、耐食耐燃焼性、摩擦制動性、生体適合性及び熱電気伝導性に優れており、従来からロケットノズルなどの宇宙開発用耐熱材料として開発が進められている(例えば、特許文献4参照。)。
特開平5−124884号公報
In addition, C / C composites have excellent high temperature characteristics, light weight, high rigidity, corrosion resistance, combustion resistance, friction braking, biocompatibility and thermoelectric conductivity, and have been developed as heat resistant materials for space development such as rocket nozzles. (For example, refer to Patent Document 4).
Japanese Patent Laid-Open No. 5-124844

かかるC/Cコンポジットの製造方法としては、炭素繊維(CF)にフェノール、フラン樹脂及びピッチなどを含浸した材料の成形物を高温で炭化し、再含浸・炭化を繰り返して高密度化する方法、CVD法で直接熱分解炭素を沈着させる方法などがある(例えば、非特許文献1参照。)。
航空宇宙工学便覧 第3版、日本航空宇宙学会編、平成17年11月30日発行、199頁
As a method for producing such a C / C composite, carbon fiber (CF) is carbonized at a high temperature with a material formed by impregnating phenol, furan resin, pitch, etc., and re-impregnated and carbonized repeatedly to increase the density, There is a method of directly depositing pyrolytic carbon by a CVD method (see, for example, Non-Patent Document 1).
Aerospace Engineering Handbook 3rd Edition, Japan Aerospace Society, published on November 30, 2005, page 199

また、電子機器用基板として、炭素質マトリックス中に金属成分を分散させた炭素基金属複合材料が提案されている(例えば、特許文献5参照。)。
特開2001−58255号公報
As a substrate for electronic equipment, a carbon-based metal composite material in which a metal component is dispersed in a carbonaceous matrix has been proposed (see, for example, Patent Document 5).
JP 2001-58255 A

しかし、上記特許文献5に記載の炭素基金属複合材料は、面方向の弾性率を低減したものであり、また熱膨張率が十分ではでなかった。   However, the carbon-based metal composite material described in Patent Document 5 has a reduced elastic modulus in the plane direction, and the thermal expansion coefficient is not sufficient.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、加工性に優れ、殆どゼロに近い熱膨張率を示すAl含浸3次元C/Cコンポジット及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an Al-impregnated three-dimensional C / C composite that has excellent workability and exhibits a coefficient of thermal expansion close to zero. And a manufacturing method thereof.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、3次元に形成したC/Cコンポジットの空隙にアルミニウムを含浸することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by impregnating aluminum in the voids of a three-dimensional C / C composite, and the present invention has been completed. It came to do.

即ち、本発明のAl含浸3次元C/Cコンポジットは、C/Cコンポジットにアルミニウムを含浸させて成るAl含浸3次元C/Cコンポジットであって、
平均密度が1.9〜2.3g/cmであり、平均熱膨張係数が−0.41×10 −6 〜1.58×10 −6 /℃であることを特徴とする。
That is, the Al-impregnated three-dimensional C / C composite of the present invention is an Al-impregnated three-dimensional C / C composite obtained by impregnating a C / C composite with aluminum,
The average density is 1.9 to 2.3 g / cm 3 , and the average thermal expansion coefficient is −0.41 × 10 −6 to 1.58 × 10 −6 / ° C.

また、本発明のAl含浸3次元C/Cコンポジットの好適形態は、C/Cコンポジットとアルミニウムとの比率が体積換算で90:10〜98:2であることを特徴とする。   Moreover, the suitable form of the Al-impregnated three-dimensional C / C composite of the present invention is characterized in that the ratio of the C / C composite and aluminum is 90:10 to 98: 2 in terms of volume.

更に、本発明のAl含浸3次元C/Cコンポジットの製造方法は、上記Al含浸3次元C/Cコンポジットを製造するに当たり、以下の第1〜工程
1.炭素繊維を三次元網目構造に製織し、プリフォームとする工
ピッチ含浸処理及び/又はHIP処理を行う高圧炭素化工程
.黒鉛化工程
.アルミニウム溶湯で鍛造する工程
.機械加工工程
を行うことを特徴とする
Moreover, the production method of Al-impregnated 3-D C / C composites of the present invention where, upon manufacturing the Al-impregnated 3-D C / C composite, the following first to fifth step 1. The carbon fiber is woven into a three-dimensional network structure, as factories to preform
2 . High pressure carbonization process for pitch impregnation treatment and / or HIP treatment
3 . Graphitization process
4 . Forging process with molten aluminum
5 . It is characterized by performing a machining process .

更にまた、本発明のAl含浸3次元C/Cコンポジットの製造方法の好適形態は、上記第2工程及び第3工程6又は7回繰返して、緻密化することを特徴とする。 Furthermore, a preferred embodiment of the method for producing an Al-impregnated three-dimensional C / C composite according to the present invention is characterized in that the second step and the third step are repeated 6 or 7 times for densification.

本発明によれば、3次元に形成したC/Cコンポジットの空隙にアルミニウムを含浸することとしたため、加工性に優れ、殆どゼロに近い熱膨張率を示すAl含浸3次元C/Cコンポジット及びその製造方法を提供することができる。   According to the present invention, since the voids of the C / C composite formed in three dimensions are impregnated with aluminum, the Al-impregnated three-dimensional C / C composite exhibiting excellent workability and a coefficient of thermal expansion close to zero, and its A manufacturing method can be provided.

以下、本発明のAl含浸3次元C/Cコンポジットについて詳細に説明する。なお、本明細書において「%」は、特記しない限り質量百分率を示す。   Hereinafter, the Al-impregnated three-dimensional C / C composite of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.

本発明のAl含浸3次元C/Cコンポジットは、C/Cコンポジットにアルミニウム(Al)を含浸させて成る。
ここで、上記C/Cコンポジットは、3次元配列のもの(3DC/C)を使用する。この3次元C/Cコンポジットは、縦・横・前後方向に炭素繊維を配列して成り、熱特性、機械特性に異方性がない均質な材料である。
かかる3次元C/CコンポジットにAlを含浸することで、殆どゼロに近い熱膨張率を示すようになる。図1に本Al含浸3次元C/Cコンポジットの一例を示す。
The Al-impregnated three-dimensional C / C composite of the present invention is formed by impregnating a C / C composite with aluminum (Al).
The C / C composite is a three-dimensional array (3DC / C). This three-dimensional C / C composite is a homogeneous material that is formed by arranging carbon fibers in the longitudinal, lateral, and longitudinal directions, and has no anisotropy in thermal and mechanical properties.
By impregnating such a three-dimensional C / C composite with Al, the coefficient of thermal expansion is almost zero. FIG. 1 shows an example of the present Al-impregnated three-dimensional C / C composite.

また、本発明のAl含浸3次元C/Cコンポジットは、平均密度が1.9〜2.3g/cmであり、平均熱膨張係数が−0.41×10 −6 〜1.58×10 −6 /℃である。
これにより、従来の材料に比べて密度、加工性が向上し、製品の大型化が可能となる。
例えば、表1に示すように、インバー(登録商標)、スーパーインバー(登録商標)に対しては、特に密度が1/4程度まで低減され、極めて軽量となる。また、ゼロデュア(登録商標)に対しては、特に比弾性、熱膨張係数が大きい。
The Al-impregnated three-dimensional C / C composite of the present invention has an average density of 1.9 to 2.3 g / cm 3 and an average coefficient of thermal expansion of −0.41 × 10 −6 to 1.58 × 10. -6 / ° C.
As a result, the density and workability are improved as compared with conventional materials, and the product can be enlarged.
For example, as shown in Table 1, with respect to Invar (registered trademark) and Super Invar (registered trademark), the density is particularly reduced to about 1/4 and becomes extremely lightweight. In addition, the specific elasticity and thermal expansion coefficient are particularly large for Zerodure (registered trademark).

Figure 0004883678
Figure 0004883678

更に、熱膨張率をよりゼロに近づける観点からは、平均熱膨張係数が−0.41×10 〜0.37×10 /℃であることが好適である。
このようなAl含浸3次元C/Cコンポジットを得るには、例えば、後述する製造方法の緻密化処理を6〜7回繰返すことが挙げられる。
Furthermore, from the viewpoint to approximate the thermal expansion coefficient more to zero, the average thermal expansion coefficient of -0.41 × 10 - is suitably a 6 / ℃ - 6 ~0.37 × 10 .
In order to obtain such an Al-impregnated three-dimensional C / C composite, for example, it is possible to repeat the densification treatment of the manufacturing method described later 6 to 7 times.

以上のような構成により、本発明のAl含浸3次元C/Cコンポジットは、弾性率、熱膨張率のバランスが良好であり、代表的には、次のような優れた特徴を有する。
1.耐熱性があり、不活性ガス中では、約2500℃まで強度が低下しない。
2.黒鉛材料に比べて高強度高剛性であり、耐衝撃性及び耐熱性に優れる。
3.熱膨張率が小さいので、寸法安定性がある。等方的性質を有する。
4.耐磨耗性である。
5.軽量である。
6.耐化学薬品性である。
7.生体との親和が良い。
With the configuration as described above, the Al-impregnated three-dimensional C / C composite of the present invention has a good balance of elastic modulus and thermal expansion coefficient, and typically has the following excellent characteristics.
1. It has heat resistance and does not decrease in strength up to about 2500 ° C. in an inert gas.
2. Compared to graphite materials, it has high strength and rigidity, and is excellent in impact resistance and heat resistance.
3. Since the coefficient of thermal expansion is small, there is dimensional stability. Isotropic properties.
4). Abrasion resistance.
5. Light weight.
6). Chemical resistance.
7). Good affinity with living body.

更に、本発明のAl含浸3次元C/Cコンポジットは、C/Cコンポジットとアルミニウムとの比率が体積換算で90:10〜98:2であることが好適である。
アルミニウムの含浸量をこの範囲とすることで、熱膨張率をよりゼロに近づけることができる。図2にC/Cコンポジット中のAl含有率に対する熱膨張係数の一例を示す。
Furthermore, in the Al-impregnated three-dimensional C / C composite of the present invention, the ratio of the C / C composite and aluminum is preferably 90:10 to 98: 2 in terms of volume.
By making the impregnation amount of aluminum within this range, the coefficient of thermal expansion can be made closer to zero. FIG. 2 shows an example of the thermal expansion coefficient with respect to the Al content in the C / C composite.

次に、本発明のAl含浸3次元C/Cコンポジットの製造方法について詳細に説明する。
本発明の製造方法では、以下の第1〜工程
1.炭素繊維を三次元網目構造に製織し、プリフォームとする工程
2.高圧炭素化工程
3.黒鉛化工程
4.アルミニウム溶湯で鍛造する工程
5.機械加工工程
を行い、上述のAl含浸3次元C/Cコンポジットを得る。
このような工程を経ることにより、殆どゼロに近い熱膨張率を示すようになる。
なお、上記プリフォームにはカーボンブラック(CB)などを含浸させることもできる。
Next, the method for producing the Al-impregnated three-dimensional C / C composite of the present invention will be described in detail.
In the production method of the present invention, the following first to fifth steps 1. 1. Weaving carbon fiber into a three-dimensional network structure to form a preform 2. High pressure carbonization step Graphitization step 4. 4. Forging with molten aluminum A machining process is performed to obtain the above-described Al-impregnated three-dimensional C / C composite.
By going through such a process, the coefficient of thermal expansion is almost zero.
The preform can be impregnated with carbon black (CB) or the like.

ここで、各工程について具体的に説明する。
まず、第1工程では、代表的には、直径7〜10μmの炭素繊維を使用することができ、当該炭素繊維を直交3軸組に織り込むことでプリフォームを成形できる。
Here, each step will be specifically described.
First, in the first step, typically, carbon fibers having a diameter of 7 to 10 μm can be used, and a preform can be formed by weaving the carbon fibers in an orthogonal three-axis set.

第2工程の高圧炭素化は、代表的には、ピッチ含浸処理、HIP処理のいずれか一方又は双方により行うことが好適である。   The high-pressure carbonization in the second step is typically preferably performed by one or both of pitch impregnation treatment and HIP treatment.

上記ピッチ含浸処理は、ピッチ炉側温度を250〜300℃、ワーク側温度を280〜300℃に保持して、真空〜加圧の条件下で行うことができる(真空下〜約0.5MPa)。
これにより、炭化時のピッチのバブリングを抑制し緻密化を進めることができる。
The pitch impregnation treatment can be performed under vacuum to pressurization conditions while maintaining the pitch furnace side temperature at 250 to 300 ° C. and the workpiece side temperature at 280 to 300 ° C. (under vacuum to about 0.5 MPa). .
Thereby, bubbling of the pitch at the time of carbonization can be suppressed and densification can be promoted.

上記HIP処理は、HIP炉側温度を600〜800℃、ワーク側温度を600〜800℃に保持して、約50〜100MPa程度の高圧化で行うことができる。
特に、約50MPa程度の条件で1,2回処理した後、約100MPa程度の条件で3〜7回処理することが好ましい。
The HIP treatment can be performed at a high pressure of about 50 to 100 MPa while maintaining the HIP furnace side temperature at 600 to 800 ° C. and the workpiece side temperature at 600 to 800 ° C.
In particular, it is preferable to perform the treatment 3 or 7 times under the condition of about 100 MPa after the treatment of 1 or 2 times under the condition of about 50 MPa.

次に、第3工程では、上記高圧炭素化処理の後に、黒鉛化処理(高温化処理)を、段階的に1500℃以上で行うことができる。
このときは、脱ガスがマイルドになり易いので有効である。なお、700〜1200℃の温度領域では脱水素が行われるため注意を要する。
Next, in the third step, after the high-pressure carbonization treatment, graphitization treatment (high temperature treatment) can be performed stepwise at 1500 ° C. or more.
In this case, degassing is likely to be mild, which is effective. Note that dehydrogenation is performed in the temperature range of 700 to 1200 ° C.

上述の第2,3工程は、プリフォームである3次元C/Cコンポジットを緻密化する処理であるが、これらの処理は4〜7回繰返すことが好適である。
これにより、所望量のAlを含浸するのに適した空隙を残してプリフォームが緻密化されうる。
特に、かかる緻密化処理を6,7回繰返すことがより好ましく、得られた3次元C/CコンポジットにAlを含浸させることで、ほぼゼロに近い熱膨張率を示すAl含浸3次元C/Cコンポジットが得られる。
なお、Alの含浸量を高めるときは、上記緻密化処理の回数を減らして、空隙を増大すればよい。
The second and third steps described above are processes for densifying the three-dimensional C / C composite that is a preform. It is preferable that these processes are repeated 4 to 7 times.
This allows the preform to be densified leaving a void suitable for impregnating the desired amount of Al.
In particular, it is more preferable to repeat this densification treatment 6 or 7 times, and by impregnating the obtained three-dimensional C / C composite with Al, an Al-impregnated three-dimensional C / C exhibiting a coefficient of thermal expansion close to zero. A composite is obtained.
In order to increase the amount of impregnation of Al, the number of the densification treatments may be reduced to increase the voids.

次に、第4工程では、代表的には、700〜750℃程度のアルミニウム溶湯中に、700〜750℃程度に加熱したプリフォームを入れ、80〜100MPaの加圧下で含浸させることができる。   Next, in the fourth step, typically, a preform heated to about 700 to 750 ° C. can be placed in a molten aluminum of about 700 to 750 ° C. and impregnated under a pressure of 80 to 100 MPa.

次に、第5工程では、代表的には、バンドソー、フライス、旋盤などを用いて、所望形状に機械加工できる。
なお、本発明のAl含浸3次元C/Cコンポジットの大きさは、現時点では、450mm×450mm×400mm程度まで製造できる。
Next, in the fifth step, typically, a desired shape can be machined using a band saw, a milling machine, a lathe or the like.
The size of the Al-impregnated three-dimensional C / C composite of the present invention can be manufactured up to about 450 mm × 450 mm × 400 mm at present.

上述した第1〜5工程により、本発明のAl含浸3次元C/Cコンポジットが得られるが、更にニッケルメッキ処理を行うことが好適である。
これにより、耐摩耗性を向上することができる。また、脆性破壊を抑制することができる。
かかるニッケルメッキの厚みは、代表的には5〜10μm程度とすることができる。図3にニッケルメッキを膜厚5μm、10μmで施したAl含浸3次元C/Cコンポジットの写真を示す。
Although the Al impregnated three-dimensional C / C composite of the present invention is obtained by the first to fifth steps described above, it is preferable to further perform nickel plating.
Thereby, abrasion resistance can be improved. Moreover, brittle fracture can be suppressed.
The thickness of such nickel plating can be typically about 5 to 10 μm. FIG. 3 shows a photograph of an Al-impregnated three-dimensional C / C composite in which nickel plating is performed at a film thickness of 5 μm and 10 μm.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

(実施例1)
図4に示すフローチャートに基づいて、Al含浸3次元C/Cコンポジットを製造した。
以下、このフローチャートをプロセス順に説明する。
Example 1
Based on the flowchart shown in FIG. 4, an Al-impregnated three-dimensional C / C composite was produced.
Hereinafter, this flowchart will be described in the order of processes.

まず、プロセス1(以下、「P1」のように略す)では、炭素繊維としてピッチ系の炭素繊維(XN20、日本グラファイトファイバー社製)を用意した。
この炭素繊維は、引張弾性率200GPa、引張強度2730MPa、電気抵抗率11×10Ω・m、熱伝導率13W/m・K、熱膨張係数−0.9×10−6/Kである。
First, in Process 1 (hereinafter abbreviated as “P1”), pitch-based carbon fibers (XN20, manufactured by Nippon Graphite Fiber Co., Ltd.) were prepared as carbon fibers.
This carbon fiber has a tensile modulus of 200 GPa, a tensile strength of 2730 MPa, an electrical resistivity of 11 × 10 Ω · m, a thermal conductivity of 13 W / m · K, and a thermal expansion coefficient of −0.9 × 10 −6 / K.

次に、この炭素繊維を用いてφ0.97mmのロッドを引抜き成形した(P2)。
また、得られたロッドを直交3軸組みしてプリフォームを得た(P3)。
Next, a rod of φ0.97 mm was drawn using this carbon fiber (P2).
In addition, a preform was obtained by assembling the obtained rods with three orthogonal axes (P3).

次に、得られたプリフォームに対して、ピッチ含浸処理を真空〜加圧の条件下で行った(P4)。
また、HIP処理を、1,2回目が約50MPa、3〜7回目が約100MPaで行った(P5)。
更に、黒鉛化処理を2400℃で行った(P6)。
なお、P4〜P6の緻密化処理は、4回行った。
Next, pitch impregnation treatment was performed on the obtained preform under vacuum to pressure conditions (P4).
In addition, the HIP treatment was performed at about 50 MPa for the first and second times and about 100 MPa for the third to seventh times (P5).
Further, graphitization was performed at 2400 ° C. (P6).
In addition, the densification process of P4-P6 was performed 4 times.

次に、緻密化処理後のプリフォームを試験片の大きさに切り出し、Al含浸処理を行った(P7)。
具体的には、加圧力約100MPa、加圧時間5分でAl溶湯鍛造を行った。
Next, the preform after the densification treatment was cut out to the size of the test piece and subjected to Al impregnation treatment (P7).
Specifically, Al molten metal forging was performed with a pressing force of about 100 MPa and a pressing time of 5 minutes.

得られたAl含浸3次元C/Cコンポジットをバンドソーにて機械加工し(P8)、無電解ニッケルメッキ処理を施して、試験片を得た(P9)。   The obtained Al-impregnated three-dimensional C / C composite was machined with a band saw (P8) and subjected to electroless nickel plating to obtain a test piece (P9).

(実施例2〜4)
P4〜P6の緻密化処理を5〜7回としたこと以外は、実施例1と同様の操作を繰返して、Al含浸3次元C/Cコンポジットの試験片を得た。
(Examples 2 to 4)
A test piece of Al-impregnated three-dimensional C / C composite was obtained by repeating the same operation as in Example 1 except that the densification treatment of P4 to P6 was changed to 5 to 7 times.

(比較例1,2)
P4〜P6の緻密化処理を6回、7回としたこと、Al含浸処理を行わなかったこと以外は、実施例1と同様の操作を繰返して、3次元C/Cコンポジットの試験片を得た。
(Comparative Examples 1 and 2)
A test piece of 3D C / C composite was obtained by repeating the same operation as in Example 1 except that the densification treatment of P4 to P6 was 6 times and 7 times, and the Al impregnation treatment was not performed. It was.

[性能評価]
各例で得られた試験片について、以下の評価試験を行った。この結果を表2に示す。
[Performance evaluation]
The following evaluation tests were conducted on the test pieces obtained in each example. The results are shown in Table 2.

(1)密度計測
試験片の寸法、重量から密度を算出した。寸法計測はノギスを用いた。重量は0.1mg間隔で計測した。
(1) Density measurement The density was calculated from the size and weight of the test piece. A vernier caliper was used for dimension measurement. The weight was measured at 0.1 mg intervals.

(2)熱膨張計測
以下の条件で熱膨張係数を測定した。また、熱膨張係数の温度依存性について図5,6に示す。
a.測定試料 :10mm(幅)×8mm(厚み)×15mm(長さ)
b.装置 :アルバック理工(株)製 レーザ熱膨張計LIX−1型
c.データ処理 :TRC製データ処理システム THADAP−TEX
d.測定モード :等速昇温測定
e.昇温速度 :2℃/min
f.測定温度範囲 :25〜100℃
g.測定雰囲気 :ヘリウム中
h.負荷荷重 :約17g
i.測定n数 :1
j.測定方向 :測定試料の長手方向
k.温度校正 :ウッド合金、インジウム、スズの各融点
(2) Thermal expansion measurement The thermal expansion coefficient was measured on condition of the following. Further, the temperature dependence of the thermal expansion coefficient is shown in FIGS.
a. Measurement sample: 10 mm (width) x 8 mm (thickness) x 15 mm (length)
b. Apparatus: Laser thermal dilatometer LIX-1 type manufactured by ULVAC-RIKO Co., Ltd. c. Data processing: TRC data processing system THADAP-TEX
d. Measurement mode: Constant temperature rise measurement e. Temperature increase rate: 2 ° C / min
f. Measurement temperature range: 25-100 ° C
g. Measurement atmosphere: in helium h. Load: about 17g
i. N number of measurements: 1
j. Measurement direction: longitudinal direction of measurement sample k. Temperature calibration: Wood alloy, indium and tin melting points

Figure 0004883678
Figure 0004883678

表2及び図5,6より、実施例1〜4で得られたAl含浸3次元C/Cコンポジットは、Alを含浸させたことにより、熱膨張係数が小さくなっていることがわかる。
また、実施例3,4と比較例1,2を比較すると、図6より、Alを含浸させたことにより、熱膨張率が極めてゼロに近づいていることがわかる。
よって、本発明のAl含浸3次元C/Cコンポジットは、低密度で、熱膨張係数も小さく、加工性に優れる。
From Table 2 and FIGS. 5 and 6, it can be seen that the Al-impregnated three-dimensional C / C composites obtained in Examples 1 to 4 have a low coefficient of thermal expansion due to impregnation with Al.
Further, comparing Examples 3 and 4 with Comparative Examples 1 and 2, it can be seen from FIG. 6 that the coefficient of thermal expansion is very close to zero by impregnating with Al.
Therefore, the Al-impregnated three-dimensional C / C composite of the present invention has a low density, a small thermal expansion coefficient, and excellent workability.

本発明のAl含浸3次元C/Cコンポジットの一例を示す偏光顕微鏡写真である。It is a polarizing microscope photograph which shows an example of the Al impregnation three-dimensional C / C composite of this invention. Al含有量と熱膨張係数との関係を示すグラフである。It is a graph which shows the relationship between Al content and a thermal expansion coefficient. ニッケルメッキを施したAl含浸3次元C/Cコンポジットの一例を示す写真である。It is a photograph which shows an example of the Al impregnation three-dimensional C / C composite which gave nickel plating. 本発明のAl含浸3次元C/Cコンポジットの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of Al impregnation three-dimensional C / C composite of this invention. 熱膨張係数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of a thermal expansion coefficient. 熱膨張係数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of a thermal expansion coefficient.

Claims (8)

C/Cコンポジットにアルミニウムを含浸させて成るAl含浸3次元C/Cコンポジットであって、
平均密度が1.9〜2.3g/cm であり、平均熱膨張係数が−0.41×10 −6 〜1.58×10 −6 /℃であることを特徴とするAl含浸3次元C/Cコンポジット。
An Al-impregnated three-dimensional C / C composite obtained by impregnating a C / C composite with aluminum,
Three-dimensional Al impregnation having an average density of 1.9 to 2.3 g / cm 3 and an average coefficient of thermal expansion of −0.41 × 10 −6 to 1.58 × 10 −6 / ° C. C / C composite.
平均熱膨張係数が−0.41×10 −6 〜0.37×10 −6 /℃であることを特徴とする請求項1に記載のAl含浸3次元C/Cコンポジット。 2. The Al-impregnated three-dimensional C / C composite according to claim 1, wherein an average thermal expansion coefficient is −0.41 × 10 −6 to 0.37 × 10 −6 / ° C. 3. C/Cコンポジットとアルミニウムとの比率が体積換算で90:10〜98:2であることを特徴とする請求項1又は2に記載のAl含浸3次元C/Cコンポジット。   3. The Al-impregnated three-dimensional C / C composite according to claim 1, wherein the ratio of the C / C composite to aluminum is 90:10 to 98: 2 in terms of volume. ニッケルメッキ処理して成ることを特徴とする請求項1〜3のいずれか1つの項に記載のAl含浸3次元C/Cコンポジット。The Al-impregnated three-dimensional C / C composite according to any one of claims 1 to 3, which is nickel-plated. 請求項1〜4のいずれか1つの項に記載のAl含浸3次元C/Cコンポジットを製造するに当たり、以下の第1〜工程
1.炭素繊維を三次元網目構造に製織し、プリフォームとする工
ピッチ含浸処理及び/又はHIP処理を行う高圧炭素化工程
.黒鉛化工程
.アルミニウム溶湯で鍛造する工程
.機械加工工程
を行うことを特徴とするAl含浸3次元C/Cコンポジットの製造方法。
Impinge on the production of Al-impregnated 3-D C / C composite according to any one of claims 1 to 4, the following first to fifth step 1. The carbon fiber is woven into a three-dimensional network structure, as factories to preform
2 . High pressure carbonization process for pitch impregnation treatment and / or HIP treatment
3 . Graphitization process
4 . Forging process with molten aluminum
5 . A method for producing an Al-impregnated three-dimensional C / C composite comprising performing a machining process.
上記第2工程及び第3工程4〜7回繰返して、緻密化することを特徴とする請求項5にAl含浸3次元C/Cコンポジットの製造方法。 6. The method for producing an Al-impregnated three-dimensional C / C composite according to claim 5 , wherein the second step and the third step are repeated 4 to 7 times for densification. 上記第2工程及び第3工程6又は7回繰返すことを特徴とする請求項6に記載のAl含浸3次元C/Cコンポジットの製造方法。 7. The method for producing an Al-impregnated three-dimensional C / C composite according to claim 6 , wherein the second step and the third step are repeated 6 or 7 times . 上記第工程の後にニッケルメッキ処理を行うことを特徴とする請求項4〜7のいずれか1つの項に記載のAl含浸3次元C/Cコンポジットの製造方法。 The method for producing an Al-impregnated three-dimensional C / C composite according to any one of claims 4 to 7, wherein nickel plating is performed after the fifth step.
JP2006042291A 2006-02-20 2006-02-20 Al impregnated three-dimensional C / C composite and method for producing the same Active JP4883678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042291A JP4883678B2 (en) 2006-02-20 2006-02-20 Al impregnated three-dimensional C / C composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042291A JP4883678B2 (en) 2006-02-20 2006-02-20 Al impregnated three-dimensional C / C composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007217256A JP2007217256A (en) 2007-08-30
JP4883678B2 true JP4883678B2 (en) 2012-02-22

Family

ID=38494939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042291A Active JP4883678B2 (en) 2006-02-20 2006-02-20 Al impregnated three-dimensional C / C composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4883678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836050B2 (en) * 2011-10-14 2015-12-24 株式会社Ihiエアロスペース Method and apparatus for densifying porous structure
JP2014034729A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Composite material, slide member made by using the same, and manufacturing methods of both
CN108436244B (en) * 2018-03-01 2020-08-11 常熟理工学院 Method for connecting carbon fiber composite material and aluminum alloy plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002096A (en) * 2002-05-31 2004-01-08 Toyo Tanso Kk Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink
JP4307798B2 (en) * 2002-06-13 2009-08-05 東洋炭素株式会社 Heat dissipation material
JP4066896B2 (en) * 2003-06-26 2008-03-26 三菱化学株式会社 Carbon fiber reinforced carbon composite material and sliding material using the same

Also Published As

Publication number Publication date
JP2007217256A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
JP6044436B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP5037518B2 (en) Three-dimensional reinforced multifunctional nanocomposite
US11325867B2 (en) Hybrid multifunctional composite material
KR100458023B1 (en) Fibrous composite material and process for producing the same
EP2634159B1 (en) Carbon-fiber-reinforced silicon-carbide-based composite material
JP4883678B2 (en) Al impregnated three-dimensional C / C composite and method for producing the same
KR20130016112A (en) Improved process for fabrication of a part with tubular geometry made from a ceramic matrix composite material
Hatta et al. Carbon/carbons and their industrial applications
Li et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites withhigh thermal conductivity
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP6286865B2 (en) Wear resistant parts
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
Anilas et al. Carbon-Carbon Composites–A Review
WO2021206168A1 (en) C/c composite and method for producing same, and heat-treatment jig and method for producing same
Dassios et al. Damage assessment in a SiC-fiber reinforced ceramic matrix composite
Xu et al. Compression and thermophysical properties of carbon fiber-reinforced high textured pyrocarbon and SiC dual matrix composites
JP2007255623A (en) Composite material brake
JPH11116359A (en) Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same
Kotani et al. Improvement in matrix microstructure of SiC/SiC composites by incorporation of pore-forming powder
Gonczy et al. Nextel™ 312/silicon oxycarbide ceramic composites
Choi et al. Manufacturing of Carbon Nanotube Preform with High Porosity and Its Application in Metal Matrix Composites
Zhao et al. Effects of in situ formed nanostructures on the structure and properties of C/SiOC composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250