JPH11112078A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH11112078A
JPH11112078A JP26545297A JP26545297A JPH11112078A JP H11112078 A JPH11112078 A JP H11112078A JP 26545297 A JP26545297 A JP 26545297A JP 26545297 A JP26545297 A JP 26545297A JP H11112078 A JPH11112078 A JP H11112078A
Authority
JP
Japan
Prior art keywords
region
layer
semiconductor laser
zinc
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26545297A
Other languages
Japanese (ja)
Inventor
Etsuko Nomoto
悦子 野本
Shinichi Nakatsuka
慎一 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26545297A priority Critical patent/JPH11112078A/en
Publication of JPH11112078A publication Critical patent/JPH11112078A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To substantially dissolve a laser beam absorption at an end face of a laser resonator, and suppress the deterioration of the end face, by suppressing the concentration of introduced impurities so that the current density at operation of a semiconductor laser in a window structure region where the width of a forbidden band is enlarged may be specified times as high as the current density in the active layer excepting the window region. SOLUTION: After stacking of a ZnO film 11 and an SiO2 film 112, the ZnO film 111 is processed to leave only within a groove 110, in the region to serve as a laser stripe. The zinc diffusion from the ZnO film 111 is performed by heating such a wafer to 500-600 deg.C in hydrogen atmosphere. In the region where the ZnO film 111 is left, a zinc-diffused region 118 about 1×10<19> cm<3> in zinc concentration is made. The concentration of p-type carriers in this region becomes about 5×10<18> cm<3> , thus obtaining favorable window structure. Since atoms between lattices in high concentration exist at the diffused interface region of the zinc-diffused region, the density of the current flowing in the window region is about several tens/cm<2> , and it is several figures less (1/50) than the current density outside the window region, thus the deterioration of the end face can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザ素子に
係り、特にAlGaInP系高出力半導体レーザ素子に
好適な素子構成及びその製造方法に関する。
The present invention relates to a semiconductor laser device, and more particularly to a device structure suitable for an AlGaInP-based high-power semiconductor laser device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】AlGaInP系高出力半導体レーザは
光ディスク、デジタル・ビデオ・ディスク等の光源とし
て用いられ、高出力化及び高信頼度化が必要である。こ
れを達成するために例えば、S.Arimoto他IE
EE J. QuantumElectron.,vo
l29,pp1874−1879,(1993)に記述
された技術があげられる。該文献においては図14のよ
うにAlGaInP/GaInP系半導体レーザにおい
てレーザ共振器の端面近傍に亜鉛拡散を行いGaInP
の自然超格子の混晶化した窓領域を設けた。自然超格子
を混晶化すると活性層の禁制帯幅が増加するため、端面
破壊現象の原因であった端面における活性層のレーザ光
の吸収がなくなる。これにより端面破壊現象が防止さ
れ、最大光出力204mWの半導体レーザが実現されて
いる。
2. Description of the Related Art AlGaInP-based high-power semiconductor lasers are used as light sources for optical disks, digital video disks, and the like, and require high power and high reliability. To achieve this, for example, Arimoto and other IEs
EEJ. QuantumElectron. , Vo
129, pp1874-1879, (1993). In this document, as shown in FIG. 14, in an AlGaInP / GaInP-based semiconductor laser, zinc diffusion is performed near the end face of a laser resonator to obtain GaInP.
A mixed window region of the natural superlattice was provided. The mixed crystal of the natural superlattice increases the forbidden band width of the active layer, so that absorption of laser light by the active layer at the end face, which caused the end face breakdown phenomenon, disappears. Thereby, the end face breakdown phenomenon is prevented, and a semiconductor laser having a maximum light output of 204 mW is realized.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では半導体
レーザに電流を注入して動作させる際に、共振器端面に
おける電流の漏れを防ぐために窓領域作製後窓領域上部
に電流ブロック層を選択成長により設ける必要があっ
た。該電流ブロック層を作製するためにはレーザ導波路
の直上にホトリソグラフ法を用いて作製したストライプ
状のマスクを用いてp型クラッド層を途中までをリッジ
状に加工した後、窓領域上部以外の導波路直上部分にの
みマスクが残るようにホトリソグラフ法を用いて再度加
工を行い、電流ブロック層を選択成長させるという過程
が必要であった。この中でホトリソグラフ法を用いてマ
スクを再度加工する工程が通常のリッジ構造の作製工程
に比べて多かった。さらに、該電流ブロック層を作製す
ると窓領域の直上のみ他の領域より凸の領域となり、そ
の後電極の付着性を高めるためにコンタクト層の結晶成
長を数ミクロン行うことにより結晶の平坦化が必要であ
った。
In the prior art, when a semiconductor laser is operated by injecting a current, a current blocking layer is selectively grown on the window region after the window region is formed in order to prevent leakage of current at the cavity end face. Had to be provided. In order to produce the current block layer, a p-type cladding layer is partially processed into a ridge shape using a stripe-shaped mask produced by photolithography just above the laser waveguide, and then the portion other than the upper portion of the window region is formed. It was necessary to process again using photolithography so that the mask was left only in the portion directly above the waveguide, and to selectively grow the current blocking layer. Among them, the steps of processing the mask again by using the photolithographic method were many as compared with the steps of manufacturing a normal ridge structure. Further, when the current block layer is formed, only the region immediately above the window region becomes a region more convex than the other region. Thereafter, in order to enhance the adhesion of the electrode, crystal growth of the contact layer is performed by several microns, so that it is necessary to planarize the crystal. there were.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に窓領域作製時に窓領域における電気抵抗が導波路の他
の部分より高くなる作製法を考案し、窓領域上部に電流
ブロック層を作製する必要がなくなることにより工程を
簡略化することができた。このような窓領域作製方法と
して、半導体レーザ構造の結晶成長を行った後、酸化亜
鉛を拡散源として水素中または窒素中で固層拡散を行う
方法を採用する。
Means for Solving the Problems To solve the above problems, a manufacturing method was devised in which the electric resistance in the window region was higher than that of other portions of the waveguide when the window region was formed, and a current blocking layer was formed on the window region. By eliminating the necessity, the process can be simplified. As a method for forming such a window region, a method is employed in which, after crystal growth of a semiconductor laser structure is performed, solid layer diffusion is performed in hydrogen or nitrogen using zinc oxide as a diffusion source.

【0005】亜鉛はIII−V族化合物半導体中において
はp型のキャリアとなり、結晶中の濃度を5×1017
-3から1×1019cm-3としたとき、そのキャリア密
度は5×1017cm-3から5×1018cm-3程度とな
る。亜鉛の結晶中の濃度が上記と同様でもキャリアの活
性化率が低く、例えば5×1016cm-3の場合は、格子
間に入って活性化されない亜鉛原子が欠陥となって結晶
の電気抵抗は却って高くなる。このとき、亜鉛原子は半
導体結晶中で不純物準位を形成し、例えば活性層におい
ては禁制帯幅を小さくするため、当該活性層の発光波長
に相当する光を吸収してしまう問題がある。
[0005] Zinc becomes a p-type carrier in the group III-V compound semiconductor, and has a concentration of 5 × 10 17 c
When m −3 to 1 × 10 19 cm −3 , the carrier density is about 5 × 10 17 cm −3 to 5 × 10 18 cm −3 . Even if the concentration of zinc in the crystal is the same as above, the activation rate of the carrier is low. For example, in the case of 5 × 10 16 cm −3 , the zinc atoms which are not activated due to interstitials become defects and the electric resistance of the crystal becomes low. Is rather high. At this time, zinc atoms form impurity levels in the semiconductor crystal and, for example, reduce the forbidden band width in the active layer, so that there is a problem that light corresponding to the emission wavelength of the active layer is absorbed.

【0006】ところが、酸化亜鉛を原料とした亜鉛の固
層拡散の温度を500℃以上600℃未満の範囲に、拡散時間
を20分以上90分以内に設定してプロセスを最適化するこ
とにより、結晶の電気抵抗が高い状態を保持しながらキ
ャリアの活性化率が高く上記光を吸収しない状態を作る
ことができる。この方法によれば、例えば半導体レーザ
の駆動電圧相当の2.5Vを半導体レーザ結晶に加えた
場合に窓領域内を流れる電流密度は数十アンペア毎平方
センチメートル程度となり、窓領域外(即ち、亜鉛を拡
散しない領域)を流れる電流密度より2桁少なくなっ
た。
However, by optimizing the process by setting the temperature of solid-phase diffusion of zinc from zinc oxide as a raw material in the range of 500 ° C. to less than 600 ° C. and the diffusion time in the range of 20 minutes to 90 minutes. A state in which the activation rate of the carrier is high and the light is not absorbed can be created while maintaining the state where the electric resistance of the crystal is high. According to this method, for example, when 2.5 V corresponding to the driving voltage of the semiconductor laser is applied to the semiconductor laser crystal, the current density flowing in the window region becomes about several tens of amperes per square centimeter, and the current outside the window region (that is, (A region where no diffusion occurs), two orders of magnitude lower than the current density.

【0007】以上のプロセス上の発見に基づき、本発明
者は高出力でのレーザ光発振に適した半導体レーザ素子
の構造を検討し、端面劣化を回避するに好適な素子性能
を実現するに当たり、上記亜鉛拡散領域と非拡散領域を
夫々流れる電流密度の大小関係が重要であることを着想
した。
Based on the above findings in the process, the present inventor has studied the structure of a semiconductor laser device suitable for high-power laser light oscillation, and has realized a device performance suitable for avoiding end face deterioration. It was conceived that the magnitude relationship between the current densities flowing through the zinc diffusion region and the non-diffusion region was important.

【0008】即ち、本発明は、周期的変動を持つ半導体
層よりなる活性層と、該活性層を挟んで設けた活性層よ
りも広い禁制帯幅で互いに異なる導電型を有する半導体
層よりなる二種類のクラッド層と、上記層構造の上部及
び下部に形成された電極を有し、上記活性層及びクラッ
ド層からなる積層構造に垂直に設けた結晶面を反射鏡と
して共振器を構成する半導体レーザ素子に於いて、少な
くとも一方の反射鏡の近傍において不純物を導入するこ
とにより上記活性層の周期的変動を平滑化して活性層の
禁制帯幅を他の領域の活性層の禁制帯幅よりも大きく
し、上記禁制帯幅を大きくした窓構造領域の半導体レー
ザ動作時における電流密度は窓領域以外の活性層におけ
る電流密度の50分の1以下となるように不純物導入濃
度を設定した構成を以て、レーザ共振器端面におけるレ
ーザ光吸収を実質上解消し且つ端面劣化を抑制する。導
入される不純物は、亜鉛であることが好ましい。また、
上記活性層及びクラッド層を構成する半導体材料にガリ
ウム、インジウム、燐の少なくとも一つを構成元素とし
て含ませた所謂AlGaInP系の半導体素子に於い
て、本発明のより顕著な効果が得られる。
That is, the present invention provides an active layer composed of a semiconductor layer having a periodic fluctuation and a semiconductor layer composed of semiconductor layers having different forbidden band widths and different conduction types than the active layer provided with the active layer interposed therebetween. A semiconductor laser having cladding layers of various kinds and electrodes formed on the upper and lower parts of the above-mentioned layer structure, and forming a resonator using a crystal plane provided vertically to a laminated structure comprising the above-mentioned active layer and the cladding layer as a reflecting mirror In the element, the periodic fluctuation of the active layer is smoothed by introducing an impurity in the vicinity of at least one of the reflecting mirrors so that the forbidden band width of the active layer is larger than the forbidden band width of the active layer in the other region. The impurity introduction concentration is set so that the current density of the window structure region having the increased bandgap at the time of operating the semiconductor laser is 1/50 or less of the current density in the active layer other than the window region. Te, suppresses substantially eliminated by and end face deteriorates the laser beam absorption in the laser cavity end face. The impurity to be introduced is preferably zinc. Also,
In a so-called AlGaInP-based semiconductor device in which at least one of gallium, indium, and phosphorus is contained as a constituent element in a semiconductor material forming the active layer and the cladding layer, a more remarkable effect of the present invention can be obtained.

【0009】[0009]

【発明の実施の形態】以下、実施例1乃至3とこれらの
関連図面により、本発明の望ましき実施の形態を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to Embodiments 1 to 3 and related drawings.

【0010】<実施例1>本発明第1の実施例における
半導体レーザの構造を図1から図6を用いて説明する。
図1は素子概観である。まず、有機金属気相成長法を用
いて図2のような断面構造のダブルへテロ構造を作製す
る。101はGaAs基板を示しており、このGaAs
基板101の面方位は(100)面である。この基板上
にn型In0.5(Ga0.3Al0.70.5Pからなる厚さ
1.8μm程度のn型クラッド層102、アンドープI
0.5(Ga0.7Al0.30.5Pからなる光ガイド層10
3で挾持されている多重量子井戸活性層104、p型I
0.5(Ga0.3Al0.70.5Pからなる厚さ1.5μm
程度のp型クラッド層105、p型In0.5Ga0.5P層
106、およびn型GaAsキャップ層107を順次結
晶成長した。多重量子井戸活性層は3層のIn0.51Ga
0.49P(7nm)ウエル層108と2層のIn0.5(G
0.7Al0.30.5P109が積層して形成されてい
る。
<Embodiment 1> The structure of a semiconductor laser according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an overview of the device. First, a double hetero structure having a cross-sectional structure as shown in FIG. 2 is manufactured by using a metal organic chemical vapor deposition method. Reference numeral 101 denotes a GaAs substrate.
The plane orientation of the substrate 101 is the (100) plane. On this substrate, an n-type cladding layer 102 made of n-type In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P and having a thickness of about 1.8 μm,
Optical guide layer 10 made of n 0.5 (Ga 0.7 Al 0.3 ) 0.5 P
3, the multiple quantum well active layer 104, p-type I
1.5 μm thick consisting of n 0.5 (Ga 0.3 Al 0.7 ) 0.5 P
About a p-type cladding layer 105, a p-type In 0.5 Ga 0.5 P layer 106, and an n-type GaAs cap layer 107 were sequentially crystal-grown. The multiple quantum well active layer has three layers of In 0.51 Ga
0.49 P (7 nm) well layer 108 and two layers of In 0.5 (G
a 0.7 Al 0.3 ) 0.5 P109 is laminated.

【0011】ここで、活性層はダブルヘテロ構造のよう
に一定組成のものでも、多重量子井戸構造のようにエネ
ルギ−的に変調を受けている構造のものでもよいが、一
定組成の場合は結晶成長時にInとGaの周期的な組成
ゆらぎ、いわゆる自然超格子を生じるように形成されて
いることが必要である。
Here, the active layer may have either a constant composition such as a double hetero structure or a structure having energy modulation such as a multiple quantum well structure. It is necessary that the semiconductor layer be formed so as to produce a periodic composition fluctuation of In and Ga during growth, that is, a so-called natural superlattice.

【0012】つぎに、図3に示す工程によりこのウエハ
の一部にZnの拡散を行う。まず、n型GaAsキャッ
プ層107をレーザストライプを形成する方向と直交す
る幅30から50μm長さ50から200μmの溝11
0状に除去する。次に、スパッタ法によりZnO膜11
1およびSiO2膜112の堆積を行った上で、ホトリ
ソグラフ技術を用いてZnO膜111をレーザストライ
プとなる領域では溝110内部にのみ残るように加工す
る。さらに、ZnOを残した領域以外のn型GaAsキ
ャップ層107を除去する。このようなウエハを水素雰
囲気中で摂氏500度から600度に加熱することによ
りZnO膜111からの亜鉛拡散を行った。拡散時間は
亜鉛がn型GaAs基板に達しないように選んだ。
Next, Zn is diffused into a part of the wafer by the process shown in FIG. First, an n-type GaAs cap layer 107 is formed by forming a groove 11 having a width of 30 to 50 μm and a length of 50 to 200 μm perpendicular to the direction in which a laser stripe is formed.
Remove to zero shape. Next, the ZnO film 11 is formed by sputtering.
After depositing the SiO 2 film 112 and the SiO 2 film 112, the ZnO film 111 is processed by photolithography so that the ZnO film 111 remains only in the groove 110 in a region to be a laser stripe. Further, the n-type GaAs cap layer 107 other than the region where ZnO is left is removed. The zinc was diffused from the ZnO film 111 by heating such a wafer from 500 degrees Celsius to 600 degrees Celsius in a hydrogen atmosphere. The diffusion time was chosen so that zinc did not reach the n-type GaAs substrate.

【0013】ZnO膜111を残した領域ではZnO膜
111から直接亜鉛が拡散され亜鉛濃度が約1×1019
cm-3の亜鉛拡散領域118が形成される。この領域で
のp型キャリア濃度は5×1018cm-3程度となり、良
好な窓構造が得られた。
In the region where the ZnO film 111 remains, zinc is directly diffused from the ZnO film 111 and the zinc concentration is about 1 × 10 19
A cm- 3 zinc diffusion region 118 is formed. The p-type carrier concentration in this region was about 5 × 10 18 cm −3 , and a good window structure was obtained.

【0014】ZnO膜111及びn型GaAsキャップ
層107を除去した後、有機金属気相成長法によりGa
As層113の再成長を行い、熱化学堆積法によりSi
2膜を堆積する。ホトリソグラフ技術を用いてSiO2
膜を幅約5μmのストライプ状に加工する。このSiO
2ストライプをマスクとしてp型クラッド層105の途
中までをリッジ状に加工し、このSiO2ストライプを
マスクとしてn型GaAs電流ブロック層114の選択
成長を行った。
After the ZnO film 111 and the n-type GaAs cap layer 107 are removed, Ga is removed by metal organic chemical vapor deposition.
The As layer 113 is regrown, and the Si layer is
Deposit an O 2 film. SiO 2 using photolithographic technology
The film is processed into a stripe having a width of about 5 μm. This SiO
Using the two stripes as a mask, the middle of the p-type cladding layer 105 was processed into a ridge shape, and the n-type GaAs current block layer 114 was selectively grown using the SiO 2 stripe as a mask.

【0015】GaAs再成長層113を取り除いた後、
n型GaAs電流ブロック層114およびp型In0.5
Ga0.5P層106上には、p型GaAsからなるコン
タクト層115を介してAu・Zn合金からなるp側電
極116が設けられている。そして、GaAs基板10
1の裏面には、Au・Ge合金からなるn側電極117
が設けられている。このような構造のウエハを長さ約6
00μmにへき開してレ−ザチップとした。へき開の位
置はZnO膜111のストライプを設けた領域となるよ
うにへき開位置の制御を行った。以上の工程により作成
した半導体レーザの窓部および窓以外の部分の断面構造
を図4よび図5に示す。図中、亜鉛を拡散した領域11
8を斜線で示す。
After removing the GaAs regrown layer 113,
n-type GaAs current blocking layer 114 and p-type In 0.5
On the Ga 0.5 P layer 106, a p-side electrode 116 made of an Au—Zn alloy is provided via a contact layer 115 made of p-type GaAs. Then, the GaAs substrate 10
The n-side electrode 117 made of Au.Ge alloy is
Is provided. A wafer having such a structure is about 6 in length.
The laser chip was cleaved at 00 μm. The cleavage position was controlled so that the cleavage position was in the region where the stripes of the ZnO film 111 were provided. FIGS. 4 and 5 show the cross-sectional structure of the window portion and the portion other than the window of the semiconductor laser formed by the above steps. In the figure, a region 11 in which zinc is diffused
8 is indicated by oblique lines.

【0016】このとき亜鉛拡散領域の拡散界面領域には
高濃度の格子間原子が存在するため、図6に示すよう
に、例えば半導体レーザの駆動電圧相当の2.5Vを半
導体レーザ結晶に加えた場合に窓領域内を流れる電流密
度は数十アンペア毎平方センチメートル程度となり、窓
領域外を流れる電流密度より数桁少なくなった。
At this time, since a high concentration of interstitial atoms is present in the diffusion interface region of the zinc diffusion region, as shown in FIG. 6, for example, a driving voltage of 2.5 V corresponding to the driving voltage of the semiconductor laser was applied to the semiconductor laser crystal. In this case, the current density flowing in the window region was several tens of amperes per square centimeter, which was several orders of magnitude lower than the current density flowing outside the window region.

【0017】本実施例の半導体レーザは波長680n
m、しきい値電流は従来の素子より10%程度低い約5
0mAで室温連続発振し、最大光出力は約300mW
で、光出力100mWにおいて5000時間以上の連続
動作が可能であった。
The semiconductor laser of this embodiment has a wavelength of 680 nm.
m, the threshold current is about 5% lower than the conventional device by about 10%.
It oscillates continuously at room temperature at 0mA and the maximum light output is about 300mW
Thus, continuous operation for 5000 hours or more at an optical output of 100 mW was possible.

【0018】<実施例2>本発明第2の実施例の半導体
レーザの構造を図7から図10に示す。まず、有機金属
気相成長法により図7のようなダブルヘテロ構造を作製
する。201はGaAs基板を示しており、このGaA
s基板201は、(100)面から[011]方向に7
度傾斜した面方位を有している。この基板上にn型In
0.5(Ga0.3Al0.70.5Pからなる厚さ1.8μm程
度のn型クラッド層102、多重量子井戸活性層20
2、p型In0.5(Ga0.3Al0.70.5Pからなる厚さ
1.5μm程度のp型クラッド層105、p型In0.5
Ga0.5P層106、およびn型GaAsキャップ層1
07を順次結晶成長した。
Embodiment 2 FIGS. 7 to 10 show the structure of a semiconductor laser according to a second embodiment of the present invention. First, a double hetero structure as shown in FIG. 7 is formed by metal organic chemical vapor deposition. Reference numeral 201 denotes a GaAs substrate.
The s-substrate 201 is moved from the (100) plane in the [011] direction by 7
It has a plane orientation inclined at an angle. On this substrate, n-type In
0.5 (Ga 0.3 Al 0.7 ) 0.5 P n-type cladding layer 102 having a thickness of about 1.8 μm and multiple quantum well active layer 20
2, p-type In 0.5 (Ga 0.3 Al 0.7) having a thickness of about 1.5μm consisting 0.5 P p-type cladding layer 105, p-type In 0.5
Ga 0.5 P layer 106 and n-type GaAs cap layer 1
07 was grown sequentially.

【0019】活性層202は厚さ5nmのIn0.55Ga
0.45P層203と厚さ5nmのIn0.45(Ga0.5Al
0.50.55P層204が4周期積層した多重量子井戸構
造となっている。
The active layer 202 is made of In 0.55 Ga having a thickness of 5 nm.
0.45 P layer 203 and 5 nm thick In 0.45 (Ga 0.5 Al
0.5 ) 0.55 It has a multiple quantum well structure in which P layers 204 are stacked four periods.

【0020】つぎに、図8に示す工程によりこのウエハ
の一部にZnの拡散を行う。まず、n型GaAsキャッ
プ層107をレーザストライプを形成する方向と直交す
る幅30から50μmの溝110状に除去する。次に、
スパッタ法によりZnO膜111の堆積を行った上で、
ホトリソグラフ技術を用いてZnO膜111をn型Ga
Asキャップ層107の溝内部110にのみ残るように
加工する。さらに、ZnO膜111を残した領域以外の
n型GaAsキャップ層107を除去する。このような
ウエハを窒素中で摂氏500度から600度に加熱する
ことによりZnO膜111からの亜鉛拡散を行った。拡
散時間は亜鉛がn型GaAs基板に達しないように選ん
だ。
Next, Zn is diffused into a part of the wafer by the process shown in FIG. First, the n-type GaAs cap layer 107 is removed into a groove 110 having a width of 30 to 50 μm perpendicular to the direction in which the laser stripe is formed. next,
After depositing the ZnO film 111 by the sputtering method,
Using a photolithographic technique, the ZnO film
It is processed so as to remain only in the inside 110 of the groove of the As cap layer 107. Further, the n-type GaAs cap layer 107 other than the region where the ZnO film 111 is left is removed. The zinc was diffused from the ZnO film 111 by heating such a wafer from 500 to 600 degrees Celsius in nitrogen. The diffusion time was chosen so that zinc did not reach the n-type GaAs substrate.

【0021】ZnO膜111を残した領域ではZnO膜
111から直接亜鉛が拡散され亜鉛濃度が約1×1019
cm-3の亜鉛拡散領域118が形成される。この領域で
は高濃度の不純物拡散に伴い結晶欠陥が発生し、p型キ
ャリア濃度は1016cm-3程度であり、光励起発光の発
光強度が1/100程度に低下する。しかし、この結晶
を拡散源を除去した後に再度窒素中で500度から60
0度で熱処理するとp型キャリアの活性化率が上がり、
発光強度が熱処理前の約10倍程度に回復し良好な窓構
造が得られた。このとき二度目の熱処理の時間を短く設
定すれば発光強度は回復するが接合近傍のp型キャリア
濃度は1017cm-3以下にとどまった。そこで、二度目
の熱処理の温度と時間はp型キャリアの活性化率が高く
なり接合近傍のp型キャリア濃度が1017cm-3以上に
なるよう制御した。
In the region where the ZnO film 111 remains, zinc is directly diffused from the ZnO film 111 and the zinc concentration is about 1 × 10 19
A cm- 3 zinc diffusion region 118 is formed. In this region, crystal defects occur due to the high concentration of impurity diffusion, the p-type carrier concentration is about 10 16 cm -3 , and the light emission intensity of photoexcited light emission is reduced to about 1/100. However, after removing the diffusion source, the crystal is again heated in nitrogen at 500 ° C to 60 ° C.
Heat treatment at 0 degrees increases the activation rate of the p-type carrier,
The emission intensity was recovered to about 10 times that before the heat treatment, and a good window structure was obtained. At this time, if the time of the second heat treatment was set short, the light emission intensity was recovered, but the p-type carrier concentration near the junction remained at 10 17 cm −3 or less. Therefore, the temperature and time of the second heat treatment were controlled such that the activation rate of the p-type carrier was increased and the p-type carrier concentration near the junction was 10 17 cm −3 or more.

【0022】GaAsキャップ層107を除去した後、
有機金属気相成長法によりGaAs層113の再成長を
行い、熱化学堆積法によりSiO2膜を堆積する。ホト
リソグラフ技術を用いてSiO2膜を幅約5μmのスト
ライプ状に加工する。このSiO2ストライプをマスク
としてp型クラッド層105の途中までをリッジ状に加
工し、このSiO2ストライプをマスクとしてn型Ga
As電流ブロック層114の選択成長を行った。
After removing the GaAs cap layer 107,
The GaAs layer 113 is regrown by metal organic chemical vapor deposition, and a SiO 2 film is deposited by thermochemical deposition. The SiO 2 film is processed into a stripe having a width of about 5 μm by using a photolithographic technique. Using the SiO 2 stripes as a mask, a part of the p-type cladding layer 105 is processed into a ridge shape, and the SiO 2 stripes are used as a mask to form an n-type Ga.
Selective growth of the As current blocking layer 114 was performed.

【0023】GaAs再成長層113を取り除いた後、
n型GaAs電流ブロック層114およびp型In0.5
Ga0.5P層106上には、p型GaAsからなるコン
タクト層115を介してAu・Zn合金からなるp側電
極116が設けられている。そして、GaAs基板20
1の裏面には、Au・Ge合金からなるn側電極117
が設けられている。このような構造のウエハを長さ約6
00μmにへき開してレ−ザチップとした。へき開の位
置はZnO膜111のストライプを設けた領域となるよ
うにへき開位置の制御を行った。以上の工程により作成
した半導体レーザの窓部および窓以外の部分の断面構造
を図9および図10に示す。
After removing the GaAs regrown layer 113,
n-type GaAs current blocking layer 114 and p-type In 0.5
On the Ga 0.5 P layer 106, a p-side electrode 116 made of an Au—Zn alloy is provided via a contact layer 115 made of p-type GaAs. Then, the GaAs substrate 20
The n-side electrode 117 made of Au.Ge alloy is
Is provided. A wafer having such a structure is about 6 in length.
The laser chip was cleaved at 00 μm. The cleavage position was controlled so that the cleavage position was in the region where the stripes of the ZnO film 111 were provided. FIGS. 9 and 10 show the cross-sectional structure of the window portion and the portion other than the window of the semiconductor laser formed by the above steps.

【0024】この方法によれば、例えば半導体レーザの
駆動電圧相当の2.5Vを半導体レーザ結晶に加えた場
合に窓領域内を流れる電流密度は数十アンペア毎平方セ
ンチメートル程度となり、窓領域外を流れる電流密度よ
り数桁少なくなった。
According to this method, for example, when 2.5 V corresponding to the driving voltage of the semiconductor laser is applied to the semiconductor laser crystal, the current density flowing in the window region becomes about several tens of amperes per square centimeter, and flows outside the window region. Several orders of magnitude lower than the current density.

【0025】本実施例の半導体レーザは波長650n
m、しきい値電流は従来の素子より10%程度低い約5
0mAで室温連続発振し、最大光出力は約200mW
で、光出力80mWにおいて5000時間以上の連続動
作が可能であった。
The semiconductor laser of this embodiment has a wavelength of 650 n.
m, the threshold current is about 5% lower than the conventional device by about 10%.
It oscillates continuously at room temperature at 0mA and the maximum light output is about 200mW
Thus, continuous operation for 5000 hours or more at an optical output of 80 mW was possible.

【0026】<実施例3>本発明第3の実施例の半導体
レーザの構造を図11から図13を用いて説明する。ま
ず、有機金属気相成長法を用いて図11のようなダブル
ヘテロ構造を作製する。101はGaAs基板を示して
おり、このGaAs基板101の面方位は(100)面
である。この基板上にn型In0.5(Ga0.3Al0.7
0.5Pからなる厚さ1.8μm程度のn型クラッド層1
02、アンドープIn0.5(Ga0.7Al0.30.5Pから
なる光ガイド層103で挾持されているIn0.5Ga0.5
P活性層301、p型In0.5(Ga0.3Al0.70.5
からなる厚さ1.5μm程度のp型クラッド層105、
p型In0.5Ga0.5P層106、およびn型GaAsキ
ャップ層107を順次結晶成長した。
<Embodiment 3> The structure of a semiconductor laser according to a third embodiment of the present invention will be described with reference to FIGS. First, a double hetero structure as shown in FIG. 11 is manufactured by using a metal organic chemical vapor deposition method. Reference numeral 101 denotes a GaAs substrate, and the GaAs substrate 101 has a (100) plane orientation. On this substrate, n-type In 0.5 (Ga 0.3 Al 0.7 )
N-type cladding layer 1 made of 0.5 P and having a thickness of about 1.8 μm
02, an undoped In 0.5 (Ga 0.7 Al 0.3) In 0.5 Ga 0.5 that in the optical guide layer 103 is sandwiched consisting 0.5 P
P active layer 301, p-type In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P
A p-type cladding layer 105 having a thickness of about 1.5 μm,
A p-type In 0.5 Ga 0.5 P layer 106 and an n-type GaAs cap layer 107 were sequentially crystal-grown.

【0027】活性層はダブルヘテロ構造のように一定組
成のものでも、多重量子井戸構造のようにエネルギ−的
に変調を受けている構造のものでも用いることが可能で
あるが、一定組成の場合は結晶成長時にInとGaの周
期的な組成ゆらぎ、いわゆる自然超格子を生じるように
形成されていることが必要である。本実施例では自然超
格子が形成される条件で結晶成長したIn0.5Ga0.5
を活性層とした。
The active layer may have a constant composition such as a double heterostructure or a structure having energy modulation such as a multiple quantum well structure. Must be formed so as to produce a periodic composition fluctuation of In and Ga during crystal growth, that is, a so-called natural superlattice. In this embodiment, In 0.5 Ga 0.5 P grown under the condition that a natural superlattice is formed.
Was used as an active layer.

【0028】つぎに、このような半導体積層構造を持っ
たウエハのに厚さ100nmのSiN膜をスパッタ法に
より堆積した。このSiN膜をレーザストライプの方向
と直交する幅30μmから50μmのストライプ状に取り
除き、さらにこのストライプ部分のGaAsも化学エッ
チングにより除去した。この時、GaAsのエッチング
はSiN膜の下にサイドエッチングが約2μm入る時間
とした。次に、スパッタ法によりZnO膜111の堆積
を行った。このようなウエハを摂氏500度から600
度に加熱することによりZnO膜111からの亜鉛拡散
を行った。拡散時間は亜鉛がn型GaAs基板に達しな
いように選んだ。
Next, an SiN film having a thickness of 100 nm was deposited on a wafer having such a semiconductor laminated structure by a sputtering method. This SiN film was removed in the form of a stripe having a width of 30 μm to 50 μm orthogonal to the direction of the laser stripe, and the GaAs in the stripe portion was also removed by chemical etching. At this time, the etching of the GaAs was performed so that the side etching was about 2 μm below the SiN film. Next, the ZnO film 111 was deposited by a sputtering method. Such a wafer is heated from 500 degrees Celsius to 600 degrees Celsius.
By performing the heating, zinc was diffused from the ZnO film 111. The diffusion time was chosen so that zinc did not reach the n-type GaAs substrate.

【0029】ZnO膜111が直接半導体層に付着した
領域ではZnO膜111から直接亜鉛が拡散され亜鉛濃
度が約1×1019cm-3の亜鉛拡散領域118が形成さ
れる。この領域では高濃度の不純物拡散に伴い結晶欠陥
が発生し、p型キャリア濃度は1016cm-3程度であ
り、光励起発光の発光強度が1/100程度に低下す
る。しかし、この結晶を拡散源を除去した後に再度窒素
中で500度から600度で熱処理するとp型キャリア
の活性化率が上がり、発光強度が熱処理前の10倍程度
に回復し良好な窓構造が得られた。このとき二度目の熱
処理の時間を短く設定すれば発光強度は回復するが接合
近傍のp型キャリア濃度は1017cm-3以下にとどまっ
た。そこで、二度目の熱処理の温度と時間はp型キャリ
アの活性化率が高くなり接合近傍のp型キャリア濃度が
1017cm-3以上になるよう制御した。
In a region where the ZnO film 111 is directly adhered to the semiconductor layer, zinc is directly diffused from the ZnO film 111 to form a zinc diffusion region 118 having a zinc concentration of about 1 × 10 19 cm −3 . In this region, crystal defects occur due to the high concentration of impurity diffusion, the p-type carrier concentration is about 10 16 cm -3 , and the light emission intensity of photoexcited light emission is reduced to about 1/100. However, if the crystal is heat-treated again at 500 to 600 degrees in nitrogen after removing the diffusion source, the activation rate of the p-type carrier increases, the emission intensity recovers to about 10 times that before the heat treatment, and a good window structure is obtained. Obtained. At this time, if the time of the second heat treatment was set short, the light emission intensity was recovered, but the p-type carrier concentration near the junction remained at 10 17 cm −3 or less. Therefore, the temperature and time of the second heat treatment were controlled such that the activation rate of the p-type carrier was increased and the p-type carrier concentration near the junction was 10 17 cm −3 or more.

【0030】このようなウエハのSiN膜を取り除き、
さらにn型GaAs層107も取り除いた後、p型Ga
As再成長層113を成長した。さらに、熱化学堆積法
によりSiO2膜を堆積し、ホトリソグラフ技術を用い
てSiO2膜を幅約5μmのストライプ状に加工する。
このSiO2ストライプをマスクとしてp型クラッド層
105の途中までをリッジ状に加工し、このSiO2
トライプをマスクとしてn型In0.5Ga0.5P電流ブロ
ック層302の選択成長を行った。
The SiN film of such a wafer is removed,
Further, after removing the n-type GaAs layer 107, the p-type Ga
As regrown layer 113 was grown. Furthermore, by a thermal chemical deposition method to deposit a SiO 2 film, processing the SiO 2 film into stripes having a width of about 5μm using photolithographic techniques.
This SiO 2 stripe halfway of the p-type cladding layer 105 are processed into a ridge shape as a mask, were selectively grown n-type In 0.5 Ga 0.5 P current blocking layer 302 of the SiO 2 stripe as the mask.

【0031】p型GaAs再成長層113を取り除いた
後、n型In0.5Ga0.5P電流ブロック層302および
p型In0.5Ga0.5P層106上には、p型GaAsか
らなるコンタクト層115を介してAu・Zn合金から
なるp側電極116が設けられている。そして、GaA
s基板101の裏面には、Au・Ge合金からなるn側
電極117が設けられている。このような構造のウエハ
を長さ約600μmにへき開してレ−ザチップとした。
へき開の位置はZnO膜111のストライプを設けた領
域となるようにへき開位置の制御を行った。以上のよう
な工程により図12および図13に示すような断面構造
を有する半導体レーザが作製できる。
After removing the p-type GaAs regrowth layer 113, the n-type In 0.5 Ga 0.5 P current blocking layer 302 and the p-type In 0.5 Ga 0.5 P layer 106 are interposed on the p-type GaAs contact layer 115. A p-side electrode 116 made of an Au—Zn alloy is provided. And GaA
On the back surface of the s substrate 101, an n-side electrode 117 made of an Au.Ge alloy is provided. A wafer having such a structure was cleaved to a length of about 600 μm to form a laser chip.
The cleavage position was controlled so that the cleavage position was in the region where the stripes of the ZnO film 111 were provided. Through the steps described above, a semiconductor laser having a sectional structure as shown in FIGS. 12 and 13 can be manufactured.

【0032】この方法によれば、例えば半導体レーザの
駆動電圧相当の2.5Vを半導体レーザ結晶に加えた場
合に窓領域内を流れる電流密度は数十アンペア毎平方セ
ンチメートル程度となり、窓領域外を流れる電流密度よ
り数桁少なくなった。
According to this method, for example, when 2.5 V corresponding to the drive voltage of the semiconductor laser is applied to the semiconductor laser crystal, the current density flowing in the window region becomes about several tens of amperes per square centimeter, and flows outside the window region. Several orders of magnitude lower than the current density.

【0033】本実施例の半導体レーザは波長680n
m、しきい値電流は従来の素子より10%程度低い約5
0mAで室温連続発振し、最大光出力は約300mW
で、光出力100mWにおいて5000時間以上の連続
動作が可能であった。
The semiconductor laser of this embodiment has a wavelength of 680 nm.
m, the threshold current is about 5% lower than the conventional device by about 10%.
It oscillates continuously at room temperature at 0mA and the maximum light output is about 300mW
Thus, continuous operation for 5000 hours or more at an optical output of 100 mW was possible.

【0034】[0034]

【発明の効果】本発明によれば半導体レーザの作製工程
を増やすこと無しに電流注入時の漏れ電流を低減し、低
動作電流、長寿命化を実現することができる。
According to the present invention, the leakage current at the time of current injection can be reduced without increasing the number of manufacturing steps of a semiconductor laser, and a low operating current and a long life can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体レーザの構造図。FIG. 1 is a structural view of a semiconductor laser of the present invention.

【図2】本発明第1の実施例における半導体レーザの結
晶成長断面図。
FIG. 2 is a cross-sectional view of crystal growth of the semiconductor laser according to the first embodiment of the present invention.

【図3】本発明第1の実施例における窓構造形成工程。FIG. 3 shows a window structure forming step in the first embodiment of the present invention.

【図4】本発明第1の実施例における半導体レーザの窓
領域の断面構造図。
FIG. 4 is a sectional structural view of a window region of the semiconductor laser according to the first embodiment of the present invention.

【図5】本発明第1の実施例における半導体レーザの窓
外領域の断面構造図。
FIG. 5 is a sectional structural view of a region outside a window of the semiconductor laser according to the first embodiment of the present invention.

【図6】窓領域及び窓外領域の電流電圧特性。FIG. 6 shows current-voltage characteristics of a window region and a region outside a window.

【図7】本発明第2の実施例における半導体レーザの結
晶成長断面図。
FIG. 7 is a sectional view of crystal growth of a semiconductor laser according to a second embodiment of the present invention.

【図8】本発明第2の実施例における窓構造形成工程。FIG. 8 shows a window structure forming step in the second embodiment of the present invention.

【図9】本発明第2の実施例における半導体レーザの窓
領域の断面構造図。
FIG. 9 is a sectional structural view of a window region of a semiconductor laser according to a second embodiment of the present invention.

【図10】本発明第2の実施例における半導体レーザの
窓外領域の断面構造図。
FIG. 10 is a sectional structural view of a region outside a window of a semiconductor laser according to a second embodiment of the present invention.

【図11】本発明第3の実施例における半導体レーザの
結晶成長断面図。
FIG. 11 is a sectional view of crystal growth of a semiconductor laser according to a third embodiment of the present invention.

【図12】本発明第3の実施例における半導体レーザの
窓領域の断面構造図。
FIG. 12 is a sectional structural view of a window region of a semiconductor laser according to a third embodiment of the present invention.

【図13】本発明第3の実施例における半導体レーザの
窓外領域の断面構造図。
FIG. 13 is a sectional structural view of a region outside a window of a semiconductor laser according to a third embodiment of the present invention.

【図14】従来の窓構造半導体レーザの断面図。FIG. 14 is a sectional view of a conventional semiconductor laser having a window structure.

【符号の説明】[Explanation of symbols]

101…GaAs基板、102…n型In0.5(Ga0.3
Al0.70.5Pクラッド層、103…アンドープIn
0.5(Ga0.7Al0.30.5P光ガイド層、104…多重
量子井戸活性層、105…p型In0.5(Ga0.3Al
0.70.5Pクラッド層、106…p型In0.5Ga0.5
層、107…n型GaAsキャップ層、108…In
0.51Ga0.49Pウエル層、109…In0.5(Ga0.7
0.30.5Pバリア層、110…n型GaAsキャップ
層を溝状に一部除去した部分、111…ZnO膜、11
2…SiO2膜、113…GaAs再成長層、114…
n型GaAs電流ブロック層、115…p型GaAsコ
ンタクト層、116…p型電極、117…n型電極、1
18…亜鉛を拡散した領域、201…GaAs基板、2
02…多重量子井戸活性層、203…In0.55Ga0.45
Pウエル層、204…In 0.45(Ga0.5Al0.50.55
Pバリア層、301…In0.5Ga0.5P活性層、302
…n型In0.5Ga0.5P電流ブロック層。
 101: GaAs substrate, 102: n-type In0.5(Ga0.3
Al0.7)0.5P cladding layer, 103 ... undoped In
0.5(Ga0.7Al0.3)0.5P light guide layer, 104 ... multiple
Quantum well active layer, 105... P-type In0.5(Ga0.3Al
0.7)0.5P cladding layer, 106 ... p-type In0.5Ga0.5P
Layers 107 ... n-type GaAs cap layer 108 ... In
0.51Ga0.49P well layer, 109 ... In0.5(Ga0.7A
l0.3)0.5P barrier layer, 110 ... n-type GaAs cap
A part where the layer is partially removed in a groove shape, 111... ZnO film, 11
2 ... SiOTwoFilm, 113 ... GaAs regrown layer, 114 ...
n-type GaAs current block layer, 115 ... p-type GaAs core
Contact layer, 116 ... p-type electrode, 117 ... n-type electrode, 1
18 ... Zinc diffused region, 201 ... GaAs substrate, 2
02: multiple quantum well active layer, 203: In0.55Ga0.45
P well layer, 204 ... In 0.45(Ga0.5Al0.5)0.55
P barrier layer, 301 ... In0.5Ga0.5P active layer, 302
... n-type In0.5Ga0.5P current block layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも周期的変動を持つ半導体層より
なる活性層と該活性層を挟んで設けた活性層よりも広い
禁制帯幅で互いに異なる導電型を有する半導体層よりな
る二種類のクラッド層を有し、上記層構造の最上層及び
最下層には電極を有し、層構造に垂直に設けた結晶面を
反射鏡として共振器を構成し、少なくとも一方の反射鏡
の近傍において不純物を導入することにより活性層の周
期的変動を平滑化して活性層の禁制帯幅を他の領域の活
性層の禁制帯幅よりも大きくした窓構造を有する半導体
レーザで、上記禁制帯幅を大きくした窓構造領域の半導
体レーザ動作時における電流密度は窓領域以外の活性層
における電流密度の五十分の一以下となるように不純物
濃度を制御することを特徴とする半導体レーザ素子。
An active layer comprising at least a semiconductor layer having a periodic fluctuation and two types of cladding layers comprising semiconductor layers having a wider bandgap and different conductivity types than an active layer provided with the active layer interposed therebetween. Having electrodes on the uppermost layer and the lowermost layer of the layer structure, forming a resonator using a crystal plane provided perpendicular to the layer structure as a reflecting mirror, and introducing an impurity in the vicinity of at least one of the reflecting mirrors A semiconductor laser having a window structure in which the periodic fluctuation of the active layer is smoothed to make the forbidden band width of the active layer larger than the forbidden band width of the active layer in other regions. A semiconductor laser device wherein an impurity concentration is controlled so that a current density in a structure region during operation of a semiconductor laser is not more than one fifth of a current density in an active layer other than a window region.
【請求項2】上記不純物が亜鉛であることを特徴とする
請求項1記載の半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein said impurity is zinc.
【請求項3】上記半導体層は、ガリウム、インジウム、
燐の少なくとも一つを構成要素として含むことを特徴と
する請求項1記載の半導体レーザ素子。
3. The semiconductor layer according to claim 1, wherein said semiconductor layer is gallium, indium,
2. The semiconductor laser device according to claim 1, comprising at least one of phosphorus as a component.
JP26545297A 1997-09-30 1997-09-30 Semiconductor laser element Pending JPH11112078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26545297A JPH11112078A (en) 1997-09-30 1997-09-30 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26545297A JPH11112078A (en) 1997-09-30 1997-09-30 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH11112078A true JPH11112078A (en) 1999-04-23

Family

ID=17417366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26545297A Pending JPH11112078A (en) 1997-09-30 1997-09-30 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH11112078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500710A (en) * 2004-05-28 2008-01-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for forming regions of reduced conductivity in semiconductor layers and optoelectronic semiconductor devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500710A (en) * 2004-05-28 2008-01-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for forming regions of reduced conductivity in semiconductor layers and optoelectronic semiconductor devices
US8293553B2 (en) 2004-05-28 2012-10-23 Osram Opto Semiconductors Gmbh Method for producing an area having reduced electrical conductivity within a semiconductor layer and optoelectronic semiconductor element

Similar Documents

Publication Publication Date Title
JPH0656906B2 (en) Semiconductor laser device
JPH0274088A (en) Semiconductor laser device
JPH09283839A (en) Semiconductor laser device and manufacturing method thereof
JPH07226566A (en) Quantum well semiconductor laser and its manufacture
JP2004146527A (en) Semiconductor laser element and method of manufacturing the same
JP3630395B2 (en) Semiconductor laser device and manufacturing method thereof
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JP3763459B2 (en) Semiconductor laser device and manufacturing method thereof
JP3763708B2 (en) Manufacturing method of semiconductor laser
JP3501676B2 (en) Method for manufacturing semiconductor laser device
JPH04255286A (en) Semiconductor laser device
JP2001077465A (en) Semiconductor laser and manufacture thereof
JPH11112078A (en) Semiconductor laser element
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPH0846283A (en) Manufacture of semiconductor laser
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JP2003198059A (en) Semiconductor laser element and method of manufacturing the same
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP3196831B2 (en) Method for manufacturing semiconductor laser device
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH05167186A (en) Manufacture of semiconductor laser element
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419