JPH11111724A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11111724A
JPH11111724A JP9265720A JP26572097A JPH11111724A JP H11111724 A JPH11111724 A JP H11111724A JP 9265720 A JP9265720 A JP 9265720A JP 26572097 A JP26572097 A JP 26572097A JP H11111724 A JPH11111724 A JP H11111724A
Authority
JP
Japan
Prior art keywords
temperature
rate
oxide film
semiconductor device
lowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9265720A
Other languages
Japanese (ja)
Other versions
JP4149014B2 (en
Inventor
Takashi Abe
隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26572097A priority Critical patent/JP4149014B2/en
Publication of JPH11111724A publication Critical patent/JPH11111724A/en
Application granted granted Critical
Publication of JP4149014B2 publication Critical patent/JP4149014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method through which the oxygen concentration in the surface layer section of a semiconductor substrate can be reduced by effectively suppressing an oxide film effect such that oxygen atoms are scattered inwards from an oxide film. SOLUTION: When the temperature of a semiconductor substrate on which an oxide film has been formed is lowered from the temperature of a heat- treating process after the substrate has been heat-treated at a temperature >=1,000 deg.C in a heat-treating process, the temperature is lowered at a first temperature-lowering rate within the temperature range which is higher than about 1,000 deg.C and a second temperature-lowering rate, which is smaller than the first rate within the temperature range from about 900 deg.C to about 1,000 deg.C. Then the temperature is lowered at a third temperature-lowering rate which is larger than the second rate within the temperature range lower than about 900 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化膜が形成され
た半導体基板を熱処理する熱処理工程を有する半導体装
置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a heat treatment step of heat treating a semiconductor substrate having an oxide film formed thereon.

【0002】[0002]

【従来の技術】半導体基板には、もともと種々の不純物
やそれらに起因する微小な結晶欠陥が内包されている。
結晶欠陥には、例えば、不純物としての酸素に起因する
微小欠陥として酸素析出核がある。不純物酸素の濃度が
高くなると、半導体装置の製造時の熱課程により不純物
の酸素が酸素析出核に凝集して酸素析出物に成長するこ
とがある。この酸素析出物が半導体基板の表層部に存在
すると素子特性が劣化する。特に、半導体デバイスの集
積度の向上に伴い、半導体基板中の酸素析出物の存在が
大きな問題となっている。
2. Description of the Related Art A semiconductor substrate originally contains various impurities and minute crystal defects caused by the impurities.
The crystal defects include, for example, oxygen precipitate nuclei as minute defects caused by oxygen as an impurity. When the concentration of impurity oxygen increases, oxygen of impurities may aggregate into oxygen precipitation nuclei and grow into oxygen precipitates due to a heat process at the time of manufacturing the semiconductor device. If this oxygen precipitate exists in the surface layer of the semiconductor substrate, the device characteristics deteriorate. In particular, with the increase in the degree of integration of semiconductor devices, the presence of oxygen precipitates in a semiconductor substrate has become a major problem.

【0003】このため、半導体基板の表層部における酸
素濃度を低減することが重要な課題となり、酸素外方拡
散のような半導体基板の酸素濃度を低減する技術の重要
性が高くなってきている。
For this reason, reducing the oxygen concentration in the surface layer of the semiconductor substrate has become an important issue, and techniques for reducing the oxygen concentration in the semiconductor substrate, such as oxygen outward diffusion, have become increasingly important.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、酸化膜
が形成された半導体基板の場合、酸素外方拡散のために
熱処理を行っても、ある値以下に酸素濃度を下げること
ができないという問題があった。本願発明者等は、熱処
理時に酸化膜を構成している酸素原子が半導体基板内に
内方拡散する酸化膜効果がその原因であることを見いだ
した(阿部他、第43回応用物理学会予稿集、28a−
X−6(1996))。しかしながら、酸化膜効果のメ
カニズムは明らかでなく、酸素原子の内方拡散を有効に
阻止できる方策は明らかではなかった。
However, in the case of a semiconductor substrate on which an oxide film is formed, there is a problem that even if a heat treatment is performed for oxygen outward diffusion, the oxygen concentration cannot be reduced below a certain value. Was. The present inventors have found that the cause is an oxide film effect in which oxygen atoms constituting the oxide film diffuse inward into the semiconductor substrate during the heat treatment (Abe et al., Proceedings of the 43rd JSAP). , 28a-
X-6 (1996)). However, the mechanism of the oxide film effect has not been clarified, and no measures have been clarified to effectively prevent inward diffusion of oxygen atoms.

【0005】本発明の目的は、酸化膜から酸素原子が内
方拡散する酸化膜効果を有効に抑制して、半導体基板の
表層部における酸素濃度を低減することができる半導体
装置の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device capable of effectively suppressing an oxide film effect in which oxygen atoms diffuse inward from an oxide film and reducing the oxygen concentration in a surface layer portion of a semiconductor substrate. Is to do.

【0006】[0006]

【課題を解決するための手段】上記目的は、酸化膜が形
成された半導体基板を1000℃以上の温度で熱処理す
る熱処理工程と、前記熱処理工程の温度から降温する降
温工程とを有する半導体装置の製造方法において、前記
降温工程は、約1000℃以上の範囲では、第1の降温
レートで降温し、約1000℃以下の範囲では、第1の
降温レートよりも小さい第2の降温レートで降温するこ
とを特徴とする半導体装置の製造方法によって達成され
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a heat treatment step of heat-treating a semiconductor substrate on which an oxide film is formed at a temperature of 1000 ° C. or more, and a temperature lowering step of lowering the temperature from the heat treatment step. In the manufacturing method, in the temperature decreasing step, the temperature is decreased at a first temperature decreasing rate in a range of about 1000 ° C. or more, and the temperature is decreased at a second temperature decreasing rate smaller than the first temperature decreasing rate in a range of about 1000 ° C. or less. The present invention is attained by a method of manufacturing a semiconductor device.

【0007】上述した半導体装置の製造方法において、
前記降温工程は、約900℃以下の範囲では、前記第2
の降温レートよりも大きい第3の降温レートで降温する
ことが望ましい。上記目的は、酸化膜が形成された半導
体基板を約1000℃以上の温度で熱処理する熱処理工
程と、前記熱処理工程の温度から降温する降温工程とを
有する半導体装置の製造方法において、前記降温工程
は、約1000℃以上の範囲では、前記降温工程の平均
降温レートよりも大きな降温レートで降温し、約900
℃以上約1000℃以下の範囲では、前記平均降温レー
トよりも小さな降温レートで降温することを特徴とする
半導体装置の製造方法によって達成される。
In the method of manufacturing a semiconductor device described above,
In the temperature lowering step, at a temperature of about 900 ° C. or less, the second
It is desirable to lower the temperature at a third temperature lowering rate that is higher than the temperature lowering rate. The object is a method of manufacturing a semiconductor device, comprising: a heat treatment step of heat-treating a semiconductor substrate on which an oxide film is formed at a temperature of about 1000 ° C. or more; and a temperature-falling step of decreasing the temperature from the temperature of the heat treatment step. , In a range of about 1000 ° C. or more, the temperature is lowered at a temperature lowering rate larger than the average
In a temperature range of not less than about 1000 ° C. and not more than about 1000 ° C., the temperature is lowered at a temperature lowering rate smaller than the average temperature lowering rate.

【0008】上記目的は、酸化膜が形成された半導体基
板を1000℃以上の温度で熱処理する熱処理工程と、
前記熱処理工程の温度から降温する降温工程とを有する
半導体装置の製造方法において、前記降温工程は、約1
000℃以上の範囲では、約4℃/分以上の降温レート
で降温し、約900℃以上約1000℃以下の範囲で
は、約2℃/分以下の降温レートで降温し、約900℃
以下の範囲では、約4℃/分以上の降温レートで降温す
ることを特徴とする半導体装置の製造方法によって達成
される。
[0008] The above object is to provide a heat treatment step of heat-treating a semiconductor substrate having an oxide film formed thereon at a temperature of 1000 ° C or higher.
A method of manufacturing a semiconductor device having a temperature lowering step of lowering the temperature from the temperature of the heat treatment step.
In the range of 000 ° C. or more, the temperature is lowered at a rate of about 4 ° C./min or more, and in the range of about 900 ° C. or more and about 1000 ° C. or less, the temperature is lowered at a rate of about 2 ° C./min or less.
The following range is achieved by a method for manufacturing a semiconductor device, characterized in that the temperature is lowered at a rate of about 4 ° C./min or more.

【0009】上述した半導体装置の製造方法において、
前記降温工程は、約1100℃以上の範囲では、約10
℃/分以上の降温レートで降温することが望ましい。上
述した半導体装置の製造方法において、前記降温工程
は、約1050℃以上約1100℃以下の範囲では、約
5℃/分以上の降温レートで降温することが望ましい。
In the above-described method of manufacturing a semiconductor device,
The temperature lowering step is performed at a temperature of about 1100 ° C. or more for about 10 ° C.
It is desirable to lower the temperature at a rate of not less than ° C./min. In the above-described method for manufacturing a semiconductor device, it is preferable that in the temperature lowering step, the temperature is lowered at a rate of about 5 ° C./min or more in a range from about 1050 ° C. to about 1100 ° C.

【0010】上述した半導体装置の製造方法において、
前記降温工程は、約850℃以下の範囲では、約5℃/
分以上の降温レートで降温することが望ましい。
In the method of manufacturing a semiconductor device described above,
The temperature lowering step is performed at a temperature of about 5 ° C. /
It is desirable to lower the temperature at a rate of at least one minute.

【0011】[0011]

【発明の実施の形態】本発明の一実施形態による半導体
装置の製造方法について図面を用いて説明する。本願発
明者は、酸化膜を形成したCZ(Czochralsk
i)結晶での酸素外方拡散のメカニズムを調べるため、
酸素濃度がほとんどゼロであるFZ(Floating
Zone)結晶に酸化膜を形成した試料と、酸化膜が
形成されていないCZ結晶の試料とを用意した。これら
試料を不活性ガス中において熱処理した。また、熱処理
温度での状態を保存するため、通常(比較例)の降温処
理をせず、急冷を施した試料も作成した。そして、試料
内部の酸素量を低温赤外吸収法(Low−temper
ature infrared absorption
method)で、また酸素濃度分布を二次イオン質
量分析計(SIMS:Secondary Ion M
ass Spectrometer)を用いて測定し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor device according to one embodiment of the present invention will be described with reference to the drawings. The present inventor has proposed a CZ (Czochralsk) having an oxide film formed thereon.
i) To investigate the mechanism of oxygen outward diffusion in the crystal,
FZ (Floating) with almost zero oxygen concentration
A sample in which an oxide film was formed on a Zone) crystal and a sample of a CZ crystal in which an oxide film was not formed were prepared. These samples were heat-treated in an inert gas. In addition, in order to preserve the state at the heat treatment temperature, a sample that was subjected to rapid cooling without performing a normal (comparative) temperature lowering treatment was also prepared. Then, the amount of oxygen inside the sample is measured by a low-temperature infrared absorption method (Low-temper).
attuned absorption
method, and the oxygen concentration distribution was measured using a secondary ion mass spectrometer (SIMS: Secondary Ion M).
was measured using an associometer.

【0012】図1に、低温赤外吸収法による試料内部の
酸素量の測定結果を示す。この測定結果から、FZ結晶
に酸化膜を形成した試料では、1000℃付近では結晶
内に酸素の進入は観測されないが、これより熱処理温度
を上げていくと、それにつれて結晶内に侵入した酸素量
が多くなることが明らかになった。図2に、SIMSに
よる試料内部の酸素濃度分布の測定結果を示す。この測
定結果から、FZ結晶に酸化膜を形成した試料では、熱
処理温度が高いほど結晶表層での酸素濃度が高くなるこ
とがわかった。さらに、比較例のシーケンスで降温した
試料と急冷した試料では表層の酸素濃度プロファイルに
大きな違いが見られた。また、酸化膜を形成していない
CZ結晶では、熱処理温度が高いほど結晶表層での酸素
濃度が低くなることわかった。
FIG. 1 shows the measurement results of the oxygen content in the sample by the low-temperature infrared absorption method. From this measurement result, in the sample in which the oxide film was formed on the FZ crystal, the intrusion of oxygen into the crystal was not observed at around 1000 ° C., but as the heat treatment temperature was raised further, the amount of oxygen that entered the crystal as the heat treatment temperature increased It became clear that there would be more. FIG. 2 shows a measurement result of the oxygen concentration distribution inside the sample by SIMS. From this measurement result, it was found that in the sample in which the oxide film was formed on the FZ crystal, the higher the heat treatment temperature, the higher the oxygen concentration in the crystal surface layer. Furthermore, a large difference was observed in the oxygen concentration profile of the surface layer between the sample cooled in the sequence of the comparative example and the sample cooled rapidly. In the case of a CZ crystal having no oxide film formed thereon, it was found that the higher the heat treatment temperature, the lower the oxygen concentration in the crystal surface layer.

【0013】酸化膜を形成したFZ結晶を熱処理する
と、図3(a)に示すように、熱処理当初は酸化膜から
FZ結晶に酸素原子が内方拡散する(フラックスfi)
が、一方、FZ結晶内に内方拡散された酸素原子が再び
外方拡散する(フラックスfo)現象も同時に起こると
考えられる。また、酸化膜を形成していないCZ結晶を
熱処理すると、図3(b)に示すように、酸化膜からの
内方拡散はないので、CZ結晶内部から酸素原子が外方
拡散する(フラックスF)現象のみが起こると考えられ
る。
When the FZ crystal on which the oxide film is formed is heat-treated, oxygen atoms are diffused inward from the oxide film into the FZ crystal at the beginning of the heat treatment (flux fi), as shown in FIG.
On the other hand, it is considered that a phenomenon in which oxygen atoms diffused inward into the FZ crystal diffuse outward again (flux fo) occurs at the same time. When a CZ crystal on which an oxide film is not formed is heat-treated, oxygen atoms do not diffuse inward from the oxide film as shown in FIG. It is thought that only the phenomenon occurs.

【0014】したがって、酸化膜を形成したCZ結晶の
場合には、図3(c)に示すように、図3(a)の現象
と図3(b)の現象が複合して起きていると考えられ、
フラックスfiの内方拡散とフラックスfo+Fの外方
拡散が同時に起こっていると考えられる。また、同じ外
方拡散であるから、図3(a)の場合も図3(b)の場
合も、フラックスfoとフラックスFの絶対値は内部の
酸素濃度に依存して異なるものの、同様の温度特性であ
ると考えられる。
Therefore, in the case of a CZ crystal on which an oxide film is formed, as shown in FIG. 3C, the phenomenon of FIG. 3A and the phenomenon of FIG. Thought,
It is considered that the inward diffusion of the flux fi and the outward diffusion of the flux fo + F occur simultaneously. 3A and 3B, the absolute values of the flux fo and the flux F are different depending on the internal oxygen concentration, but the same temperature is used. It is considered characteristic.

【0015】図3に示すメカニズムを前提として、上述
した実験結果は、(1)約1050℃以上の温度範囲で
は熱処理温度が高くなると結晶内に侵入する酸素量が多
くなる、(2)1000℃付近では結晶内に酸素はほと
んど侵入しない、ということを示しており、これら実験
結果から次のような結論1乃至3に至った。 (結論1)約1050℃以上の温度範囲ではフラックス
fiがフラックスfoよりも大きく、その傾向は温度が
高くなるにしたがって顕著となる。
On the premise of the mechanism shown in FIG. 3, the above experimental results show that (1) in a temperature range of about 1050 ° C. or higher, the amount of oxygen penetrating into the crystal increases as the heat treatment temperature increases, and (2) 1000 ° C. This indicates that oxygen hardly penetrates into the crystal in the vicinity, and the following conclusions 1 to 3 were obtained from these experimental results. (Conclusion 1) In a temperature range of about 1050 ° C. or more, the flux fi is larger than the flux fo, and the tendency becomes more remarkable as the temperature increases.

【0016】(結論2)約1000℃〜1050℃の間
にフラックスfiとフラックスfoの等しくなる温度T
1が存在する。また、拡散理論より約800℃〜850
℃での酸素の拡散係数は1000℃のときのそれと比べ
て1/100程度である。 (結論3)約800℃〜850℃の間に酸素の拡散を無
視できる温度T2が存在する。
(Conclusion 2) The temperature T at which the flux fi and the flux fo become equal between about 1000 ° C. and 1050 ° C.
There is one. In addition, about 800 ° C. to 850
The diffusion coefficient of oxygen at 100 ° C. is about 1/100 of that at 1000 ° C. (Conclusion 3) There is a temperature T2 where the diffusion of oxygen can be ignored between about 800 ° C and 850 ° C.

【0017】さらに、温度T1以下ではフラックスfo
がフラックスfiよりも大きくなること、つまり、フラ
ックスの反転が起きていることが、図2のSIMSの結
果からわかる。FZ結晶に熱処理を施した後急冷した試
料と、急冷せず比較例のシーケンスrで降温している試
料とでは、酸素濃度プロファイルが明らかに異なる。急
冷した試料では酸化膜/シリコン界面に向かって酸素濃
度が単調増加しているのに対して、急冷をしなかった試
料では表層7μmあたりに極地をもち、そこから界面に
向かって減少していく。このことは降温中に外方拡散で
酸素がFZ結晶から出ていくことを意味している。
Further, at the temperature T1 or lower, the flux fo
Is larger than the flux fi, that is, the inversion of the flux occurs from the SIMS results in FIG. The oxygen concentration profile is clearly different between a sample that has been quenched after heat-treating the FZ crystal and a sample that has not been quenched and has been cooled down in sequence r of the comparative example. The oxygen concentration in the quenched sample monotonically increases toward the oxide film / silicon interface, whereas the non-quenched sample has a polar region around 7 μm in the surface layer and then decreases toward the interface. . This means that oxygen is emitted from the FZ crystal by outward diffusion during the temperature decrease.

【0018】問題は、降温中のどの温度でその現象が起
こっているかであるが、それは温度T1と温度T2の間
である考えられる。もし、温度T1と温度T2の間でも
フラックスfiがフラックスfoよりも大きいとするな
ら、温度T2まで降温していく課程で常に酸化膜からF
Z結晶中に酸素が外方拡散し続けて、FZ結晶内の酸素
の侵入量は増加し続けるはずである。さらに、温度T2
以下では酸素がほとんど拡散しないので、FZ結晶から
酸素が外方拡散することはなく、表層で酸素濃度が減少
するはずがない。つまり、温度T1と温度T2の間で酸
素が外方拡散していると考えなければ実験結果と矛盾を
生じてしまうのである。このような考察から次の結論4
に至った。
The problem is at which temperature the phenomenon occurs during the cooling, which can be between temperature T1 and temperature T2. If the flux fi is higher than the flux fo even between the temperature T1 and the temperature T2, the temperature of the oxide film is constantly reduced from the oxide film to the temperature T2.
As oxygen continues to diffuse outwards into the Z crystal, the penetration of oxygen into the FZ crystal should continue to increase. Further, the temperature T2
Since oxygen hardly diffuses below, oxygen does not diffuse outward from the FZ crystal, and the oxygen concentration in the surface layer cannot be reduced. That is, unless it is considered that oxygen is diffused outward between the temperature T1 and the temperature T2, a contradiction occurs with the experimental result. From such considerations, the following conclusion 4
Reached.

【0019】(結論4)温度T1以下ではフラックスf
oがフラックスfiよりも大きくなる。このことから、
図4に示すように、内方拡散のフラックスfiと外方拡
散のフラックスfoが反転する温度T1は、おおよそ1
000℃から1050℃の間にあり、酸素原子の拡散を
無視できる温度T2は、おおよそ800℃から850℃
の間にあるということがわかった。
(Conclusion 4) When the temperature is lower than T1, the flux f
o becomes larger than the flux fi. From this,
As shown in FIG. 4, the temperature T1 at which the inward diffusion flux fi and the outward diffusion flux fo are inverted is approximately 1
The temperature T2 between 000 ° C. and 1050 ° C. and at which the diffusion of oxygen atoms can be ignored is approximately 800 ° C. to 850 ° C.
I knew it was between.

【0020】したがって、本実施形態の降温工程では、
例えば、図5に示すように、1000℃以上の範囲では
従来よりも降温レートを大きくし(例えば、約4℃/分
以上)、900℃以上1000℃以下の範囲では従来よ
りも降温レートを小さくし(例えば、約2℃/分以
下)、900℃以下の範囲では全降温時間を短く終わら
せるために降温レートを従来よりも大きくする(例え
ば、約4℃/分以上)。
Therefore, in the temperature decreasing step of this embodiment,
For example, as shown in FIG. 5, in the range of 1000 ° C. or higher, the temperature lowering rate is set higher than the conventional one (for example, about 4 ° C./min or more), and in the range of 900 ° C. or higher and 1000 ° C. or lower, the temperature lowering rate is lower than the conventional one. In the range of 900 ° C. or less, the temperature lowering rate is set higher than in the past (for example, about 4 ° C./min or more) in order to shorten the total cooling time.

【0021】更に、1000℃以上の範囲においても、
温度が高くなるほど降温レートを大きくすることが望ま
しい。例えば、図5に示すように、1050℃以上の範
囲では降温レートを更に大きくし(例えば、約5℃/分
以上)、1100℃以上の範囲では降温レートを更に大
きくする(例えば、約10℃/分以上)ことが望まし
い。
Further, even in the range of 1000 ° C. or more,
It is desirable to increase the cooling rate as the temperature increases. For example, as shown in FIG. 5, the temperature lowering rate is further increased in the range of 1050 ° C. or more (for example, about 5 ° C./min or more), and the temperature decreasing rate is further increased in the range of 1100 ° C. or more (for example, about 10 ° C.). / Min).

【0022】また、900℃以下の範囲においても、温
度が低くなるほど降温レートを大きくすることが望まし
い。例えば、図5に示すように、850℃以下の範囲で
は降温レートを更に大きくする(例えば、約5℃/分以
上)ことが望ましい。このように、本実施形態によれ
ば、約1000℃以上の範囲では降温レートを通常より
も大きくして内方拡散が多い降温時間を短くし、約10
00℃以下の範囲では降温レートを通常よりも小さくし
て外方拡散が多くなる降温時間を長くなるようにしたの
で、酸化膜から酸素原子が内方拡散する酸化膜効果を有
効に抑制して、半導体基板の表層部における酸素濃度を
低減することができる。
Further, even in the range of 900 ° C. or less, it is desirable to increase the temperature decreasing rate as the temperature decreases. For example, as shown in FIG. 5, it is desirable to further increase the temperature lowering rate (for example, about 5 ° C./min or more) in the range of 850 ° C. or less. As described above, according to the present embodiment, in the range of about 1000 ° C. or higher, the temperature lowering rate is set higher than usual, and the temperature lowering time in which inward diffusion is large is shortened.
In the range of 00 ° C. or lower, the temperature lowering rate is set lower than usual to increase the temperature lowering time during which outward diffusion increases, so that the oxide film effect of oxygen atoms diffusing inward from the oxide film is effectively suppressed. In addition, the oxygen concentration in the surface portion of the semiconductor substrate can be reduced.

【0023】本発明は上記実施形態に限らず種々の変形
が可能である。例えば、上記実施形態では、アルゴン雰
囲気での外方拡散熱処理の降温過程にについて説明した
が、他の熱処理の降温過程でもよい。また、上記実施形
態では、シリコン基板の外方拡散熱処理について説明し
たが、他の半導体基板の熱処理でもよい。
The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the temperature decreasing process of the outward diffusion heat treatment in an argon atmosphere has been described, but the temperature decreasing process of another heat treatment may be used. Further, in the above embodiment, the outward diffusion heat treatment of the silicon substrate has been described, but the heat treatment of another semiconductor substrate may be performed.

【0024】[0024]

【実施例】約300nm厚の酸化膜を形成したFZ結晶
のシリコン基板をアルゴン雰囲気中で1150℃、18
時間、熱処理し、その後、図5の実施例の降温シーケン
スにしたがって降温した。すなわち、1150℃以下1
100℃以上の範囲では10℃/分の降温レートで、1
100℃以下1050℃以上の範囲では5℃/分の降温
レートで、1050℃以下1000℃以上の範囲では4
℃/分の降温レートで、1000℃以下900℃以上の
範囲では2℃/分の降温レートで、900℃以下850
℃以上の範囲では4℃/分の降温レートで、850℃以
下750℃以上の範囲では5℃/分の降温レートで、1
150℃から750℃まで110分をかけて降温した。
EXAMPLE An FZ crystal silicon substrate on which an oxide film having a thickness of about 300 nm was formed was heated at 1150.degree.
Heat treatment was performed for a time, and then the temperature was lowered according to the temperature lowering sequence of the embodiment of FIG. That is, 1150 ° C or less 1
In the range of 100 ° C or higher, the temperature is reduced at a rate of 10 ° C / min.
In the range of 100 ° C or lower and 1050 ° C or higher, the cooling rate is 5 ° C / min.
In the range of 1000 ° C. or less and 900 ° C. or more, at a rate of 2 ° C./min and 900 ° C. or less, 850 ° C./min.
1 ° C. or more at a rate of 4 ° C./min, 850 ° C. or less and 750 ° C. or more at a rate of 5 ° C./min.
The temperature was lowered from 150 ° C. to 750 ° C. over 110 minutes.

【0025】このような降温シーケンスで降温したFZ
結晶のシリコン基板表層の酸素濃度をSIMSにより測
定した。測定結果を図6に示す。シリコン基板表面、す
なわち酸化膜とシリコン基板の界面から約7μmの位置
での酸素濃度は、1.4×1017[atoms/c
3]であった。比較例として、約300nm厚の酸化
膜を形成したFZ結晶のシリコン基板をアルゴン雰囲気
中で1150℃、18時間、熱処理し、その後、図5の
比較例の降温シーケンスにしたがって降温した。すなわ
ち、1150℃から750℃まで同じ110分をかけ、
平均した降温レートで降温した。降温レートは約3.7
℃/分である。
The FZ whose temperature has been decreased by such a temperature decreasing sequence
The oxygen concentration of the crystal silicon substrate surface layer was measured by SIMS. FIG. 6 shows the measurement results. The oxygen concentration at the surface of the silicon substrate, that is, about 7 μm from the interface between the oxide film and the silicon substrate is 1.4 × 10 17 [atoms / c].
m 3 ]. As a comparative example, an FZ crystal silicon substrate on which an oxide film having a thickness of about 300 nm was formed was heat-treated at 1150 ° C. for 18 hours in an argon atmosphere, and then cooled according to a temperature decreasing sequence of the comparative example of FIG. That is, the same 110 minutes are applied from 1150 ° C to 750 ° C,
The temperature was lowered at the average rate. The cooling rate is about 3.7
° C / min.

【0026】このような降温シーケンスで降温したFZ
結晶のシリコン基板表層の酸素濃度をSIMSにより測
定した。測定結果を図6に示す。シリコン基板表面、す
なわち酸化膜とシリコン基板の界面から約7μmの位置
での酸素濃度は、1.7×1017[atoms/c
3]であった。図6から明らかなように、実施例では
比較例に比べて20%以上酸素濃度を低減することがで
きた。
The FZ whose temperature has been decreased by such a temperature decreasing sequence
The oxygen concentration of the crystal silicon substrate surface layer was measured by SIMS. FIG. 6 shows the measurement results. The oxygen concentration at the surface of the silicon substrate, that is, about 7 μm from the interface between the oxide film and the silicon substrate is 1.7 × 10 17 [atoms / c].
m 3 ]. As is clear from FIG. 6, the oxygen concentration was reduced by 20% or more in the example in comparison with the comparative example.

【0027】[0027]

【発明の効果】以上の通り、本発明によれば、約100
0℃以上の範囲では、第1の降温レートで降温し、約1
000℃以下の範囲では、第1の降温レートよりも小さ
い第2の降温レートで降温したので、内方拡散が多い降
温時間を短くし、外方拡散が多くなる降温時間を長くし
て、酸化膜から酸素原子が内方拡散する酸化膜効果を有
効に抑制して、半導体基板の表層部における酸素濃度を
低減することができる。
As described above, according to the present invention, about 100
In the range of 0 ° C. or more, the temperature is decreased at the first temperature decreasing rate,
In the range below 000 ° C., the temperature was lowered at the second temperature lowering rate smaller than the first temperature lowering rate. The oxide film effect of inward diffusion of oxygen atoms from the film can be effectively suppressed, and the oxygen concentration in the surface portion of the semiconductor substrate can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】低温赤外吸収法によるFZ結晶への酸素内方拡
散量を示すグラフである。
FIG. 1 is a graph showing the amount of oxygen diffused into an FZ crystal by a low-temperature infrared absorption method.

【図2】急冷と比較例の降温におけるFZ結晶内酸素内
方拡散プロファイルを示すグラフである。
FIG. 2 is a graph showing oxygen in-diffusion profiles in FZ crystal at the time of rapid cooling and the temperature drop of a comparative example.

【図3】酸化膜を形成したCZ結晶での酸素外方拡散の
メカニズムの説明図である。
FIG. 3 is an explanatory diagram of a mechanism of oxygen outward diffusion in a CZ crystal on which an oxide film is formed.

【図4】酸化膜を形成したFZ結晶における内方拡散の
フラックスfiと外方拡散のフラックスfoの関係の仮
説を示すグラフである。
FIG. 4 is a graph showing a hypothesis of a relationship between an inward diffusion flux fi and an outward diffusion flux fo in an FZ crystal on which an oxide film is formed.

【図5】実施例と比較例の降温シーケンスを示すグラフ
である。
FIG. 5 is a graph showing a temperature drop sequence of an example and a comparative example.

【図6】実施例と比較例のシリコン基板表層の酸素濃度
を示すグラフである。
FIG. 6 is a graph showing the oxygen concentration in the surface layer of the silicon substrate of the example and the comparative example.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化膜が形成された半導体基板を100
0℃以上の温度で熱処理する熱処理工程と、前記熱処理
工程の温度から降温する降温工程とを有する半導体装置
の製造方法において、 前記降温工程は、 約1000℃以上の範囲では、第1の降温レートで降温
し、 約1000℃以下の範囲では、第1の降温レートよりも
小さい第2の降温レートで降温することを特徴とする半
導体装置の製造方法。
1. A semiconductor substrate on which an oxide film is formed is 100
A method of manufacturing a semiconductor device, comprising: a heat treatment step of performing a heat treatment at a temperature of 0 ° C. or higher; and a temperature lowering step of lowering the temperature from the temperature of the heat treatment step. Wherein the temperature is lowered at a second temperature lowering rate smaller than the first temperature lowering rate in a range of about 1000 ° C. or less.
【請求項2】 請求項1記載の半導体装置の製造方法に
おいて、 前記降温工程は、 約900℃以下の範囲では、前記第2の降温レートより
も大きい第3の降温レートで降温することを特徴とする
半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein in the temperature lowering step, the temperature is lowered at a third temperature lowering rate higher than the second temperature lowering rate in a range of about 900 ° C. or less. Manufacturing method of a semiconductor device.
【請求項3】 酸化膜が形成された半導体基板を約10
00℃以上の温度で熱処理する熱処理工程と、前記熱処
理工程の温度から降温する降温工程とを有する半導体装
置の製造方法において、 前記降温工程は、 約1000℃以上の範囲では、前記降温工程の平均降温
レートよりも大きな降温レートで降温し、 約900℃以上約1000℃以下の範囲では、前記平均
降温レートよりも小さな降温レートで降温することを特
徴とする半導体装置の製造方法。
3. A semiconductor substrate on which an oxide film has been formed is approximately 10
In a method for manufacturing a semiconductor device, comprising: a heat treatment step of performing a heat treatment at a temperature of 00 ° C. or higher; and a temperature lowering step of lowering the temperature from the temperature of the heat treatment step; A method for manufacturing a semiconductor device, wherein the temperature is lowered at a temperature lowering rate higher than a temperature lowering rate, and the temperature is lowered at a temperature lowering rate smaller than the average temperature lowering rate in a range of about 900 ° C. or more and about 1000 ° C. or less.
【請求項4】 酸化膜が形成された半導体基板を100
0℃以上の温度で熱処理する熱処理工程と、前記熱処理
工程の温度から降温する降温工程とを有する半導体装置
の製造方法において、 前記降温工程は、 約1000℃以上の範囲では、約4℃/分以上の降温レ
ートで降温し、 約900℃以上約1000℃以下の範囲では、約2℃/
分以下の降温レートで降温し、 約900℃以下の範囲では、約4℃/分以上の降温レー
トで降温することを特徴とする半導体装置の製造方法。
4. The method according to claim 1, wherein the semiconductor substrate on which the oxide film is formed is 100
In a method for manufacturing a semiconductor device, comprising: a heat treatment step of performing a heat treatment at a temperature of 0 ° C. or higher; and a temperature lowering step of lowering the temperature from the temperature of the heat treatment step, wherein the temperature lowering step is performed at about 4 ° C./min. The temperature is lowered at the above rate, and in the range of about 900 ° C or more and about 1000 ° C or less, about 2 ° C /
A method for manufacturing a semiconductor device, comprising: lowering a temperature at a rate of not more than about 900 ° C .;
【請求項5】 請求項4記載の半導体装置の製造方法に
おいて、 前記降温工程は、 約1100℃以上の範囲では、約10℃/分以上の降温
レートで降温することを特徴とする半導体装置の製造方
法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein in the temperature decreasing step, the temperature is decreased at a rate of about 10 ° C./min or more in a range of about 1100 ° C. or more. Production method.
【請求項6】 請求項4又は5記載の半導体装置の製造
方法において、 前記降温工程は、 約1050℃以上約1100℃以下の範囲では、約5℃
/分以上の降温レートで降温することを特徴とする半導
体装置の製造方法。
6. The method for manufacturing a semiconductor device according to claim 4, wherein the temperature lowering step is performed at about 5 ° C. in a range of about 1050 ° C. or more and about 1100 ° C. or less.
A method of manufacturing a semiconductor device, wherein the temperature is decreased at a rate of at least / min.
【請求項7】 請求項4乃至6のいずれか1項に記載の
半導体装置の製造方法において、 前記降温工程は、 約850℃以下の範囲では、約5℃/分以上の降温レー
トで降温することを特徴とする半導体装置の製造方法。
7. The method for manufacturing a semiconductor device according to claim 4, wherein in the temperature decreasing step, the temperature is decreased at a rate of about 5 ° C./min or more in a range of about 850 ° C. or less. A method for manufacturing a semiconductor device, comprising:
JP26572097A 1997-09-30 1997-09-30 Manufacturing method of semiconductor device Expired - Fee Related JP4149014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26572097A JP4149014B2 (en) 1997-09-30 1997-09-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26572097A JP4149014B2 (en) 1997-09-30 1997-09-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH11111724A true JPH11111724A (en) 1999-04-23
JP4149014B2 JP4149014B2 (en) 2008-09-10

Family

ID=17421079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26572097A Expired - Fee Related JP4149014B2 (en) 1997-09-30 1997-09-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4149014B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246573A (en) * 2001-02-13 2002-08-30 Nippon Steel Corp Manufacturing method of simox substrate
JP2010003899A (en) * 2008-06-20 2010-01-07 Fuji Electric Device Technology Co Ltd Silicon wafer, semiconductor device, method of manufacturing silicon wafer and method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242500A (en) * 1988-03-25 1989-09-27 Mitsubishi Metal Corp Production of silicon substrate
JPH05291097A (en) * 1992-04-10 1993-11-05 Nippon Steel Corp Silicon substrate and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242500A (en) * 1988-03-25 1989-09-27 Mitsubishi Metal Corp Production of silicon substrate
JPH05291097A (en) * 1992-04-10 1993-11-05 Nippon Steel Corp Silicon substrate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246573A (en) * 2001-02-13 2002-08-30 Nippon Steel Corp Manufacturing method of simox substrate
JP2010003899A (en) * 2008-06-20 2010-01-07 Fuji Electric Device Technology Co Ltd Silicon wafer, semiconductor device, method of manufacturing silicon wafer and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4149014B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US4661166A (en) Method of manufacturing semiconductor device using a Czochralski wafer and multiple heat treatment
JP2002524852A (en) Ideal oxygen deposition silicon wafer manufacturing method
US6436846B1 (en) Combined preanneal/oxidation step using rapid thermal processing
WO2016084287A1 (en) Heat treatment method for silicon single crystal wafer
JPH07335657A (en) Silicon wafer and its thermal treatment method
JPH0787187B2 (en) Method for manufacturing GaAs compound semiconductor substrate
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JPH11111724A (en) Manufacture of semiconductor device
JP3144378B2 (en) Method for manufacturing solid-state imaging device
JPS62123098A (en) Silicon single crystal
KR100287266B1 (en) Silicon oxide film formation method and gate oxide film of MOS transistor
JP4151876B2 (en) Silicon wafer manufacturing method
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH0119265B2 (en)
JPH023539B2 (en)
JPH06196459A (en) Manufacture of semiconductor silicon wafer
KR20010003616A (en) A method for fabricating a silicon wafer
JPS6115335A (en) Gettering method for silicon wafer
JPS6211782B2 (en)
JPH1092761A (en) Manufacture of silicon wafer
US20040014301A1 (en) Method of manufacturing a semiconductor wafer
JPH08162461A (en) Method of heat treating semiconductor substrate
JPH0494120A (en) Manufacture of semiconductor device
JPH09260393A (en) Manufacture of silicon wafer for semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees