JP5836050B2 - Method and apparatus for densifying porous structure - Google Patents

Method and apparatus for densifying porous structure Download PDF

Info

Publication number
JP5836050B2
JP5836050B2 JP2011227053A JP2011227053A JP5836050B2 JP 5836050 B2 JP5836050 B2 JP 5836050B2 JP 2011227053 A JP2011227053 A JP 2011227053A JP 2011227053 A JP2011227053 A JP 2011227053A JP 5836050 B2 JP5836050 B2 JP 5836050B2
Authority
JP
Japan
Prior art keywords
porous structure
liquid phase
heating
derivative
phase precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011227053A
Other languages
Japanese (ja)
Other versions
JP2013086999A (en
Inventor
宏 山内
宏 山内
浩永 早川
浩永 早川
鈴木 茂
鈴木  茂
大 井出
大 井出
壮次郎 木村
壮次郎 木村
小林 良治
良治 小林
周一郎 宮田
周一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Dai Ichi High Frequency Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd, Dai Ichi High Frequency Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2011227053A priority Critical patent/JP5836050B2/en
Publication of JP2013086999A publication Critical patent/JP2013086999A/en
Application granted granted Critical
Publication of JP5836050B2 publication Critical patent/JP5836050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Description

本発明は、多数の微細空洞を有する多孔質構造体を、例えば、宇宙機や高速飛翔体のノズルライナとしての使用に耐え得る高密度の多孔質構造体としたり、ブレーキディスクとしての使用に耐え得る高密度の多孔質構造体としたりするのに好適な多孔質構造体の高密度化方法及び高密度化装置に関するものである。   The present invention can make a porous structure having a large number of fine cavities, for example, a high-density porous structure that can withstand use as a nozzle liner of a spacecraft or a high-speed flying object, or can withstand use as a brake disk. The present invention relates to a high-density method and high-density device for a porous structure suitable for making a high-density porous structure.

従来、上記した多孔質構造体の高密度化方法としては、例えば、特許文献1に記載された方法が知られている。
この多孔質構造体の高密度化方法において、多数の微細空洞を有する多孔質構造体、例えば、カーボンから成る多孔質構造体を高密度化するに際しては、まず、多孔質構造体を炭化水素系の液相前駆体に浸漬し、次いで、グラファイトから成る加熱誘導体を誘導加熱(又は抵抗加熱)することで、液相前駆体とこの液相前駆体に浸漬させた多孔質構造体とを加熱して、これにより分解する液相前駆体の分解成分であるカーボン(又はグラファイト)を多孔質構造体の多数の微細空洞に含浸蒸着させるようになっている。
Conventionally, as a method for increasing the density of the porous structure described above, for example, the method described in Patent Document 1 is known.
In this method for densifying a porous structure, when densifying a porous structure having a large number of fine cavities, for example, a porous structure made of carbon, first, the porous structure is converted into a hydrocarbon-based structure. Then, the liquid phase precursor and the porous structure immersed in the liquid phase precursor are heated by induction heating (or resistance heating) of the graphite derivative. Thus, carbon (or graphite), which is a decomposition component of the liquid phase precursor to be decomposed, is impregnated and deposited in a number of fine cavities of the porous structure.

特公平01-040796号No. 01-040796

ところが、上記した多孔質構造体の高密度化方法では、加熱誘導体を誘導加熱(又は抵抗加熱)することで、液相前駆体とこの液相前駆体に浸漬させた多孔質構造体とを加熱する場合において、強度的に難のあるグラファイトから成る加熱誘導体を用いているので、例えば、宇宙機のノズルライナに要求される高密度の多孔質構造体を製造することができない。
また、要求に近い多孔質構造体の高密度化を実現することができたとしても、グラファイトを用いる限り加熱誘導体の肉厚を厚くする必要があり、その結果、カーボンを成長させるための加熱に多くの時間を費やさなければならない、すなわち、製造に数日を要するという問題を有しており、これらの問題を解決することが従来の課題となっていた。
However, in the above-described method for densifying the porous structure, the heated derivative is heated by induction heating (or resistance heating) to heat the liquid phase precursor and the porous structure immersed in the liquid phase precursor. In this case, since a heated derivative made of graphite, which is difficult in strength, is used, for example, a high-density porous structure required for a spacecraft nozzle liner cannot be manufactured.
In addition, even if the density of the porous structure close to the requirement can be achieved, it is necessary to increase the thickness of the heated derivative as long as graphite is used, and as a result, heating for growing carbon is required. There is a problem that a lot of time has to be spent, that is, it takes several days to manufacture, and it has been a conventional problem to solve these problems.

本発明は、上記した従来の課題に着目してなされたもので、例えば、宇宙機のノズルライナに要求される高密度の多孔質構造体を製造することが可能であり、その製造に要する時間の大幅な短縮を実現することができる多孔質構造体の高密度化方法及び高密度化装置を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems. For example, it is possible to manufacture a high-density porous structure required for a nozzle liner of a spacecraft. An object of the present invention is to provide a high-density method and high-density device for a porous structure that can realize significant shortening.

本発明の請求項1に係る発明は、多数の微細空洞(微細な孔を含む)を有する多孔質構造体、例えば、カーボンから成る多孔質構造体の前記多数の微細空洞にカーボンを含浸蒸着させて、該多孔質構造体を高密度化する方法であって、前記多孔質構造体を炭素繊維の3方向性プリフォームを高圧で等方的に圧縮して緻密化するHIP処理を複数回行って製造される密度が1.95g/cm3以上、望ましくは2.00g/cm3程度の高密度C/Cコンポジット(炭素繊維強化炭素複合材)から成る加熱誘導体で支持すると共に、該加熱誘導体に支持された前記多孔質構造体を液状の炭化水素である液相前駆体に浸漬した後、前記加熱誘導体を誘導加熱及び抵抗加熱のうちの少なくともいずれか一方で加熱して、前記液相前駆体とこの液相前駆体に浸漬させた前記多孔質構造体とを加熱し、この誘導加熱及び抵抗加熱のうちの少なくともいずれか一方の加熱により分解する前記液相前駆体の分解生成物を前記多孔質構造体の多数の微細空洞に含浸蒸着させる構成としたことを特徴としており、この多孔質構造体の高密度化方法の構成を前述した従来の課題を解決するための手段としている。 In the invention according to claim 1 of the present invention, carbon is impregnated and vapor-deposited in a porous structure having a large number of fine cavities (including fine holes), for example, a porous structure made of carbon. A method of densifying the porous structure, wherein the porous structure is subjected to HIP treatment for densifying the carbon fiber three-way preform by isotropically compressing it at high pressure a plurality of times. Supported by a heated derivative comprising a high density C / C composite (carbon fiber reinforced carbon composite) having a density of 1.95 g / cm 3 or more, preferably about 2.00 g / cm 3. The porous structure supported by the substrate is immersed in a liquid phase precursor that is a liquid hydrocarbon, and then the heated derivative is heated by at least one of induction heating and resistance heating to form the liquid phase precursor. Soaked in the body and this liquid phase precursor The porous structure is heated, and the decomposition product of the liquid phase precursor decomposed by at least one of induction heating and resistance heating is formed into a number of fine cavities of the porous structure. The structure is characterized in that it is impregnated and vapor-deposited. The structure of the method for densifying the porous structure is used as a means for solving the above-described conventional problems.

また、本発明の請求項2に係る多孔質構造体の高密度化方法において、前記液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る前記多孔質構造体は、これを支持する前記加熱誘導体と一体で製品化される構成としている。
さらに、本発明の請求項3に係る多孔質構造体の高密度化方法において、前記液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る前記多孔質構造体は、これを支持する前記加熱誘導体から分離されて別体で製品化される構成としている。
Further, in the method for densifying a porous structure according to claim 2 of the present invention, the porous structure formed by impregnating and vapor-depositing decomposition products of the liquid phase precursor into a large number of fine cavities, It is set as the structure manufactured integrally with the said heating derivative to support.
Furthermore, in the method for densifying a porous structure according to claim 3 of the present invention, the porous structure formed by impregnating and vapor-depositing a decomposition product of the liquid phase precursor into a large number of fine cavities includes: It is configured such that it is separated from the heated derivative to be supported and is manufactured as a separate product.

一方、本発明の請求項4に係る発明は、多数の微細空洞を有する多孔質構造体の前記多数の微細空洞にカーボンを含浸蒸着させて、該多孔質構造体を高密度化する多孔質構造体の高密度化装置であって、液状の炭化水素である液相前駆体を収容する反応器と、前記反応器内に配置されて該反応器に収容された前記液相前駆体に前記多孔質構造体を浸漬させた状態で支持する密度が1.95g/cm3以上、望ましくは2.00g/cm3程度のC/Cコンポジットから成る加熱誘導体と、前記加熱誘導体を誘導加熱及び抵抗加熱のうちの少なくともいずれか一方で加熱して、前記反応器内において前記液相前駆体とこの液相前駆体に浸漬させた前記多孔質構造体とを加熱し、この誘導加熱及び抵抗加熱のうちの少なくともいずれか一方の加熱で分解する前記液相前駆体の分解生成物を前記多孔質構造体の多数の微細空洞に含浸蒸着させる電力供給部と、前記加熱誘導体の温度に応じて前記電力供給部からの供給電力量をコントロールする制御部を備えた構成としている。 On the other hand, the invention according to claim 4 of the present invention is a porous structure in which a carbon structure is impregnated and vapor-deposited in a large number of fine cavities of a porous structure having a large number of fine cavities to increase the density of the porous structure. An apparatus for densifying a body, a reactor containing a liquid phase precursor which is a liquid hydrocarbon, and the liquid phase precursor disposed in the reactor and contained in the reactor is porous. density is 1.95 g / cm 3 or more you support in a state of being immersed quality structure, preferably a heating derivative consisting 2.00 g / cm 3 order of C / C composite, the heating derivative induction heating and Heating at least one of resistance heating, heating the liquid phase precursor and the porous structure immersed in the liquid phase precursor in the reactor, the induction heating and resistance heating Before decomposition by heating at least one of the A power supply unit that impregnates and deposits a decomposition product of the liquid phase precursor in a number of fine cavities of the porous structure, and a control that controls the amount of power supplied from the power supply unit according to the temperature of the heating derivative It is set as the structure provided with the part.

本発明に係る多孔質構造体の高密度化方法及び高密度化装置において、液相前駆体には、炭化水素系の、例えば、シクロヘキサンを用いることができる。   In the porous structure densification method and the densification apparatus according to the present invention, hydrocarbon-based, for example, cyclohexane can be used as the liquid phase precursor.

また、本発明に係る多孔質構造体の高密度化方法及び高密度化装置において、加熱誘導体の形状はとくに限定されるものではなく、円柱状や円筒状や平板状の加熱誘導体とすることができ、加熱誘導体が円柱状や円筒状を成す場合には、周囲に多孔質構造体を嵌装するようにして支持し、加熱誘導体が平板状を成す場合には、一方の面に多孔質構造体を貼り付けるようにして支持する。   Further, in the method and apparatus for densifying a porous structure according to the present invention, the shape of the heating derivative is not particularly limited, and may be a columnar, cylindrical, or flat plate heating derivative. If the heating derivative has a columnar shape or a cylindrical shape, the porous structure is supported around the periphery, and if the heating derivative has a flat plate shape, the porous structure is formed on one side. Support as if pasting the body.

そして、円柱状の加熱誘導体の場合には、電極を介して直接通電すれば抵抗加熱することができ、外側に誘導コイルを配置すれば誘導加熱することができる。円筒状の加熱誘導体の場合には、誘導コイルを外側や内側に配置すれば誘導加熱することができ、平板状の加熱誘導体の場合には、電極を介して直接通電することで抵抗加熱することができる。   In the case of a cylindrical heating derivative, resistance heating can be performed by directly energizing through an electrode, and induction heating can be performed by arranging an induction coil on the outside. In the case of a cylindrical heating derivative, induction heating can be performed if the induction coil is disposed outside or inside. In the case of a flat heating derivative, resistance heating is performed by directly energizing through an electrode. Can do.

本発明に係る多孔質構造体の高密度化方法及び高密度化装置では、加熱誘導体に密度が1.95g/cm3以上、望ましくは2.00g/cm3程度の高密度C/Cコンポジットを用いているので、熱伝導率が高く(グラファイトと同程度の熱伝導率で)且つ熱衝撃に優れた加熱誘導体として機能することとなり、本発明の請求項2に係る多孔質構造体の高密度化方法のように、加熱誘導体が、液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る多孔質構造体と一体で製品化される場合には、例えば、宇宙機のノズルライナに要求される高密度の多孔質構造体を製造し得ることとなる。 In densified methods and densification apparatus of the porous structure of the present invention has a density in the heating derivative 1.95 g / cm 3 or more, a desirably high density C / C composite of about 2.00 g / cm 3 Therefore, the porous structure according to claim 2 of the present invention has a high density, which functions as a heating derivative having a high thermal conductivity (similar to that of graphite) and excellent in thermal shock. In the case where the heated derivative is produced as a product integrally with a porous structure formed by impregnating and vapor-depositing a decomposition product of a liquid phase precursor into a large number of fine cavities, as in the case of a method for forming a spacecraft, for example, a nozzle liner of a spacecraft. Therefore, it is possible to produce a high-density porous structure required for the above.

一方、本発明の請求項3に係る多孔質構造体の高密度化方法のように、液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る多孔質構造体が加熱誘導体から分離されて別体で製品化される場合には、例えば、ブレーキディスクに要求される高密度の多孔質構造体を製造し得ることとなり、いずれの場合もこの高密度の多孔質構造体の製造に要する時間の大幅な短縮が図られることとなる。   On the other hand, as in the method for densifying a porous structure according to claim 3 of the present invention, a porous structure formed by impregnating and vapor-depositing decomposition products of a liquid phase precursor into a large number of fine cavities is obtained from a heated derivative. When separated and commercialized separately, for example, a high-density porous structure required for a brake disk can be produced. In any case, production of this high-density porous structure is possible. The time required for this will be greatly reduced.

本発明に係る多孔質構造体の高密度化方法及び高密度化装置では、上記した構成としているので、製造時間の大幅な短縮を実現したうえで、要求される高密度の多孔質構造体を製造することが可能であるという非常に優れた効果がもたらされる。   In the porous structure densification method and the densification apparatus according to the present invention, since the above-described configuration is adopted, the required high-density porous structure is obtained after realizing a significant reduction in manufacturing time. The very good effect that it is possible to produce is brought about.

また、本発明の請求項2に係る多孔質構造体の高密度化方法では、上記した構成としているので、例えば、宇宙機のノズルライナに要求される高密度の多孔質構造体を製造することができ、一方、本発明の請求項3に係る多孔質構造体の高密度化方法では、上記した構成としているので、例えば、ブレーキディスクに要求される高密度の多孔質構造体を製造することが可能であり、いずれの場合も、この高密度の多孔質構造体の製造に要する時間の大幅な短縮を実現することが可能であるという非常に優れた効果がもたらされる。   Further, in the method for densifying a porous structure according to claim 2 of the present invention, since it has the above-described configuration, for example, a high-density porous structure required for a nozzle liner of a spacecraft can be manufactured. On the other hand, the method for densifying a porous structure according to claim 3 of the present invention has the above-described configuration. For example, a high-density porous structure required for a brake disk can be manufactured. In any case, it is possible to achieve a very good effect that it is possible to achieve a significant reduction in the time required for the production of this dense porous structure.

本発明の一実施例による多孔質構造体の高密度化装置を簡略的に示す構成説明図である。1 is a configuration explanatory view simply showing a device for densifying a porous structure according to an embodiment of the present invention. FIG. 図1における高密度化装置の加熱誘導体の製造工程説明図である。It is manufacturing process explanatory drawing of the heating derivative of the densification apparatus in FIG. 図1における多孔質構造体の高密度化装置による高密度化要領を示すブロック図である。It is a block diagram which shows the density increase point by the density increase apparatus of the porous structure in FIG. 本発明に係る多孔質構造体の高密度化装置における他の実施例による加熱誘導体を示す拡大断面説明図である。It is an expanded sectional explanatory view showing the heating derivative by other examples in the densification device of the porous structure concerning the present invention. 本発明に係る多孔質構造体の高密度化装置のさらに他の実施例による加熱誘導体を示す拡大断面説明図である。FIG. 5 is an enlarged cross-sectional explanatory view showing a heated derivative according to still another embodiment of the porous structure densifying apparatus according to the present invention.

以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明の一実施例による多孔質構造体の高密度化装置を示しており、この実施例において、多孔質構造体がカーボンプリフォームである場合を例に挙げて説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an apparatus for densifying a porous structure according to an embodiment of the present invention. In this embodiment, a case where the porous structure is a carbon preform will be described as an example.

図1に示すように、この多孔質構造体の高密度化装置1は、液相前駆体Cを収容する反応器2と、この反応器2に液相前駆体Cを供給する前駆体供給ポンプ3と、反応器2内に配置されてこの反応器2に収容された液相前駆体Cに多孔質構造体であるカーボンプリフォームWを浸漬させた状態で支持する加熱誘導体4と、この加熱誘導体4に電極5a,5bを介して電力を供給することで抵抗加熱により加熱して、反応器2内において液相前駆体C及びこの液相前駆体Cに浸漬させたカーボンプリフォームWを加熱する電力供給部6と、反応器2の上端開口を塞ぐように配置されて上記加熱による反応で消費されない未分解の液相前駆体Cを凝縮する凝縮器7と、反応器2から液相前駆体Cを排出させる前駆体排出バルブ8を備えており、加熱誘導体4及び電力供給部6の間には、加熱誘導体4の温度に応じて電力供給部6からの供給電力量をコントロールする制御部10が配置してある。   As shown in FIG. 1, this porous structure densification apparatus 1 includes a reactor 2 that contains a liquid phase precursor C, and a precursor supply pump that supplies the liquid phase precursor C to the reactor 2. 3, a heating derivative 4 disposed in the reactor 2 and supported in a state in which the carbon preform W as a porous structure is immersed in the liquid phase precursor C accommodated in the reactor 2, and this heating The derivative 4 is heated by resistance heating by supplying power through the electrodes 5a and 5b, and the liquid precursor C and the carbon preform W immersed in the liquid precursor C are heated in the reactor 2. A power supply unit 6 that closes the upper end opening of the reactor 2, a condenser 7 that condenses the undecomposed liquid phase precursor C that is not consumed by the reaction by the heating, and a liquid phase precursor from the reactor 2. A precursor discharge valve 8 for discharging the body C is provided. Between the derivatives 4 and the power supply unit 6, the control unit 10 for controlling the amount of power supplied from the power supply unit 6 in accordance with the temperature of the heating derivative 4 is disposed.

この場合、加熱誘導体4には、密度が1.99g/cm3で且つ熱伝導率が100W/M/Kの高密度C/Cコンポジットから成る円柱状のものを使用し、液相前駆体Cとして炭化水素系のシクロヘキサンを用いた。 In this case, the heated derivative 4 is a cylindrical one made of a high-density C / C composite having a density of 1.99 g / cm 3 and a thermal conductivity of 100 W / M / K, and is used as a liquid phase precursor C. Hydrocarbon cyclohexane was used as

円柱状を成す加熱誘導体4は、図2に示すように、アクリル繊維を使ったPAN系の炭素繊維又は石油や石炭などの副生成物を使ったピッチ系の炭素繊維を3次元に織って(炭素繊維を円柱状に形成して)3方向性プリフォームを形成する工程aと、易含浸性のピッチを用いるピッチ含浸工程bと、この工程bを経た3方向性プリフォームを高圧で等方的に圧縮するHIP処理を行うHIP処理工程cと、このHIP処理工程cを経た3方向性プリフォームを高温で黒鉛化する黒鉛化工程dを経て製造され、ピッチ含浸工程b,HIP処理工程c及び黒鉛化工程dを複数回(この実施例では10回)繰り返すことで、加熱誘導体4の緻密化及び高熱伝導率化を実現している。   As shown in FIG. 2, the heating derivative 4 having a cylindrical shape is woven in three dimensions with PAN-based carbon fibers using acrylic fibers or pitch-based carbon fibers using by-products such as petroleum and coal ( Forming a three-way preform (by forming a carbon fiber in a cylindrical shape), a pitch impregnation step b using an easily impregnated pitch, and isolating the three-way preform subjected to this step b at high pressure. HIP processing step c for performing HIP processing to be compressed and a graphitization step d for graphitizing the three-way preform subjected to the HIP processing step c at a high temperature to produce a pitch impregnation step b, HIP processing step c And the graphitization step d is repeated a plurality of times (in this example, 10 times), thereby realizing densification of the heating derivative 4 and high thermal conductivity.

この多孔質構造体の高密度化装置1により多数の微細空洞を有するカーボンプリフォームWを高密度化するに際しては、図3に示すように、ブロックB1においてカーボンプリフォームWを密度が1.99g/cm3の高密度C/Cコンポジットから成る円柱状の加熱誘導体4で支持すると共に、この加熱誘導体4に支持されたカーボンプリフォームWをブロックB2において液相前駆体Cに浸漬させる。 When densifying the carbon preform W having a large number of fine cavities using the porous structure densifying device 1, as shown in FIG. 3, the density of the carbon preform W is 1.99 g in the block B1. The carbon preform W supported by the cylindrical heating derivative 4 made of a high-density C / C composite of / cm 3 is immersed in the liquid phase precursor C in the block B2.

この後、ブロックB3において加熱誘導体4に電極5a,5bを介して電力供給部6から電力(10〜40kHzの高周波電流)を供給することで抵抗加熱により1000〜1300℃に加熱して、反応器2内において液相前駆体C及びこの液相前駆体Cに浸漬させたカーボンプリフォームWを加熱し、この加熱により分解する液相前駆体Cの分解生成物をカーボンプリフォームWの多数の微細空洞に含浸蒸着させると、カーボンプリフォームWの高密度化が成されることとなる。   Thereafter, in block B3, the heating dielectric 4 is heated to 1000 to 1300 ° C. by resistance heating by supplying power (high frequency current of 10 to 40 kHz) from the power supply unit 6 via the electrodes 5a and 5b to the reactor. 2, the liquid phase precursor C and the carbon preform W immersed in the liquid phase precursor C are heated, and the decomposition product of the liquid phase precursor C decomposed by this heating is converted into a number of fine particles of the carbon preform W. When the cavity is impregnated and vapor-deposited, the density of the carbon preform W is increased.

この間、電力供給部6から加熱誘導体4への供給電力量は、加熱誘導体4の温度に応じて制御部10によりコントロールされ、未分解炭化水素は凝縮器7で凝縮され、分解された水素は排気口9を介して外部に放出される。   During this time, the amount of power supplied from the power supply unit 6 to the heating derivative 4 is controlled by the control unit 10 in accordance with the temperature of the heating derivative 4, undecomposed hydrocarbons are condensed in the condenser 7, and the decomposed hydrogen is exhausted. It is discharged to the outside through the mouth 9.

このように、本実施例に係る多孔質構造体の高密度化装置1では、加熱誘導体4として、炭素繊維の3方向性プリフォームを高圧で等方的に圧縮して緻密化するHIP処理を複数回行って成る密度が1.99g/cm3の高密度C/Cコンポジットを用いているので、熱伝導率が高く且つ熱衝撃に優れた加熱誘導体4として機能し、加えて、この高密度のカーボンプリフォームWの製造に要する時間の大幅な短縮が図られることとなる。 As described above, in the porous structure densifying apparatus 1 according to the present embodiment, as the heating derivative 4, the HIP process of compressing and densifying the three-way carbon fiber preform isotropically at high pressure. Since a high density C / C composite having a density of 1.99 g / cm 3 is used, it functions as a heating derivative 4 with high thermal conductivity and excellent thermal shock. In addition, this high density Thus, the time required for manufacturing the carbon preform W can be greatly shortened.

そこで、加熱誘導体4に密度が1.99g/cm3の高密度C/Cコンポジットを用いた本実施例に係る多孔質構造体の高密度化装置1と、加熱誘導体として密度が1.74g/cm3のC/Cコンポジットを用いた比較例1に係る高密度化装置と、加熱誘導体として密度が1.7g/cm3程度のグラファイトを用いた従来タイプの比較例2に係る高密度化装置によって、それぞれカーボンプリフォームWの高密度化を行った。本実施例及び比較例1,2の各加熱誘導体の仕様及び結果を表1に示す。

Figure 0005836050
Accordingly, the porous structure densifying apparatus 1 according to the present embodiment using a high-density C / C composite having a density of 1.99 g / cm 3 as the heating derivative 4 and a density of 1.74 g / as the heating derivative. A densifying device according to Comparative Example 1 using a C 3 C / C composite and a conventional densifying device according to Comparative Example 2 using graphite having a density of about 1.7 g / cm 3 as a heating derivative. Thus, the density of the carbon preform W was increased. Table 1 shows the specifications and results of the heated derivatives of this example and comparative examples 1 and 2.
Figure 0005836050

表1から判るように、本実施例に係る多孔質構造体の高密度化装置1では、製品密度が1.74g/cm3のカーボンプリフォームWが約20時間という短時間で得られたのに対して、比較例1に係る高密度化装置では、製品密度が1.70g/cm3のカーボンプリフォームWを得るのに5日という長い期間を要し、さらに、加熱誘導体としてグラファイトを用いた従来タイプの比較例2に係る高密度化装置にいたっては、製品密度が1.68g/cm3のカーボンプリフォームWを得るのに6日を要したうえ、グラファイト製の加熱誘導体自体が破損した。 As can be seen from Table 1, in the porous structure densification apparatus 1 according to this example, a carbon preform W having a product density of 1.74 g / cm 3 was obtained in a short time of about 20 hours. On the other hand, in the densification apparatus according to Comparative Example 1, it takes a long period of 5 days to obtain a carbon preform W having a product density of 1.70 g / cm 3 , and further, graphite is used as a heating derivative. In the conventional densifying device according to Comparative Example 2, it took 6 days to obtain a carbon preform W having a product density of 1.68 g / cm 3 , and the graphite heating derivative itself was Damaged.

このことから、本実施例に係る多孔質構造体の高密度化装置1では、製造時間の大幅な短縮を実現しつつ、高密度のカーボンプリフォームWを製造し得ることが実証できた。   From this, it was proved that the high-density carbon preform W according to the present example can produce the high-density carbon preform W while realizing a significant reduction in the production time.

上記した実施例では、液相前駆体Cとして、炭化水素系のシクロヘキサンを用いた場合を示したが、これに限定されるものではない。   In the above-described embodiments, the case where hydrocarbon-based cyclohexane is used as the liquid phase precursor C is shown, but the present invention is not limited to this.

また、上記した実施例では、加熱誘導体4が円柱状を成している場合を示したが、これに限定されるものではなく、円筒状や平板状の加熱誘導体を採用することができ、加熱誘導体が円筒状を成す場合には、周囲に多孔質構造体を嵌装するようにして支持し、加熱誘導体が平板状を成す場合には、一方の面に多孔質構造体を貼り付けるようにして支持する。   Moreover, although the case where the heating derivative 4 comprised the column shape was shown in the above-mentioned Example, it is not limited to this, A cylindrical or flat heating derivative can be employ | adopted, heating If the derivative has a cylindrical shape, it is supported by fitting a porous structure around it, and if the heated derivative has a flat shape, the porous structure is attached to one side. And support.

さらに、上記した実施例では、円柱状の加熱誘導体4に、電極5a,5bを介して直接通電することで抵抗加熱する場合を示したが、これに限定されるものではなく、他の構成として、例えば、図4に示すように、周囲にカーボンプリフォームWを嵌装した円柱状の加熱誘導体14の外側に誘導コイル15を配置すれば誘導加熱することができるほか、図5に示すように、円筒状の加熱誘導体24の場合には、周囲にカーボンプリフォームWを嵌装した加熱誘導体24の内側に誘導コイル25を配置すれば誘導加熱することができる。   Further, in the above-described embodiment, the case where resistance heating is performed by directly energizing the columnar heating derivative 4 through the electrodes 5a and 5b is not limited to this. For example, as shown in FIG. 4, induction heating can be achieved by arranging an induction coil 15 outside a columnar heating derivative 14 fitted with a carbon preform W around it, as shown in FIG. In the case of the cylindrical heating derivative 24, induction heating can be performed if the induction coil 25 is disposed inside the heating derivative 24 in which the carbon preform W is fitted.

ここで、図5に示す円筒状の加熱誘導体24の周囲にカーボンプリフォームWを嵌装するように成す場合において、このカーボンプリフォームWとこれを支持する加熱誘導体24とが一体で製品化されるようにしてもよく、このようにすることで、例えば、高密度が要求される宇宙機のノズルライナを製造し得ることとなり、一方、カーボンプリフォームWがこれを支持する加熱誘導体から分離されて別体で製品化されるようにしてもよく、この場合には、例えば、高密度が要求されるブレーキディスクを製造し得ることとなる。   Here, in the case where the carbon preform W is fitted around the cylindrical heating derivative 24 shown in FIG. 5, the carbon preform W and the heating derivative 24 supporting the carbon preform W are integrated into a product. In this way, for example, a spacecraft nozzle liner that requires high density can be manufactured, while the carbon preform W is separated from the heated derivative that supports it. It may be made to be manufactured as a separate product. In this case, for example, a brake disk requiring high density can be manufactured.

本発明に係る多孔質構造体の高密度化方法及び高密度化装置の構成は、上記した実施例の構成に限定されるものではない。   The configurations of the porous structure densification method and the densification device according to the present invention are not limited to the configurations of the above-described embodiments.

1 多孔質構造体の高密度化装置
2 反応器
4,14,24 加熱誘導体
6 電力供給部
10 制御部
C 液相前駆体
W カーボンプリフォーム(多孔質構造体)
DESCRIPTION OF SYMBOLS 1 Densification apparatus 2 of porous structure 2 Reactor 4,14,24 Heating derivative 6 Electric power supply part 10 Control part C Liquid phase precursor W Carbon preform (porous structure)

Claims (4)

多数の微細空洞を有する多孔質構造体の前記多数の微細空洞にカーボンを含浸蒸着させて、該多孔質構造体を高密度化する方法であって、
前記多孔質構造体を炭素繊維の3方向性プリフォームを高圧で等方的に圧縮して緻密化するHIP処理を複数回行って製造される密度が1.95g/cm3以上の高密度C/Cコンポジットから成る加熱誘導体で支持すると共に、該加熱誘導体に支持された前記多孔質構造体を液状の炭化水素である液相前駆体に浸漬した後、
前記加熱誘導体を誘導加熱及び抵抗加熱のうちの少なくともいずれか一方で加熱して、前記液相前駆体とこの液相前駆体に浸漬させた前記多孔質構造体とを加熱し、
この誘導加熱及び抵抗加熱のうちの少なくともいずれか一方の加熱により分解する前記液相前駆体の分解生成物を前記多孔質構造体の多数の微細空洞に含浸蒸着させる
ことを特徴とする多孔質構造体の高密度化方法。
A method of densifying and vapor-depositing carbon in a large number of fine cavities of a porous structure having a large number of fine cavities, thereby densifying the porous structure,
High density C having a density of 1.95 g / cm 3 or more manufactured by performing HIP treatment for densifying the porous structure by compressing a three-way carbon fiber preform isotropically at high pressure. After being supported by a heated derivative comprising a / C composite and immersing the porous structure supported by the heated derivative in a liquid phase precursor that is a liquid hydrocarbon ,
Heating the heated derivative at least one of induction heating and resistance heating to heat the liquid phase precursor and the porous structure immersed in the liquid phase precursor;
A porous structure characterized in that a decomposition product of the liquid phase precursor that decomposes by heating at least one of induction heating and resistance heating is impregnated and deposited in a number of fine cavities of the porous structure. Body densification method.
前記液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る前記多孔質構造体は、これを支持する前記加熱誘導体と一体で製品化される請求項1に記載の多孔質構造体の高密度化方法。   2. The porous structure according to claim 1, wherein the porous structure formed by impregnating and vapor-depositing the decomposition product of the liquid phase precursor into a large number of fine cavities is manufactured as one product with the heating derivative supporting the porous structure. Body densification method. 前記液相前駆体の分解生成物を多数の微細空洞に含浸蒸着させて成る前記多孔質構造体は、これを支持する前記加熱誘導体から分離されて別体で製品化される請求項1に記載の多孔質構造体の高密度化方法。   The porous structure formed by impregnating and vapor-depositing the decomposition product of the liquid phase precursor into a large number of fine cavities is separated from the heated derivative supporting the porous structure and is manufactured as a separate product. Method for densifying a porous structure. 多数の微細空洞を有する多孔質構造体の前記多数の微細空洞にカーボンを含浸蒸着させて、該多孔質構造体を高密度化する多孔質構造体の高密度化装置であって、
液状の炭化水素である液相前駆体を収容する反応器と、
前記反応器内に配置されて該反応器に収容された前記液相前駆体に前記多孔質構造体を浸漬させた状態で支持する密度が1.95g/cm3以上のC/Cコンポジットから成る加熱誘導体と、
前記加熱誘導体を誘導加熱及び抵抗加熱のうちの少なくともいずれか一方で加熱して、前記反応器内において前記液相前駆体とこの液相前駆体に浸漬させた前記多孔質構造体とを加熱し、この誘導加熱及び抵抗加熱のうちの少なくともいずれか一方の加熱で分解する前記液相前駆体の分解生成物を前記多孔質構造体の多数の微細空洞に含浸蒸着させる電力供給部と、
前記加熱誘導体の温度に応じて前記電力供給部からの供給電力量をコントロールする制御部を備えた
ことを特徴とする多孔質構造体の高密度化装置。
A porous structure densifying device for impregnating and vapor-depositing carbon in the numerous fine cavities of a porous structure having many fine cavities, and densifying the porous structure,
A reactor containing a liquid phase precursor which is a liquid hydrocarbon;
The reactor in disposed in said porous structures you supported while immersed density is 1.95 g / cm 3 or more C / C composite in the contained the liquid phase precursor into the reactor A heated derivative consisting of
The heated derivative is heated by at least one of induction heating and resistance heating to heat the liquid phase precursor and the porous structure immersed in the liquid phase precursor in the reactor. A power supply unit for impregnating and vapor-depositing a decomposition product of the liquid phase precursor, which is decomposed by at least one of induction heating and resistance heating, into a plurality of fine cavities of the porous structure;
A device for densifying a porous structure, comprising: a control unit that controls an amount of power supplied from the power supply unit according to a temperature of the heating derivative.
JP2011227053A 2011-10-14 2011-10-14 Method and apparatus for densifying porous structure Active JP5836050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227053A JP5836050B2 (en) 2011-10-14 2011-10-14 Method and apparatus for densifying porous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227053A JP5836050B2 (en) 2011-10-14 2011-10-14 Method and apparatus for densifying porous structure

Publications (2)

Publication Number Publication Date
JP2013086999A JP2013086999A (en) 2013-05-13
JP5836050B2 true JP5836050B2 (en) 2015-12-24

Family

ID=48531281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227053A Active JP5836050B2 (en) 2011-10-14 2011-10-14 Method and apparatus for densifying porous structure

Country Status (1)

Country Link
JP (1) JP5836050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111640A (en) * 2017-01-13 2018-07-19 第一高周波工業株式会社 Bonding method of carbonaceous material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617915A (en) * 1979-07-24 1981-02-20 Inoue Japax Res Inc Graphite composite material
FR2516914B1 (en) * 1981-11-26 1986-03-14 Commissariat Energie Atomique METHOD FOR DENSIFICATION OF A POROUS STRUCTURE
JPH075367B2 (en) * 1988-03-18 1995-01-25 川崎重工業株式会社 Method for producing carbon material and carbon / carbon composite material
US5061414A (en) * 1989-09-05 1991-10-29 Engle Glen B Method of making carbon-carbon composites
JP3182212B2 (en) * 1991-05-21 2001-07-03 アブコウ・コーポレイション Method for producing a densified porous billet and method for densifying a porous preform
US5389152A (en) * 1992-10-09 1995-02-14 Avco Corporation Apparatus for densification of porous billets
GB9612882D0 (en) * 1996-06-20 1996-08-21 Dunlop Ltd Densification of a porous structure
EP1054847B1 (en) * 1998-02-09 2010-11-24 Messier-Bugatti S.A. Partially densified carbon preform
FR2815890B1 (en) * 2000-10-30 2003-09-05 Commissariat Energie Atomique IMPROVEMENT IN METHODS OF CALEFACTION DENSIFICATION OF A POROUS STRUCTURE
JP4356870B2 (en) * 2003-04-23 2009-11-04 株式会社Ihiエアロスペース C / C composite manufacturing method, rocket nozzle and re-entry capsule
JP4883678B2 (en) * 2006-02-20 2012-02-22 株式会社Ihiエアロスペース Al impregnated three-dimensional C / C composite and method for producing the same
US8568838B2 (en) * 2006-08-07 2013-10-29 Messier-Bugatti-Dowty Power control for densification of one or more porous articles

Also Published As

Publication number Publication date
JP2013086999A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
CN108610080B (en) Preparation method of carbon-carbon composite material with inner hole and carbon-ceramic composite material
EP2093453B1 (en) CVI followed by coal tar pitch densification by VPI
CN103342561B (en) C/ZrC composite material prepared on basis of vapor infiltration reaction, preparation method thereof and equipment for process
CN110372390A (en) Continuous fiber reinforced SiC part preparation method and product based on increasing material manufacturing
US20110254182A1 (en) Method for reducing variability in carbon-carbon composites
EP3227109B1 (en) Process for making densified carbon articles by three dimensional printing
CN105712729A (en) Preparation method for crucible cover plate for polycrystalline ingot furnace
CN110841114A (en) Carbon fiber composite material artificial bone and preparation method thereof
CN103964883A (en) Preparation method for thin wall or tapered member made from one-dimensional nanofiber reinforced and toughened carbon-ceramic composite
CN112190756A (en) Preparation method of carbon fiber composite material profiling artificial bone
JP5836050B2 (en) Method and apparatus for densifying porous structure
CN104496510A (en) Preparation method of carbon/carbon composite material
JPH06172030A (en) Production of carbon material
CN102976782B (en) Carbon-to-carbon composite preform is formed using molten asphalt and carbon mono-filaments
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
CN106631059A (en) ZrC modified asphalt based C/C composite material and preparation method and application thereof
CN111960842A (en) Anti-electrolysis MnO2Preparation method of carbon/carbon composite material for calcium and magnesium crystallization in process
CN110862267A (en) Graphene-doped C/C composite material and preparation method thereof
CN103159496A (en) Method for preparing carbon/carbon composite material
CN116621595B (en) Carbon fiber reinforced graphite ring and preparation method thereof
JP2782891B2 (en) Method for producing fiber-reinforced inorganic material
CN117776756A (en) Preparation process of high-performance carbon-carbon composite material
JPH04214074A (en) Production of carbon fiber reinforced carbon material
CN115385708A (en) Preparation method of suction filtration modified carbon/carbon composite material in selected area of ultrahigh-temperature ceramic and suction filtration device
JPS6356471B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250