JPH0987072A - Boron carbide combined carbon material, its production and material confronting plasma - Google Patents

Boron carbide combined carbon material, its production and material confronting plasma

Info

Publication number
JPH0987072A
JPH0987072A JP7190294A JP19029495A JPH0987072A JP H0987072 A JPH0987072 A JP H0987072A JP 7190294 A JP7190294 A JP 7190294A JP 19029495 A JP19029495 A JP 19029495A JP H0987072 A JPH0987072 A JP H0987072A
Authority
JP
Japan
Prior art keywords
boron carbide
carbon
composite
composite material
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7190294A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Yoshihiro Kikuchi
好洋 菊池
Yasuo Hyakki
康夫 百鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7190294A priority Critical patent/JPH0987072A/en
Publication of JPH0987072A publication Critical patent/JPH0987072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon material having heat resistance, chemical stability, wear resistance, etc., even after the base material is exposed owing to the consumption of the boron carbide coating film. SOLUTION: The open pores in a carbon fiber-carbon composite material contg. carbon fibers and a carbon matrix are filled with boron carbide and a boron carbide coating film is formed on the surface of the composite material to obtain the objective boron carbide combined carbon material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化硼素を複合化
した、特に核融合炉のプラズマ対向材に好適な炭化硼素
複合炭素材料及びその製造法に関する。また、本発明
は、核融合炉の部材として好適に用いられるプラズマ対
向材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron carbide composite carbon material which is a composite of boron carbide and is particularly suitable for a plasma facing material of a fusion reactor, and a method for producing the same. The present invention also relates to a plasma facing material that is suitably used as a member of a fusion reactor.

【0002】[0002]

【従来の技術】炭素材料は優れた耐熱性、高熱伝導性等
を有し、高温下で使用される各種の部材として極めて有
用である。特に炭素繊維と炭素マトリックスを含む炭素
繊維炭素複合材料(C/C複合材ともいう)は、優れた
熱的、機械的な特性を有するが、その中でも炭素繊維を
一方向に配向させたC/C複合材は、炭素繊維の配向方
向に非常に高い特性を示す。しかしながら、炭素材料は
高温での耐酸化性に欠ける、酸素・水素プラズマによる
化学腐食が大きい等の化学安定性に問題がある。そこ
で、このような炭素材料の欠点を補うために、炭素材料
の表面を炭化硼素で被覆することが行われている。炭化
硼素は耐熱性に優れ(融点約2400℃)、化学的にも
安定であり、更に耐摩耗性にも優れる。このため、炭化
硼素で被覆した炭素材料は、核融合炉のプラズマ対向材
を始めとして、宇宙・航空用の耐熱材、各種摺動材等に
有用である。
2. Description of the Related Art Carbon materials have excellent heat resistance, high thermal conductivity, etc. and are extremely useful as various members used at high temperatures. In particular, a carbon fiber-carbon composite material (also referred to as a C / C composite material) containing carbon fibers and a carbon matrix has excellent thermal and mechanical properties. Among them, C / C in which carbon fibers are oriented in one direction is used. The C composite material exhibits very high characteristics in the carbon fiber orientation direction. However, carbon materials have problems in chemical stability such as lack of oxidation resistance at high temperatures and large chemical corrosion due to oxygen / hydrogen plasma. Therefore, in order to compensate for such defects of the carbon material, the surface of the carbon material is coated with boron carbide. Boron carbide has excellent heat resistance (melting point of about 2400 ° C.), is chemically stable, and has excellent wear resistance. Therefore, the carbon material coated with boron carbide is useful as a plasma facing material for a fusion reactor, a heat resistant material for space and aviation, and various sliding materials.

【0003】炭化硼素を炭素材料の表面に被覆する方法
としては、一般にCVD法、プラズマ溶射法等が知られ
ている。しかし、これらの手法で形成した炭化硼素被膜
は、炭化硼素と炭素材料との熱膨張率が異なることか
ら、熱応力による亀裂の発生、更には被膜の剥離が生じ
易いという問題がある。
As a method for coating the surface of a carbon material with boron carbide, generally, a CVD method, a plasma spraying method and the like are known. However, since the boron carbide coating film formed by these methods has different thermal expansion coefficients between the boron carbide and the carbon material, there is a problem that cracks due to thermal stress and peeling of the coating film are likely to occur.

【0004】これに対し本発明者らは、特開平5−20
1781号公報において転化法による炭化硼素の被膜を
形成する方法を提案した。この方法は、硼素化合物を炭
素材料表面に化学反応させ、表面の炭素を炭化硼素に転
化するものである。この方法では、炭素材料の表面から
内部に向い順次炭化硼素が生成され、炭化硼素被膜と炭
素材料との間の熱膨張率差が緩和されるので耐熱衝撃性
に優れる。
On the other hand, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 5-20
In Japanese Patent No. 1781, a method of forming a boron carbide film by a conversion method was proposed. In this method, a boron compound is chemically reacted with the surface of a carbon material to convert the carbon on the surface into boron carbide. According to this method, boron carbide is sequentially generated from the surface of the carbon material toward the inside, and the difference in coefficient of thermal expansion between the boron carbide coating and the carbon material is relaxed, so that the thermal shock resistance is excellent.

【0005】炭化硼素複合炭素材料をプラズマ対向材等
の用途に適用した場合、炭化硼素の耐プラズマ性は炭素
材料よりも優れているとはいえ、被膜の消耗が生じる。
消耗が著しく進行するような場合には、被膜が消失し基
材が露出してしまう。従って、被膜が消耗し基材が露出
した時点で炭化硼素を複合化した効果は急激になくな
り、基材の炭素材料そのものの消耗となる。被膜を厚膜
化することにより、消耗による寿命を延ばすことは可能
であるが、炭化硼素の熱伝導率は炭素材料よりも1桁低
いため、あまり被膜が厚くなると、本来炭素材料の持っ
ていた高熱伝導率という特性が利用できなくなってしま
う。
When the boron carbide composite carbon material is applied to a plasma facing material or the like, although the plasma resistance of boron carbide is superior to that of the carbon material, the film is consumed.
In the case where the consumption is significantly advanced, the coating film disappears and the base material is exposed. Therefore, when the coating is consumed and the base material is exposed, the effect of compounding boron carbide is suddenly lost, and the carbon material itself of the base material is consumed. By increasing the thickness of the coating, it is possible to extend the service life due to wear, but since the thermal conductivity of boron carbide is an order of magnitude lower than that of carbon materials, when the coating becomes too thick, the carbon material originally had it. The property of high thermal conductivity becomes unavailable.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した問題
に鑑み、種々検討を重ねた結果なされたものである。即
ち、請求項1記載の発明は、炭化硼素被膜が消耗し、基
材が露出した後であっても、一定の炭化硼素複合効果、
即ち、耐熱性、化学的安定性、耐摩耗性等を有する炭化
硼素複合炭素材料を提供するものである。また、請求項
2記載の発明は、請求項1記載の発明に加えて、基材が
露出した後の炭化硼素複合効果が高く、特に繊維方向で
強度等の特性が優れた炭化硼素複合炭素材料を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made as a result of various studies in view of the above problems. That is, the invention according to claim 1 has a certain boron carbide composite effect even after the boron carbide coating film is consumed and the substrate is exposed.
That is, the present invention provides a boron carbide composite carbon material having heat resistance, chemical stability, wear resistance and the like. In addition to the invention according to claim 1, the invention according to claim 2 has a high boron carbide composite effect after the base material is exposed, and particularly, a boron carbide composite carbon material excellent in properties such as strength in the fiber direction. Is provided.

【0007】また、請求項3記載の発明は、炭化硼素被
膜が消耗し、基材が露出した後であっても、一定の炭化
硼素複合効果、即ち、耐熱性、化学的安定性、耐摩耗性
等を有する炭化硼素複合炭素材料の製造法を提供するも
のである。さらに、請求項4記載の発明は、炭化硼素被
膜が消耗し、基材が露出した後であっても、一定の炭化
硼素複合効果、即ち、耐熱性、化学的安定性、耐摩耗性
等を有する、核融合炉の部材として有用なプラズマ対向
材を提供するものである。
Further, according to the invention as defined in claim 3, even after the boron carbide coating film is consumed and the substrate is exposed, a certain boron carbide composite effect, that is, heat resistance, chemical stability, and wear resistance is obtained. The present invention provides a method for producing a boron carbide composite carbon material having properties and the like. Further, in the invention according to claim 4, even after the boron carbide coating film is consumed and the substrate is exposed, a certain boron carbide composite effect, that is, heat resistance, chemical stability, wear resistance, etc., is obtained. The present invention provides a plasma facing material useful as a member of a fusion reactor.

【0008】[0008]

【課題を解決するための手段】本発明は、炭素繊維と炭
素マトリックスを含む炭素繊維炭素複合材料の開気孔内
部に炭化硼素が充填されており、かつ前記複合材料の表
面に炭化硼素被膜が形成されてなる炭化硼素複合炭素材
料に関する。また、本発明は、前記炭素繊維炭素複合材
料において、1方向に配向した炭素繊維を含むものであ
る炭化硼素複合炭素材料に関する。また、本発明は、炭
素繊維と炭素マトリックスを含む炭素繊維炭素複合材料
の開気孔内部に炭化硼素粉末を充填した後、その表面を
炭化硼素に転化することを特徴とする炭化硼素複合炭素
材料の製造法に関する。さらに、本発明は、炭素繊維と
炭素マトリックスを含む炭素繊維炭素複合材料の開気孔
内部に炭化硼素が充填されており、かつ前記複合材料の
プラズマ対向面に炭化硼素被膜が形成されてなるプラズ
マ対向材に関する。
According to the present invention, a carbon fiber-carbon composite material containing carbon fibers and a carbon matrix is filled with boron carbide inside open pores, and a boron carbide coating film is formed on the surface of the composite material. The present invention relates to a boron carbide composite carbon material. The present invention also relates to the above-mentioned carbon fiber-carbon composite material, which contains carbon fibers oriented in one direction. The present invention also relates to a boron-carbide-composite carbon material, characterized in that the surface of a carbon-fiber-carbon composite material containing carbon fibers and a carbon matrix is filled with boron carbide powder and then the surface thereof is converted to boron carbide. Regarding manufacturing method. Further, according to the present invention, a carbon fiber-carbon composite material containing carbon fibers and a carbon matrix is filled with boron carbide inside the open pores, and a plasma facing surface of the composite material is coated with a boron carbide coating. Regarding materials

【0009】[0009]

【発明の実施の形態】本発明の炭化硼素複合炭素材料及
びその製造法について説明する。基材には、炭素繊維と
炭素マトリックスを含むC/C複合材を用いる。これ
は、一般に、(1)炭素繊維の成形体に熱硬化性樹脂、
タールピッチ等を含浸し、これを炭化するという工程を
繰り返して炭素マトリックスを充填する方法、(2)炭
素繊維の成形体に熱分解炭素を炭素マトリックスとして
充填する方法などにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The boron carbide composite carbon material of the present invention and the method for producing the same will be described. As the base material, a C / C composite material containing carbon fibers and a carbon matrix is used. In general, this is (1) a thermosetting resin on a molded body of carbon fiber,
It can be obtained by a method of filling a carbon matrix by repeating a process of impregnating tar pitch or the like and carbonizing this, and (2) a method of filling a carbon fiber molded body with pyrolytic carbon as a carbon matrix.

【0010】前記(1)の方法においては、熱硬化性樹
脂としては、フェノール樹脂、フラン樹脂等を用いるこ
とができる。また、炭化は700℃以上で行うことが好
ましく、さらに最終的に900〜3000℃の温度で熱
処理するのが好ましい。また(2)の方法においては、
メタン、プロパン、ベンゼン、アセチレン等の炭化水素
のガスを、必要に応じてアルゴン、窒素、水素等のキャ
リアガスとともに、減圧下又は常圧下においた炭素繊維
の成形体に吹き込み、温度を700〜3000℃として
熱分解炭素にして前記成形体に含浸することができる。
さらに必要に応じて、含浸後に900〜3000℃の温
度で熱処理を行うのが好ましく、前記(1)の方法と組
み合わせても良い。
In the method (1), a phenol resin, a furan resin or the like can be used as the thermosetting resin. Further, carbonization is preferably performed at 700 ° C. or higher, and finally it is preferable to perform heat treatment at a temperature of 900 to 3000 ° C. In the method (2),
A hydrocarbon gas such as methane, propane, benzene, or acetylene is blown into a carbon fiber molded body under reduced pressure or normal pressure together with a carrier gas such as argon, nitrogen, or hydrogen, if necessary, at a temperature of 700 to 3000. It is possible to impregnate the molded body into pyrolytic carbon at a temperature of ℃.
Further, if necessary, it is preferable to perform heat treatment at a temperature of 900 to 3000 ° C. after impregnation, and the method of (1) may be combined.

【0011】使用する炭素繊維は、PAN系、ピッチ
系、レーヨン系等のいずれでも良く、その特性も特に限
定されるものではない。プラズマ対向材に適した高熱伝
導率のC/C複合材を得るためには、高熱伝導率の炭素
繊維又はC/C複合材の黒鉛化処理により高熱伝導率に
なる炭素繊維を使用するのが好ましい。このようなC/
C複合材の製法上、炭素マトリックスの充填が不十分で
あると炭素繊維間に気孔が生じる。炭素繊維が1方向に
配向したC/C複合材の場合には、2次元、3次元に配
向した場合に比べ、閉気孔ができにくく、開気孔が出来
やすい。開気孔が多いほど、C/C複合材への炭化硼素
の充填はし易い。従って、1方向に配向した炭素繊維を
含むC/C複合材は、炭化硼素を充填する基材として好
ましい。また、炭素繊維が1方向に配向した炭素繊維を
含むC/C複合材は、その特性が繊維方向で優れている
点でも好ましい。
The carbon fiber used may be any of PAN type, pitch type, rayon type and the like, and the characteristics thereof are not particularly limited. In order to obtain a C / C composite material having a high thermal conductivity suitable for a plasma facing material, it is preferable to use a carbon fiber having a high thermal conductivity or a carbon fiber having a high thermal conductivity by graphitizing the C / C composite material. preferable. C /
Due to the manufacturing method of the C composite material, if the carbon matrix is not sufficiently filled, pores are generated between the carbon fibers. In the case of a C / C composite material in which carbon fibers are oriented in one direction, closed pores are less likely to occur and open pores are more likely to occur than in the case where they are oriented two-dimensionally or three-dimensionally. The more open pores, the easier it is to fill the C / C composite with boron carbide. Therefore, a C / C composite material containing unidirectionally oriented carbon fibers is preferable as a base material to be filled with boron carbide. A C / C composite material containing carbon fibers in which carbon fibers are oriented in one direction is also preferable in that its properties are excellent in the fiber direction.

【0012】C/C複合材中の炭素繊維の体積率(繊維
体積率)は、10〜70体積%が好ましく、20〜70
体積%がより好ましく、35〜65体積%がさらに好ま
しい。繊維体積率が10体積%未満では炭素繊維を複合
化した効果が小さい傾向にあり、70体積%を超えると
炭化硼素の充填が困難になる傾向にある。なお、繊維体
積率は、C/C複合材の成形体を作成する際の繊維の占
有体積(繊維の実質体積とその内部空間の体積の合計を
さす。例えば、成形体型枠に繊維を詰めた場合は成形体
型枠の内容積。)に対する、繊維の実質体積(繊維の重
量とその繊維の真比重から計算できる)の百分率から求
めることができる。また、C/C複合材中の炭素マトリ
ックスは、開気孔率が5〜40体積%となるように充填
するのが好ましい。これは、炭化硼素の充填率はC/C
複合材の開気孔率が高いほど大きくなるが、反面C/C
複合材の特性は悪くなる傾向にあるためである。なお、
開気孔率(体積%)は、W1:乾燥重量(g)、W2:
水中重量(g)、W3:飽水重量(g)を測定し、次式
より算出する(水中置換法)。
The volume ratio (fiber volume ratio) of carbon fibers in the C / C composite material is preferably 10 to 70% by volume, and 20 to 70.
Volume% is more preferable, and 35-65 volume% is still more preferable. If the fiber volume ratio is less than 10% by volume, the effect of compounding carbon fibers tends to be small, and if it exceeds 70% by volume, the filling of boron carbide tends to be difficult. In addition, the fiber volume ratio refers to the volume occupied by the fibers when the molded body of the C / C composite material is formed (the total volume of the fibers and the volume of the internal space thereof. For example, the molded body form is filled with the fibers. In this case, it can be determined from the percentage of the substantial volume of the fiber (calculated from the weight of the fiber and the true specific gravity of the fiber) relative to the inner volume of the molded body frame. Further, the carbon matrix in the C / C composite material is preferably filled so that the open porosity is 5 to 40% by volume. This is because the filling factor of boron carbide is C / C.
The higher the open porosity of the composite material, the larger it becomes.
This is because the properties of the composite material tend to deteriorate. In addition,
The open porosity (volume%) is W1: dry weight (g), W2:
Underwater weight (g), W3: Saturated water weight (g) is measured and calculated from the following equation (underwater substitution method).

【数1】 [Equation 1]

【0013】C/C複合材の開気孔内部への炭化硼素の
充填は、炭化硼素粉末自体、炭化硼素粉末を分散媒に分
散させたもの等を用いて行うことができる。中でも、炭
化硼素粉末を分散媒に分散させ、これをC/C複合材の
開気孔内に含浸し、粉末を焼結させることにより行う方
法が充填効果が高く好ましい。炭化硼素粉末の粒径は特
に限定されるものではないが、含浸のし易さから10μ
m以下のものが好ましい。前記分散媒には、有機溶剤、
熱硬化性樹脂、それらの混合物等が用いられるが、加熱
後に炭素分が残留する熱硬化性樹脂又はこれを溶剤で含
浸しやすい粘度に調整した混合物を用いるのが好まし
い。その理由は、一つには熱硬化性樹脂の炭化後の炭素
が炭化硼素粉末のバインダーとなり得るからであり、も
う一つは炭化硼素の焼結には助剤として炭素が有用であ
ることからである。分散媒中の熱硬化性樹脂の配合割合
は、分散媒の炭化後の炭素量が、炭化硼素粉末と炭化後
の炭素の炭素量の合計に対して5〜90重量%となるよ
うに調整するのが好ましい。
The filling of the open pores of the C / C composite material with boron carbide can be carried out by using the boron carbide powder itself, a dispersion of the boron carbide powder in a dispersion medium, or the like. Above all, a method of dispersing the boron carbide powder in a dispersion medium, impregnating the same in the open pores of the C / C composite material, and sintering the powder is preferable because of high filling effect. The particle size of the boron carbide powder is not particularly limited, but is 10 μm due to the ease of impregnation.
m or less is preferable. The dispersion medium, an organic solvent,
A thermosetting resin, a mixture thereof, or the like is used, but it is preferable to use a thermosetting resin in which carbon content remains after heating or a mixture having a viscosity adjusted to facilitate impregnation with a solvent. The reason is that carbon after carbonization of the thermosetting resin can serve as a binder for the boron carbide powder, and secondly because carbon is useful as an auxiliary agent for the sintering of boron carbide. Is. The mixing ratio of the thermosetting resin in the dispersion medium is adjusted so that the carbon content of the dispersion medium after carbonization is 5 to 90% by weight based on the total carbon content of the boron carbide powder and the carbon after carbonization. Is preferred.

【0014】前記熱硬化性樹脂は特に制限されないが、
フラン樹脂、フェノール樹脂等が好ましい。また、溶剤
は特に制限されず、メタノール、エタノール等が使用で
きる。以上の方法により炭化硼素粉末を含浸したC/C
複合材が形成され、次いでその表面に炭化硼素被膜を形
成するが、炭化硼素粉末を含浸した際の分散媒中の樹脂
の炭化は、後述する転化反応の前工程として行っても良
いし、転化反応の際の加熱を利用して行っても良い。前
工程として行なう場合は、好ましくは昇温速度300℃
/時間以下で、好ましくは後述の転化反応温度以下で7
00℃以上、より好ましくは転化反応温度以下で700
〜1600℃に昇温する。昇温後の温度の維持時間は昇
温速度によるが、一般に5分〜1日である。また、樹脂
炭化の雰囲気は、窒素、アルゴン等の不活性雰囲気、減
圧雰囲気、炭素粉中に埋没させる等の外部から酸素の供
給を防止した雰囲気が通常必要である。
The thermosetting resin is not particularly limited,
Furan resin, phenol resin and the like are preferable. The solvent is not particularly limited, and methanol, ethanol or the like can be used. C / C impregnated with boron carbide powder by the above method
A composite material is formed, and then a boron carbide film is formed on the surface of the composite material. Carbonization of the resin in the dispersion medium when impregnated with the boron carbide powder may be carried out as a step before the conversion reaction described below, or conversion may be performed. You may carry out using the heating at the time of reaction. When it is carried out as a pre-process, the heating rate is preferably 300 ° C.
/ Hour or less, preferably 7 or less at the below-mentioned conversion reaction temperature
700 at a temperature of 00 ° C. or higher, more preferably a conversion reaction temperature or lower
Raise to ~ 1600 ° C. The temperature maintenance time after the temperature rise depends on the temperature rising rate, but is generally 5 minutes to 1 day. Further, the atmosphere for resin carbonization is usually required to be an inert atmosphere such as nitrogen or argon, a reduced pressure atmosphere, or an atmosphere in which oxygen is prevented from being supplied from the outside such as being buried in carbon powder.

【0015】炭化硼素粉末を含浸したC/C複合材の表
面に炭化硼素被膜を形成する方法としては、C/C複合
材自体の表面を炭化硼素に転化する方法が強固な炭化硼
素被膜を形成できるので好ましい。表面を炭化硼素に転
化する方法には、炭素材料(C/C複合材)と硼素化合
物とを反応させて炭化硼素を生成する方法を用いるのが
好ましい。具体的には酸化硼素のガスと炭素材料を反応
させる方法、酸化硼素と炭素粉との混合物中に炭素材料
を配置し反応を行う方法等が好ましいものとして挙げら
れる。転化する反応の雰囲気はアルゴン等の不活性雰囲
気、減圧雰囲気などの外部から酸素の侵入を防止した雰
囲気が必要である。
As a method of forming a boron carbide coating on the surface of a C / C composite material impregnated with boron carbide powder, a method of converting the surface of the C / C composite material itself into boron carbide forms a strong boron carbide coating. It is preferable because it is possible. As a method of converting the surface to boron carbide, it is preferable to use a method of reacting a carbon material (C / C composite material) and a boron compound to generate boron carbide. Specifically, a preferable method is a method of reacting a gas of boron oxide with a carbon material, a method of arranging a carbon material in a mixture of boron oxide and carbon powder, and carrying out a reaction. The atmosphere for the reaction to be converted needs to be an inert atmosphere such as argon or an atmosphere such as a reduced pressure atmosphere in which oxygen is prevented from entering from the outside.

【0016】転化反応の熱処理の際、硼素化合物のガス
が開気孔内にも供給される。このため、気孔内部の炭化
硼素の焼結は、このガスがない場合に比べより強固なも
のとなる。また、転化反応温度が高いほど、炭化硼素へ
の転化反応は進行し被膜は厚くなり、含浸した炭化硼素
粉末も強固に焼結する。しかしながら、反応温度が高い
ほど成した炭化硼素被膜及び含浸した炭化硼素粉末の硼
素が、未反応の炭素部分に拡散しやすくなり、炭素基材
の熱伝導率を低下させる傾向にある。以上のような理由
から、転化反応温度は2100℃以下であることが好ま
しく、1600〜2000℃であるのがより好ましい。
During the heat treatment of the conversion reaction, the boron compound gas is also supplied into the open pores. Therefore, the sintering of the boron carbide inside the pores is stronger than in the absence of this gas. Further, as the conversion reaction temperature is higher, the conversion reaction to boron carbide proceeds, the coating becomes thicker, and the impregnated boron carbide powder is also strongly sintered. However, the higher the reaction temperature is, the more easily the boron carbide coating formed and the boron in the impregnated boron carbide powder are more likely to diffuse into the unreacted carbon portion, and the thermal conductivity of the carbon substrate tends to be lowered. For the above reasons, the conversion reaction temperature is preferably 2100 ° C or lower, and more preferably 1600 to 2000 ° C.

【0017】以上のようにして形成する炭化硼素被膜の
厚さは、熱伝導率と被膜の寿命のかねあいから20〜1
000μmであるのが好ましく、50〜500μmであ
るのがより好ましい。なお、この厚さは、被膜のある面
を垂直に切断し、その断面を走査型電子顕微鏡(SE
M)により観察するか又はX線マイクロアナライザー
(XMA)等を用いて測定することができる。
The thickness of the boron carbide coating formed as described above is 20 to 1 in consideration of the thermal conductivity and the life of the coating.
The thickness is preferably 000 μm, more preferably 50 to 500 μm. In addition, this thickness is obtained by cutting the surface with the coating vertically and then measuring the cross section with a scanning electron microscope (SE
M) or observation using an X-ray microanalyzer (XMA) or the like.

【0018】以上のようにして製造される炭化硼素複合
炭素材料は、核融合炉の部材として好適なプラズマ対向
材とすることができる。プラズマ対向材においては、少
なくともプラズマ対向面に炭化硼素の被膜を形成するの
であり、このプラズマ対向面は、炭素繊維が1方向に配
向したものである場合、表面に対して炭素繊維の配向方
向が垂直に又は最も垂直に近い角度で存在する面とする
ことが本発明の効果が高く好ましい。
The boron carbide composite carbon material produced as described above can be used as a plasma facing material suitable as a member of a nuclear fusion reactor. In the plasma facing material, a film of boron carbide is formed on at least the plasma facing surface. When the carbon fibers are oriented in one direction, the direction of orientation of the carbon fibers with respect to the surface is It is preferable that the surface is a surface that exists vertically or at an angle closest to the vertical, because the effect of the present invention is high.

【0019】この場合、目的とするプラズマ対向材に適
した大きさと形状にC/C複合材を加工してから前記各
処理を行うのが好ましい。こうして得られるプラズマ対
向材は、炭化硼素被膜が消耗し、炭素基材が露出した後
であっても、部分的に炭化硼素が存在するため、一定の
炭化硼素複合による効果、即ち、耐熱性、化学的安定
性、耐摩耗性等を有する。
In this case, it is preferable that the C / C composite material is processed into a size and a shape suitable for the intended plasma facing material, and then each of the above treatments is performed. In the plasma facing material thus obtained, even after the boron carbide coating film is exhausted and the carbon base material is exposed, since boron carbide is partially present, the effect of a certain boron carbide composite, that is, heat resistance, It has chemical stability and abrasion resistance.

【0020】[0020]

【実施例】次に本発明の実施例を説明する。 実施例1及び比較例1〜2 高熱伝導率のピッチ系炭素繊維(商品名:カーボニック
HM−50、(株)ペトカ製、熱伝導率約150W/mK)を
一方向に配向させ、金属製の治具で周囲を固定し、繊維
体積率を60体積%の状態としたあと石油系ピッチの含
浸及び1000℃の焼成を行い、治具を取りはずした
後、さらにこの含浸、焼成を3回繰り返し、2800℃
で黒鉛化処理を行ってC/C複合材を作成し基材とし
た。このC/C複合材の開気孔率は15体積%であっ
た。次に平均粒径5μmの炭化硼素粉末を、レゾール型
フェノール樹脂(商品名 VP−801、日立化成工業
(株)製)をメタノールで体積比で1:2に希釈した溶液
に分散させ、前記のC/C複合材に真空含浸した。これ
を150℃で硬化したあと、窒素雰囲気の電気炉を用
い、200℃/時間の速度で1000℃まで昇温させ、
2時間保存して樹脂の炭化を行った。その後、試料を4
0mm×20mm×20mmに加工して高周波誘導炉内に配置
し、1900℃に加熱した。一方、これとは別の加熱炉
内で、酸化硼素粉と黒鉛粉の混合物を1800℃に加熱
して酸化硼素ガスを発生させ、Arガスとともに前述の
高周波誘導炉内に導入し、3時間保持した。冷却後炉内
から取り出した試料の表面層は炭化硼素に転化してお
り、気孔内に含浸された炭化硼素粉末も焼結していた。
なお、炭化硼素転化を行った面は炭素繊維の配向方向に
垂直な面である。この試料を切断し、その断面を走査型
電子顕微鏡及びX線マイクロアナライザー(XMA)で
分析して、炭化硼素の分布を求めた。その結果、炭化硼
素転化層の厚さは150μmであり、気孔内部には焼結
した炭化硼素が均一に充填されていた。また、比較例1
として炭化硼素粉末の含浸後、1900℃の加熱による
焼結のみを行った試料、比較例2として炭化硼素粉末の
含浸をせずに上記と同様の炭化硼素転化反応のみを行っ
た試料を作成した。これらの試料表面の硼素含有率及び
表面から一定の深さでの硼素の原子数百分率(%)をX
MAにより測定した(5μm角の正方形内の硼素の原子
数百分率(%))。その結果を表1に示す。また、これ
らの試料のプラズマ対向材としての特性を評価するた
め、重水素イオンを試料表面に照射したときのスパッタ
リング率を測定した。測定は、試料の表面(深さ0μ
m)についてと、機械的に深さ200μmまで研削した
面について行った。測定条件は、試料温度:850K、
重水素イオン(D+)のエネルギー:1keV、照射
量:5×1016D/cm2であり、スパッタリング率は試料
の重量減少から、原子/イオン(数)として算出した。
その結果も合わせて表1に示す。
Next, embodiments of the present invention will be described. Example 1 and Comparative Examples 1 to 2 Pitch-based carbon fibers (trade name: Carbonic HM-50, manufactured by Petka Co., Ltd., thermal conductivity of about 150 W / mK) having high thermal conductivity are oriented in one direction, and made of metal. After fixing the periphery with the jig of No. 1 and setting the fiber volume ratio to 60% by volume, impregnation of petroleum pitch and firing at 1000 ° C. After removing the jig, further impregnation and firing were repeated 3 times. 2800 ° C
Was graphitized to prepare a C / C composite material as a base material. The open porosity of this C / C composite material was 15% by volume. Next, boron carbide powder having an average particle size of 5 μm was converted into a resol-type phenol resin (trade name: VP-801, Hitachi Chemical Co., Ltd.
Co., Ltd.) was dispersed in a solution diluted with methanol at a volume ratio of 1: 2, and the above C / C composite material was vacuum impregnated. After curing this at 150 ° C., using an electric furnace in a nitrogen atmosphere, the temperature was raised to 1000 ° C. at a rate of 200 ° C./hour,
The resin was carbonized by storing for 2 hours. Then sample 4
It was processed into 0 mm x 20 mm x 20 mm, placed in a high frequency induction furnace, and heated to 1900 ° C. On the other hand, in a heating furnace separate from this, a mixture of boron oxide powder and graphite powder is heated to 1800 ° C. to generate boron oxide gas, which is introduced together with Ar gas into the high-frequency induction furnace and held for 3 hours. did. The surface layer of the sample taken out from the furnace after cooling was converted into boron carbide, and the boron carbide powder impregnated in the pores was also sintered.
The surface on which the boron carbide was converted was a surface perpendicular to the orientation direction of the carbon fibers. This sample was cut and its cross section was analyzed by a scanning electron microscope and an X-ray microanalyzer (XMA) to determine the distribution of boron carbide. As a result, the thickness of the boron carbide conversion layer was 150 μm, and the sintered boron carbide was uniformly filled inside the pores. Comparative Example 1
As a comparative example 2, a sample was prepared which was only sintered by heating at 1900 ° C. after being impregnated with boron carbide powder, and a sample which was subjected to the same boron carbide conversion reaction as above without being impregnated with boron carbide powder. . The boron content on the surface of these samples and the atomic percentage (%) of boron at a certain depth from the surface were calculated as X.
Measured by MA (percentage of boron atoms in a square of 5 μm square (%)). Table 1 shows the results. Moreover, in order to evaluate the characteristics of these samples as a plasma facing material, the sputtering rate when the deuterium ions were irradiated on the sample surface was measured. The measurement is performed on the surface of the sample (depth 0 μ
m) and a surface mechanically ground to a depth of 200 μm. The measurement conditions are sample temperature: 850K,
The deuterium ion (D +) energy was 1 keV, the irradiation amount was 5 × 10 16 D / cm 2 , and the sputtering rate was calculated as atoms / ions (number) from the weight reduction of the sample.
The results are also shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2及び比較例3〜4 前記と同様の高熱伝導率のピッチ系炭素繊維(熱伝導率
150W/mK)を一方向に配向させ、繊維体積率を60体
積%として、黒鉛製の治具により、周囲を固定したあと
真空炉中で1600℃に加熱し、プロパンガスを原料と
して、真空度3Torr(400Pa)の減圧雰囲気で熱分解
炭素を10時間含浸した後、2800℃で黒鉛化処理を
行ってC/C複合材を作成し基材とした。このC/C複
合材の開気孔率は20体積%であった。次に前記と同様
の炭化硼素粉末を、実施例1と同じ溶液に分散させ、前
記のC/C複合材に真空含浸した。これを実施例1と同
様の条件で硬化及び炭化させた後、試料を40mm×20
mm×20mmに加工して高周波誘導炉内に配置し、同時に
炉内の離れた部分に酸化硼素を配置したあと、Arガス
雰囲気で1800℃に3時間加熱し炭化硼素転化反応を
行った。冷却後炉内から取り出した試料の表面層は炭化
硼素に転化しており、気孔内に含浸された炭化硼素粉末
も焼結していた。なお、炭化硼素転化を行った面は炭素
繊維の配向方向に垂直な面である。この試料を切断し、
その断面を走査型電子顕微鏡及びX線マイクロアナライ
ザーで分析して、炭化硼素の分布を求めた。その結果、
炭化硼素転化層の厚さは80μmであり、気孔内部には
焼結した炭化硼素が均一に充填されていた。また、比較
例3として炭化硼素粉末の含浸後、1800℃の加熱に
よる焼結のみを行った試料、比較例4として炭化硼素粉
末の含浸をせずに炭化硼素転化反応のみを行った試料を
作成した。これらの試料表面の硼素含有率及び表面から
一定の深さでの硼素含有量をXMAにより測定した。そ
の結果を表2に示す。また、これらの試料のプラズマ対
向材としての特性を評価するため、重水素イオンを試料
表面に照射したときのスパッタリング率を測定した。測
定は、試料の表面(深さ0μm)についてと、機械的に
深さ150μmまで研削した面について行った。測定条
件は前記と同様である。その結果も合わせて表2に示
す。
Example 2 and Comparative Examples 3 to 4 Pitch-based carbon fibers having the same high thermal conductivity (thermal conductivity 150 W / mK) as described above were oriented in one direction, and the fiber volume ratio was 60% by volume. After fixing the surroundings with the jig of 1), it was heated to 1600 ° C in a vacuum furnace, and propane gas was used as a raw material to impregnate pyrolytic carbon for 10 hours in a depressurized atmosphere with a vacuum degree of 3 Torr (400 Pa). A C / C composite material was prepared by subjecting to a chemical conversion treatment and used as a base material. The open porosity of this C / C composite material was 20% by volume. Next, the same boron carbide powder as described above was dispersed in the same solution as in Example 1, and the above C / C composite material was vacuum impregnated. After curing and carbonizing this under the same conditions as in Example 1, the sample was 40 mm × 20.
After processing into a high-frequency induction furnace having a size of 20 mm and placing boron oxide in the furnace at a distant portion at the same time, heating was performed at 1800 ° C. for 3 hours in an Ar gas atmosphere to carry out a boron carbide conversion reaction. The surface layer of the sample taken out from the furnace after cooling was converted into boron carbide, and the boron carbide powder impregnated in the pores was also sintered. The surface on which the boron carbide was converted was a surface perpendicular to the orientation direction of the carbon fibers. Cut this sample,
The cross section was analyzed with a scanning electron microscope and an X-ray microanalyzer to determine the distribution of boron carbide. as a result,
The thickness of the boron carbide conversion layer was 80 μm, and the sintered boron carbide was uniformly filled inside the pores. Further, as Comparative Example 3, a sample in which only the sintering by heating at 1800 ° C. was performed after the impregnation with the boron carbide powder and a sample in which only the boron carbide conversion reaction was performed without impregnating the boron carbide powder as Comparative Example 4 were prepared. did. The boron content of these sample surfaces and the boron content at a certain depth from the surface were measured by XMA. The results are shown in Table 2. Moreover, in order to evaluate the characteristics of these samples as a plasma facing material, the sputtering rate when the deuterium ions were irradiated on the sample surface was measured. The measurement was performed on the surface of the sample (depth 0 μm) and the surface mechanically ground to a depth of 150 μm. The measurement conditions are the same as above. The results are also shown in Table 2.

【0023】[0023]

【表2】 表1及び2から、実施例の試料は比較例のものに比べ、
硼素の含有量が平均的に高いことが示される。また、実
施例の試料は比較例のものに比べ、平均して重水素イオ
ンのスパッタリング率が低く、優れた耐プラズマ特性を
有することが分かる。
[Table 2] From Tables 1 and 2, the samples of the examples are
It is shown that the content of boron is high on average. Further, it can be seen that the samples of the examples have a lower deuterium ion sputtering rate on average than the samples of the comparative examples, and have excellent plasma resistance characteristics.

【0024】[0024]

【発明の効果】請求項1記載の炭化硼素複合炭素材料
は、耐熱性、高熱伝導性、化学的安定性、耐摩耗性等を
有し、また基材が露出した後であっても、炭化硼素複合
効果、即ち、耐熱性、化学的安定性、耐摩耗性等を有す
る。よって、核融合炉等のプラズマ対向材に好適であ
る。請求項2記載の炭化硼素複合炭素材料は、請求項1
記載の炭化硼素複合炭素材料の効果を奏し、特に基材が
露出した後の炭化硼素複合効果が高く、また強度等の特
性が繊維方向で優れている。請求項3記載の炭化硼素複
合炭素材料の製造法は、耐熱性、高熱伝導性、化学的安
定性、耐摩耗性等を有し、また基材が露出した後であっ
ても、炭化硼素複合効果、即ち、耐熱性、化学的安定
性、耐摩耗性等を有する材料を、容易に製造できる。請
求項4記載のプラズマ対向材は、耐熱性、高熱伝導性、
化学的安定性、耐摩耗性等を有し、また基材が露出した
後であっても、一定の炭化硼素複合効果、即ち、耐熱
性、化学的安定性、耐摩耗性等を有する。
The boron carbide composite carbon material according to claim 1 has heat resistance, high thermal conductivity, chemical stability, wear resistance and the like, and is carbonized even after the base material is exposed. It has a boron composite effect, that is, heat resistance, chemical stability, wear resistance and the like. Therefore, it is suitable for a plasma facing material such as a nuclear fusion reactor. The boron carbide composite carbon material according to claim 2 is the compound according to claim 1.
The effect of the described boron carbide composite carbon material is exhibited, particularly the boron carbide composite effect is high after the base material is exposed, and the properties such as strength are excellent in the fiber direction. The method for producing a boron carbide composite carbon material according to claim 3 has heat resistance, high thermal conductivity, chemical stability, abrasion resistance and the like, and the boron carbide composite carbon material is provided even after the substrate is exposed. A material having an effect, that is, heat resistance, chemical stability, wear resistance and the like can be easily manufactured. The plasma facing material according to claim 4 has heat resistance, high thermal conductivity,
It has chemical stability, abrasion resistance and the like, and has a certain boron carbide composite effect, that is, heat resistance, chemical stability, abrasion resistance, etc. even after the base material is exposed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維と炭素マトリックスを含む炭素
繊維炭素複合材料の開気孔内部に炭化硼素が充填されて
おり、かつ前記複合材料の表面に炭化硼素被膜が形成さ
れてなる炭化硼素複合炭素材料。
1. A boron carbide composite carbon material comprising a carbon fiber-carbon composite material containing carbon fibers and a carbon matrix, wherein the inside of open pores is filled with boron carbide, and a boron carbide coating film is formed on the surface of the composite material. .
【請求項2】 炭素繊維炭素複合材料が1方向に配向し
た炭素繊維を含むものである請求項1記載の炭化硼素複
合炭素材料。
2. The boron carbide composite carbon material according to claim 1, wherein the carbon fiber carbon composite material contains carbon fibers oriented in one direction.
【請求項3】 炭素繊維と炭素マトリックスを含む炭素
繊維炭素複合材料の開気孔内部に炭化硼素粉末を充填し
た後、その表面を炭化硼素に転化することを特徴とする
炭化硼素複合炭素材料の製造法。
3. A method for producing a boron carbide composite carbon material, which comprises filling carbon dioxide powder into the open pores of a carbon fiber-carbon composite material containing carbon fibers and a carbon matrix, and then converting the surface thereof to boron carbide. Law.
【請求項4】 炭素繊維と炭素マトリックスを含む炭素
繊維炭素複合材料の開気孔内部に炭化硼素が充填されて
おり、かつ前記複合材料のプラズマ対向面に炭化硼素被
膜が形成されてなるプラズマ対向材。
4. A plasma facing material in which a carbon fiber-carbon composite material containing carbon fibers and a carbon matrix is filled with boron carbide inside open pores, and a boron carbide coating film is formed on a plasma facing surface of the composite material. .
JP7190294A 1995-07-18 1995-07-26 Boron carbide combined carbon material, its production and material confronting plasma Pending JPH0987072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190294A JPH0987072A (en) 1995-07-18 1995-07-26 Boron carbide combined carbon material, its production and material confronting plasma

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-181163 1995-07-18
JP18116395 1995-07-18
JP7190294A JPH0987072A (en) 1995-07-18 1995-07-26 Boron carbide combined carbon material, its production and material confronting plasma

Publications (1)

Publication Number Publication Date
JPH0987072A true JPH0987072A (en) 1997-03-31

Family

ID=26500446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190294A Pending JPH0987072A (en) 1995-07-18 1995-07-26 Boron carbide combined carbon material, its production and material confronting plasma

Country Status (1)

Country Link
JP (1) JPH0987072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849767A2 (en) * 1996-12-19 1998-06-24 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
CN103058698A (en) * 2013-01-31 2013-04-24 常熟华融太阳能新型材料科技有限公司 Shell-core-structure boron carbide/carbon fiber composite ceramic and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849767A2 (en) * 1996-12-19 1998-06-24 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
EP0849767A3 (en) * 1996-12-19 2001-03-21 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
US6808747B1 (en) 1996-12-19 2004-10-26 Hong Shih Coating boron carbide on aluminum
CN103058698A (en) * 2013-01-31 2013-04-24 常熟华融太阳能新型材料科技有限公司 Shell-core-structure boron carbide/carbon fiber composite ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
US7207424B2 (en) Manufacture of carbon/carbon composites by hot pressing
US6686048B1 (en) Composite carbonaceous heat insulator
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
US20050274581A1 (en) Manufacture of carbon composites by hot pressing
EP0061636A1 (en) Low-density thermally insulating composite
JP2006517899A (en) Method for siliciding heat-resistant structural composite materials and components obtained by the method
US20070172659A1 (en) Anti-oxidation coating for carbon composites
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US20080220256A1 (en) Methods of coating carbon/carbon composite structures
US5580658A (en) Copper-carbon composite material with graded function and method for manufacturing the same
JPH0987072A (en) Boron carbide combined carbon material, its production and material confronting plasma
Marković Use of coal tar pitch in carboncarbon composites
EP4134359A1 (en) C/c composite and method for producing same, and heat-treatment jig and method for producing same
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JPH09286679A (en) Boron carbide coated carbon material, its production and material confronting plasma
JPH01167210A (en) Processed article of carbonaceous felt and production thereof
JPH0848509A (en) Production of carbonaceous porous body
JPH11116359A (en) Carbon-boron carbide composite material, its production, protecting part for measuring instrument in nuclear fusion reactor using the same
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JPH0948683A (en) Boron carbide-coated carbon material, its production and plasma opposing material
JPH0551205A (en) Method for controlling graphitization degree of carbon material surface layer and method for coating material surface
CN115417678B (en) Method for preparing SiC coating by low-temperature chemical vapor reaction method
JPH08198691A (en) Carbon-boron carbide composite material and its production
JPH0733565A (en) Carbon material coated with boron carbide and its production
JP2024078025A (en) Insulation