JPH11112281A - Oscillator - Google Patents

Oscillator

Info

Publication number
JPH11112281A
JPH11112281A JP27272297A JP27272297A JPH11112281A JP H11112281 A JPH11112281 A JP H11112281A JP 27272297 A JP27272297 A JP 27272297A JP 27272297 A JP27272297 A JP 27272297A JP H11112281 A JPH11112281 A JP H11112281A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
comb
wave
electrodes
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27272297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kinoshita
博之 木下
Shinji Inoue
真司 井上
Kei Asai
慶 朝井
Takao Terada
隆雄 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Omron Corp
Original Assignee
Kyocera Corp
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Omron Corp, Omron Tateisi Electronics Co filed Critical Kyocera Corp
Priority to JP27272297A priority Critical patent/JPH11112281A/en
Publication of JPH11112281A publication Critical patent/JPH11112281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide stable oscillation with high Q and less spurious by using single crystal whose crystal orientation of lithium niobate is specified rotary Y cut and whose transmission direction is a Y-axis projection direction for a piezoelectric substrate. SOLUTION: In an oscillator, a pair of comb-like electrodes 2 and 3 are formed on the surface of the strip-like piezoelectric substrate 1. High frequency signals are applied to a pair of comb-like electrodes 2 and 3 from a signal generation source 4. The comb teeth parts 2a, 2a,... and the comb teeth parts 3a, 3a... of the comb-like electrodes 2 and 3 are formed and arranged to be vertical to the longitudinal direction (transmission direction) of the piezoelectric substrate 1. When the high frequency signal is applied to the electrodes 2 and 3 from the signal generation source 4, the surface acoustic wave 5 is generated and it travels on the surface of the piezoelectric substrate 1 in the longitudinal direction. A bulk wave 6 travels in the thickness of the piezoelectric substrate 1. The single crystal of lithium niobate is used as the piezoelectric substrate 1 and that whose crystal orientation is 41±15 deg. rotary cut and whose transmission direction of the surface acoustic wave is the Y-axis projection direction is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ニオブ酸リチュ
ーム(LiNbO3 )単結晶からなる圧電基板を用いた
振動子に関する。
The present invention relates to a vibrator using a piezoelectric substrate made of lithium niobate (LiNbO 3 ) single crystal.

【0002】[0002]

【従来の技術】従来の弾性表面波振動子には、ニオブ酸
リチューム単結晶からなる圧電基板上に、櫛歯状の一対
の電極を形成し、この電極に信号発生源から高周波信号
を印加するものがある。この弾性表面波振動子に使用さ
れる圧電基板としては、LiNbO3 回転Yカット、S
Tカット水晶などであり、表面に励起するレーリー波を
利用したものである。しかし、これら圧電基板は、振動
効率が低い。そこで、振動効率を高めるために回転角が
−10°ないし+40°、回転Yカットのニオブ酸リチ
ューム基板表面にAu、Ag、Ptなどの櫛形電極を付
し、基板X方向にラブ波を伝搬せしめる振動子が提案さ
れている(特開昭63−260213号)。
2. Description of the Related Art In a conventional surface acoustic wave oscillator, a pair of comb-shaped electrodes are formed on a piezoelectric substrate made of lithium niobate single crystal, and a high frequency signal is applied to these electrodes from a signal generating source. There is something. As a piezoelectric substrate used for this surface acoustic wave vibrator, LiNbO 3 rotation Y cut, S
This is a T-cut quartz crystal or the like, which utilizes a Rayleigh wave excited on the surface. However, these piezoelectric substrates have low vibration efficiency. Therefore, in order to improve the vibration efficiency, a comb-shaped electrode such as Au, Ag, or Pt is attached to the surface of the niobate lithium niobate substrate having a rotation angle of −10 ° to + 40 ° and a rotation Y-cut to propagate the love wave in the X direction of the substrate. A vibrator has been proposed (JP-A-63-260213).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た従来の振動子では、この出願の発明者等が実験で確認
した結果、振動Qが低く、またスプリアスが全域に分布
し、振動子としてなお改善する必要があるという問題が
あった。この発明は上記問題点に着目してなされたもの
であって、より振動効率が良く、また振動の安定した振
動子を提供することを目的としている。
However, in the above-mentioned conventional vibrator, as a result of experiments by the inventors of the present application, the vibration Q is low, spurious components are distributed over the entire area, and the vibrator is still improved. There was a problem that needed to be. The present invention has been made in view of the above problems, and has as its object to provide a vibrator having higher vibration efficiency and stable vibration.

【0004】[0004]

【課題を解決するための手段】この出願の本明細書の特
許請求の範囲の請求項1に係る振動子は、ニオブ酸リチ
ューム単結晶からなる圧電基板と、この圧電基板の表面
に形成される弾性波を発生させる励振電極とからなる振
動子において、前記ニオブ酸リチューム単結晶の結晶方
位を41±15°回転Yカット、弾性波の伝搬方位をY
軸投影方向としたことを特徴としている。
A vibrator according to claim 1 of the present specification of the present application is formed on a piezoelectric substrate made of a single crystal of lithium niobate and a surface of the piezoelectric substrate. In a vibrator comprising an excitation electrode for generating an elastic wave, the crystal orientation of the lithium niobate single crystal is rotated by 41 ± 15 ° Y-cut, and the propagation direction of the elastic wave is Y.
It is characterized by the axial projection direction.

【0005】この振動子は、圧電基板にニオブ酸リチュ
ームの結晶方位が41±15°回転Yカットで、弾性波
の伝搬方位がY軸投影方位のものを使用している。実験
の結果では、Qが高く、スプリアスの少ないものが得ら
れている。また、請求項2に係る振動子は、請求項1に
係るものにおいて、圧電基板の厚みをバルク振動周波数
と表面波振動周波数が異なるように値を設定している。
In this vibrator, a piezoelectric substrate having a crystal orientation of lithium niobate of 41 ± 15 ° rotation Y-cut and a propagation direction of an elastic wave in a Y-axis projection direction is used. As a result of the experiment, a sample having high Q and low spurious was obtained. Further, according to a second aspect of the present invention, in the oscillator according to the first aspect, the thickness of the piezoelectric substrate is set to a value such that the bulk vibration frequency and the surface wave vibration frequency are different.

【0006】この振動子では、バルク振動周波数を振動
に使用することが特徴であり、バルクの振動周波数と表
面波の振動周波数が近寄っていると、周囲温度条件等の
外乱により、発振周波数がバルク振動周波数から表面波
振動周波数に移動したり、これを回避するために複雑な
発振制御回路が必要となる。一方、バルクの振動周波数
は圧電基板の厚みに相関するので、この厚みの適性な設
定により、バルクの振動周波数と表面波の振動周波数を
異なるものとし、振動の安定化が得られるようにしてい
る。
[0006] This vibrator is characterized in that the bulk vibration frequency is used for the vibration. If the vibration frequency of the bulk and the vibration frequency of the surface wave are close to each other, the oscillation frequency becomes large due to disturbance such as ambient temperature conditions. A complicated oscillation control circuit is required to move from the vibration frequency to the surface wave vibration frequency or to avoid this. On the other hand, since the vibration frequency of the bulk is correlated with the thickness of the piezoelectric substrate, by appropriately setting the thickness, the vibration frequency of the bulk and the vibration frequency of the surface wave are made different, so that the vibration can be stabilized. .

【0007】[0007]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。図1は、この発明の一実施
形態振動子の概略を示す図である。この振動子は、短冊
状の圧電基板1の表面に、一対の櫛状の電極2、3が形
成され、この一対の櫛状の電極2、3に信号発生源4か
ら高周波信号が印加される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a view schematically showing a vibrator according to one embodiment of the present invention. In this vibrator, a pair of comb-shaped electrodes 2 and 3 are formed on the surface of a strip-shaped piezoelectric substrate 1, and a high-frequency signal is applied to the pair of comb-shaped electrodes 2 and 3 from a signal generation source 4. .

【0008】櫛状電極2、3の櫛歯部2a、2a、……
と、櫛歯部3a、3a、……は、圧電基板1の長手方向
(伝搬方向)に垂直となるように形成配置されている。
信号発生源4より高周波信号を電極2、3に印加する
と、弾性表面波5が発生し、圧電基板1の表面を長手方
向に進行する。また、圧電基板1の厚み内をバルク波6
が進行する。
[0008] Comb portions 2a, 2a of the comb-like electrodes 2, 3 ...
Are formed and arranged so as to be perpendicular to the longitudinal direction (propagation direction) of the piezoelectric substrate 1.
When a high frequency signal is applied to the electrodes 2 and 3 from the signal generation source 4, a surface acoustic wave 5 is generated and travels on the surface of the piezoelectric substrate 1 in the longitudinal direction. In addition, the bulk wave 6 within the thickness of the piezoelectric substrate 1
Progresses.

【0009】この実施形態振動子の最も特徴とするとこ
ろは、圧電基板1としてニオブ酸リチュームの単結晶を
用い、その結晶方位が41°回転Yカット、弾性波の伝
搬方向がY軸投影方向であるものを使用したことであ
る。この圧電基板1は、図2に示すように、圧電結晶を
Y軸131°の角度でインゴットに成長させた圧電体1
1を得、この圧電体11から短冊状の圧電基板12を切
り出す。この圧電基板12はY軸に対し41°の角度を
持つ41°回転Yカットであり、また長手方向はY軸投
影方向となっている。つまり、バルク波、表面波の伝搬
方向は、Y軸投影方向である。
The most distinctive feature of this embodiment is that a single crystal of lithium niobate is used as the piezoelectric substrate 1, its crystal orientation is 41 ° rotated Y-cut, and the propagation direction of the elastic wave is in the Y-axis projection direction. That is, we used something. As shown in FIG. 2, this piezoelectric substrate 1 has a piezoelectric body 1 in which a piezoelectric crystal is grown in an ingot at an angle of 131 ° on the Y axis.
1 and a strip-shaped piezoelectric substrate 12 is cut out from the piezoelectric body 11. The piezoelectric substrate 12 has a 41 ° rotation Y cut having an angle of 41 ° with respect to the Y axis, and its longitudinal direction is the Y axis projection direction. That is, the propagation direction of the bulk wave and the surface wave is the Y-axis projection direction.

【0010】ここで上記圧電基板1内でのバルク波の伝
搬を、図3を用いて説明する。バルク波6は圧電基板1
方面に対して斜めに伝搬し、励振されたバルク波6の等
位相面の法線方向をθとすると、図のように、θは次式
で与えられように、その方向は、周波数によって変化す
る。 θ=sin(Vb/P・f) ここで、Vbはバルク波の位相速度、Pは櫛形電極のピ
ッチ、fは周波数である。
Here, propagation of a bulk wave in the piezoelectric substrate 1 will be described with reference to FIG. The bulk wave 6 is applied to the piezoelectric substrate 1
Assuming that the normal direction of the isophase surface of the bulk wave 6 excited and propagated obliquely to the direction is θ, as shown in the figure, θ is given by the following equation, and the direction changes according to the frequency. I do. θ = sin (Vb / P · f) where Vb is the phase velocity of the bulk wave, P is the pitch of the comb-shaped electrode, and f is the frequency.

【0011】この圧電基板1において、圧電基板1の振
動源は互い違いに形成された櫛形電極2、3の櫛歯部2
a、3aであり、発生振動波は表面波5とバルク波6で
ある。バルク波6は圧電基板1の境界面で反射しながら
伝搬していく。また、櫛形電極2、3で励振された表面
波5の振動周波数は主に表面は音速と電極ピッチによっ
て決定されるが、バルク波6の振動周波数は圧電基板1
の厚みtによって決定される。櫛形電極の同極間のピッ
チPは、具体的には0.2〜1.5mm程度が望まし
く、また圧電基板1の厚みtは具体的には、例えば0.
5〜1.5mmのものが望ましい。
In this piezoelectric substrate 1, the vibration source of the piezoelectric substrate 1 is a comb-toothed portion 2 of alternately formed comb-shaped electrodes 2, 3.
a and 3a, and the generated vibration waves are a surface wave 5 and a bulk wave 6. The bulk wave 6 propagates while reflecting on the boundary surface of the piezoelectric substrate 1. The vibration frequency of the surface wave 5 excited by the comb-shaped electrodes 2 and 3 is mainly determined by the sound velocity and the electrode pitch on the surface.
Is determined by the thickness t. Specifically, the pitch P between the same poles of the comb-shaped electrode is desirably about 0.2 to 1.5 mm, and the thickness t of the piezoelectric substrate 1 is, for example, 0.1 mm.
A thickness of 5 to 1.5 mm is desirable.

【0012】表面波5の振動周波数とバルク波振動周波
数が近い場合には、わずかな振動負荷の変化によって表
面波振動周波数で動作したり、バルク波振動周波数で動
作したり、周波数が安定しない場合があり、これを未然
に防ぐためには、発振回路の構成が複雑になったりする
ことがある。これを避けるために、バルク振動周波数を
表面波振動周波数と異なるよう、圧電基板1の厚みtを
選択する。バルク振動周波数と表面振動周波数との具体
的な差は、実験結果から2MHZ程度の差があれば、周
波数として安定した振動が得られる。
When the vibration frequency of the surface wave 5 and the bulk wave vibration frequency are close to each other, the operation at the surface wave vibration frequency, the operation at the bulk wave vibration frequency, or the unstable frequency due to a slight change in the vibration load. In order to prevent this, the configuration of the oscillation circuit may be complicated. To avoid this, the thickness t of the piezoelectric substrate 1 is selected so that the bulk vibration frequency differs from the surface wave vibration frequency. As a specific difference between the bulk vibration frequency and the surface vibration frequency, if there is a difference of about 2 MHz from the experimental results, a stable vibration can be obtained as the frequency.

【0013】実験で、41°回転Yカット、伝搬方向が
X軸投影方向の圧電基板で、信号発生源1の信号周波数
を5MHZから9MHZまで変化させてインピーダンス
を測定したところ、図5のものが得られた。図5の特性
では、Qも低く、スプリアスもかなりの波域で発生して
いる。これに対し、上記実施形態で使用の圧電基板、つ
まり41°回転Yカット、伝搬方向がY軸投影方向の圧
電素子で、同様の測定を行ったところ、図4に示すよう
に、7.57MHZ(○印で示す)で、Qの高い共振特
性が得られ、その他の波域ではほとんどスプリアスが発
生していない。
In an experiment, the impedance was measured while changing the signal frequency of the signal source 1 from 5 MHz to 9 MHz on a piezoelectric substrate having a Y-cut of 41 ° rotation and a propagation direction of the X-axis projection direction. Obtained. In the characteristics of FIG. 5, Q is low and spurious is generated in a considerable wave range. On the other hand, when the same measurement was performed using the piezoelectric substrate used in the above-described embodiment, that is, the piezoelectric element in which the Y direction was 41 ° rotated and the propagation direction was the Y-axis projection direction, 7.57 MHZ was obtained as shown in FIG. (Shown by ○), a high Q resonance characteristic is obtained, and almost no spurious is generated in other wave ranges.

【0014】なお、上記実施形態では、回転Yカットの
角度を41°としたが、41°±15°の範囲で、ま
た、弾性波の伝搬方向はY軸投影方向より±10°程度
の範囲のずれでも十分に実用的な振動子を得ることがで
きる。
In the above embodiment, the rotation Y-cut angle is set to 41 °. However, the angle of rotation is within a range of 41 ° ± 15 °, and the propagation direction of the elastic wave is within a range of ± 10 ° from the Y-axis projection direction. A sufficiently practical vibrator can be obtained even with the deviation.

【0015】[0015]

【発明の効果】この発明によれば、圧電基板にニオブ酸
リチュームの結晶方位が41±15°回転Yカット、伝
搬方位がY軸投影方向であるものを使用しているので、
Qの高い、スプリアスの少ない安定した振動を得ること
ができる。
According to the present invention, since a piezoelectric substrate having a crystal orientation of lithium niobate of 41 ± 15 ° rotation Y-cut and a propagation orientation in the Y-axis projection direction is used for the piezoelectric substrate,
Stable vibration with high Q and little spurious can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態振動子を示す概略図であ
る。
FIG. 1 is a schematic view showing a vibrator according to an embodiment of the present invention.

【図2】同実施形態振動子に使用する圧電基板の結晶方
位カット、及び伝搬方向を説明する図である。
FIG. 2 is a diagram illustrating a crystal orientation cut and a propagation direction of a piezoelectric substrate used in the resonator according to the embodiment.

【図3】同実施形態振動子の表面波がバルク波の伝搬を
説明する図である。
FIG. 3 is a diagram for explaining propagation of a bulk wave as a surface wave of the resonator according to the embodiment.

【図4】同実施形態振動子の周波数−インピーダンス特
性を示す図である。
FIG. 4 is a diagram showing frequency-impedance characteristics of the resonator according to the embodiment.

【図5】振動子の圧電基板に、結晶方位が41°回転Y
カット、伝搬方向がX軸投影方向のものを使用した場合
の周波数−インピーダンス特性を示す図である。
FIG. 5 shows that the crystal orientation is rotated by 41 ° Y on the piezoelectric substrate of the vibrator.
It is a figure which shows the frequency-impedance characteristic at the time of cutting and the propagation direction using an X-axis projection direction.

【符号の説明】[Explanation of symbols]

1 圧電基板 2、3 櫛状電極 4 信号発生器 5 表面波 6 バルク波 DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate 2, 3 Comb electrode 4 Signal generator 5 Surface wave 6 Bulk wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝井 慶 京都市右京区山ノ内山ノ下町24番地 株式 会社オムロンライフサイエンス研究所内 (72)発明者 寺田 隆雄 京都市右京区山ノ内山ノ下町24番地 株式 会社オムロンライフサイエンス研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kei Asai 24, Yamanouchi Yamanoshitamachi, Ukyo-ku, Kyoto-shi Inside Omron Life Science Laboratory Co., Ltd. Science Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ニオブ酸リチューム単結晶からなる圧電基
板と、この圧電基板の表面に形成される弾性波を発生さ
せる励振電極とからなる振動子において、 前記ニオブ酸リチューム単結晶の結晶方位が41±15
°回転Yカット、弾性波の伝搬方位をY軸投影方向とし
たことを特徴とする振動子。
1. A vibrator comprising a piezoelectric substrate made of a lithium niobate single crystal and an excitation electrode for generating an elastic wave formed on a surface of the piezoelectric substrate, wherein the crystal orientation of the lithium niobate single crystal is 41. ± 15
A vibrator characterized in that the rotation Y-cut and the propagation direction of the elastic wave are set to the Y-axis projection direction.
【請求項2】前記圧電基板は、バルク振動周波数と表面
波振動周波数が異なるような基板厚みに設定されている
ことを特徴とする請求項1記載の振動子。
2. The vibrator according to claim 1, wherein said piezoelectric substrate has a thickness set such that a bulk vibration frequency and a surface wave vibration frequency are different from each other.
JP27272297A 1997-10-06 1997-10-06 Oscillator Pending JPH11112281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27272297A JPH11112281A (en) 1997-10-06 1997-10-06 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27272297A JPH11112281A (en) 1997-10-06 1997-10-06 Oscillator

Publications (1)

Publication Number Publication Date
JPH11112281A true JPH11112281A (en) 1999-04-23

Family

ID=17517878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27272297A Pending JPH11112281A (en) 1997-10-06 1997-10-06 Oscillator

Country Status (1)

Country Link
JP (1) JPH11112281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148184A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Surface acoustic wave resonator
WO2009147787A1 (en) * 2008-06-06 2009-12-10 パナソニック株式会社 Acoustic wave duplexer
JP2013539946A (en) * 2010-10-14 2013-10-28 テクノロジアン テュトキムスケスクス ヴェーテーテー Broadband acoustic coupling thin film BAW filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148184A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Surface acoustic wave resonator
WO2009147787A1 (en) * 2008-06-06 2009-12-10 パナソニック株式会社 Acoustic wave duplexer
US8384495B2 (en) 2008-06-06 2013-02-26 Panasonic Corporation Acoustic wave duplexer
JP5392255B2 (en) * 2008-06-06 2014-01-22 パナソニック株式会社 Elastic wave duplexer
JP2013539946A (en) * 2010-10-14 2013-10-28 テクノロジアン テュトキムスケスクス ヴェーテーテー Broadband acoustic coupling thin film BAW filter

Similar Documents

Publication Publication Date Title
JP4757860B2 (en) Surface acoustic wave functional element
EP0860943B1 (en) Surface acoustic wave device
JP2020088459A (en) Elastic surface wave device
JP4109877B2 (en) Surface acoustic wave functional element
JP2008236295A (en) Saw resonator
JPH08125485A (en) Love wave device
JP2003124780A (en) Surface acoustic wave device
JPH08288788A (en) Surface acoustic wave element
JPH09298446A (en) Surface acoustic wave device and its design method
JP3281510B2 (en) Surface acoustic wave device
JP2000031781A (en) Piezoelectric vibrator
JP2002152007A (en) Lamb wave type elastic wave resonator
JP5563378B2 (en) Elastic wave element
JPH11112281A (en) Oscillator
JP2006074136A (en) Surface acoustic wave element chip and surface acoustic wave device
JP3255502B2 (en) Highly stable surface acoustic wave device
KR970004299A (en) METHOD FOR MANUFACTURING SIDE WAVE SURFACE
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
US6160339A (en) Two-port saw resonator
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JP2005269284A (en) Lamb wave type elastic wave element
JPS6357967B2 (en)
JP5277993B2 (en) Manufacturing method of surface acoustic wave device
JPS6173409A (en) Elastic surface wave device
JPH0265405A (en) Frequency adjusting method for surface acoustic wave resonator