JPH07335657A - Silicon wafer and its thermal treatment method - Google Patents

Silicon wafer and its thermal treatment method

Info

Publication number
JPH07335657A
JPH07335657A JP14563094A JP14563094A JPH07335657A JP H07335657 A JPH07335657 A JP H07335657A JP 14563094 A JP14563094 A JP 14563094A JP 14563094 A JP14563094 A JP 14563094A JP H07335657 A JPH07335657 A JP H07335657A
Authority
JP
Japan
Prior art keywords
wafer
silicon wafer
oxygen
thermal treatment
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14563094A
Other languages
Japanese (ja)
Other versions
JP3458342B2 (en
Inventor
Masahiko Yamamoto
正彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP14563094A priority Critical patent/JP3458342B2/en
Priority to TW084112414A priority patent/TW363226B/en
Publication of JPH07335657A publication Critical patent/JPH07335657A/en
Application granted granted Critical
Publication of JP3458342B2 publication Critical patent/JP3458342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a thermal treatment method of enhancing an silicon wafer, which is lessened in oxygen concentration around its surface but whose element forming region is lessened in mechanical strength due to a thermal treatment carried out in a hydrogen atmosphere, in mechanical strength. CONSTITUTION:A silicon wafer subjected to a hydrogen thermal treatment is thermally treated for two hours at a temperature of 1100 deg.C in a nitrogen atmosphere which contains 20% of oxygen, wherein oxygen is introduced close to the polar surface of the silicon wafer. Oxygen concentration is higher in the surface of the wafer than inside it. Oxygen decreases gradually in concentration up to a point located as deep as 3 to 4mum into the wafer and then increases gradually after the point to an inside concentration. A dent is made in the surface of the wafer so as to generate dislocation, which is propagated by a thermal treatment. When the spread of dislocation is measured, it is 1/10 as large as that of a wafer subjected to a hydrogen thermal treatment. By this setup, the device forming region of the wafer can be improved so as to be nearly as equal in mechanical strength as that of a wafer not subjected to a hydrogen thermal treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウェーハの熱
処理方法およびシリコンウェーハに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon wafer heat treatment method and a silicon wafer.

【0002】[0002]

【従来の技術】チョクラルスキー法(以下CZ法とい
う)によって引き上げられたシリコン単結晶を加工して
得られたウェーハに適当な熱処理、たとえば窒素ガス雰
囲気中で1050°C、数十時間の熱処理を施すことに
よってウェーハの表面近傍に低酸素濃度の無欠陥領域が
形成される。イントリンシックゲッタリングは、前記シ
リコンウェーハの内部に分布している高密度の微小欠陥
を利用して、前記ウェーハの表面に付着し内方に拡散し
た重金属不純物などのゲッタリングを行うものである
が、たとえば特開昭62−4327などでは、前記イン
トリンシックゲッタリングよりも更にOSF密度の低
減、酸化膜耐圧の改善など品質向上を目的とした半導体
ウェーハの熱処理方法が開示されている。この熱処理方
法は、水素などの還元性ガスを含む不活性ガス雰囲気内
でシリコンウェーハに熱処理を施すことにより、ウェー
ハの表面近傍の酸素濃度を更に低下させるとともに、酸
素析出物の低濃度化を図るものである。
2. Description of the Related Art A wafer obtained by processing a silicon single crystal pulled by the Czochralski method (hereinafter referred to as the CZ method) is appropriately heat-treated, for example, heat treatment at 1050 ° C. for several tens of hours in a nitrogen gas atmosphere. By this, a defect-free region having a low oxygen concentration is formed near the surface of the wafer. Intrinsic gettering utilizes high-density minute defects distributed inside the silicon wafer to perform gettering of heavy metal impurities or the like that adhere to the surface of the wafer and diffuse inward. For example, Japanese Patent Application Laid-Open No. 62-4327 discloses a heat treatment method for a semiconductor wafer for the purpose of quality improvement such as further reduction of OSF density and improvement of oxide film withstand voltage than the intrinsic gettering. This heat treatment method further reduces the oxygen concentration near the surface of the wafer by subjecting the silicon wafer to heat treatment in an inert gas atmosphere containing a reducing gas such as hydrogen, and also aims to reduce the concentration of oxygen precipitates. It is a thing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ウ
ェーハは表面近傍における酸素濃度が低いので、素子形
成領域の機械的強度も低くなっている。従って、デバイ
ス工程においてこのようなウェーハが局所応力や熱応力
を受け、ウェーハの表面近傍に転位が発生した場合、前
記転位を不動態化する不純物酸素が低濃度であるため、
転位の自己増殖、移動によるリーク電流増大などのデバ
イス不良が発生する。その結果、デバイスの歩留りが低
下する。
However, since the above wafer has a low oxygen concentration in the vicinity of the surface, the mechanical strength of the element formation region is also low. Therefore, when such a wafer is subjected to local stress or thermal stress in the device process and dislocations occur near the surface of the wafer, the concentration of impurity oxygen that passivates the dislocations is low,
Device defects such as self-propagation of dislocations and increase of leak current due to movement occur. As a result, the device yield is reduced.

【0004】本発明は上記従来の問題点に着目してなさ
れたもので、シリコンウェーハの表面近傍で酸素濃度が
低く、その結果、素子形成領域の機械的強度が低いもの
について、その強度を向上させることができるようなシ
リコンウェーハの熱処理方法およびシリコンウェーハを
提供することを目的としている。
The present invention has been made by paying attention to the above-mentioned conventional problems. The oxygen concentration near the surface of a silicon wafer is low, and as a result, the mechanical strength of the element formation region is low, the strength is improved. It is an object of the present invention to provide a silicon wafer heat treatment method and a silicon wafer that can be processed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るシリコンウェーハの熱処理方法は、表
面近傍の酸素濃度が1018atoms/cm3 以下のシ
リコンウェーハを、酸素を含むガス雰囲気中において1
000°C以上の温度で加熱することにより、前記シリ
コンウェーハの極表面近傍に酸素を導入することを特徴
としている。また、本発明に係るシリコンウェーハは、
表面近傍の酸素濃度が内部の酸素濃度より低く、極表面
近傍における酸素濃度が前記表面近傍の酸素濃度より高
くなっていることを特徴としている。
In order to achieve the above object, the method for heat treating a silicon wafer according to the present invention is a method for treating a silicon wafer having an oxygen concentration near the surface of 10 18 atoms / cm 3 or less in a gas atmosphere containing oxygen. 1 in
It is characterized in that oxygen is introduced into the vicinity of the extreme surface of the silicon wafer by heating at a temperature of 000 ° C. or higher. Further, the silicon wafer according to the present invention,
The oxygen concentration near the surface is lower than the oxygen concentration inside, and the oxygen concentration near the pole surface is higher than the oxygen concentration near the surface.

【0006】[0006]

【作用】上記構成によれば、表面近傍の酸素濃度が10
18atoms/cm3 以下のシリコンウェーハに対し
て、酸素を含むガス雰囲気中で熱処理を施すことにした
ので、前記ウェーハの極表面近傍に酸素が導入される。
従来、水素などの還元性ガスを含む不活性ガス雰囲気中
でシリコンウェーハに熱処理を施すことにより、前記ウ
ェーハの表面近傍の酸素濃度が低下し、これに伴って機
械的強度が低下した場合であっても、本発明の熱処理を
追加することにより素子形成領域の機械的強度を向上さ
せることができる。
According to the above construction, the oxygen concentration near the surface is 10
Since it was decided to perform the heat treatment on a silicon wafer of 18 atoms / cm 3 or less in a gas atmosphere containing oxygen, oxygen is introduced near the extreme surface of the wafer.
Conventionally, when a silicon wafer is heat-treated in an inert gas atmosphere containing a reducing gas such as hydrogen, the oxygen concentration in the vicinity of the surface of the wafer is reduced, and the mechanical strength is reduced accordingly. However, the mechanical strength of the element formation region can be improved by adding the heat treatment of the present invention.

【0007】本発明による熱処理を施したシリコンウェ
ーハは、極表面近傍における酸素濃度が表面近傍より高
くなっているため、水素などの還元性ガスを含む不活性
ガス雰囲気中で熱処理を施した直後のシリコンウェーハ
よりも極表面層の機械的強度が高い。従って、ウェーハ
が局所応力や熱応力を受けた場合でも転位の広がりが小
さく、デバイス工程におけるリーク電流増大などの不良
発生を低減させることができる。
Since the oxygen concentration in the vicinity of the extreme surface of the silicon wafer subjected to the heat treatment according to the present invention is higher than that in the vicinity of the surface, the silicon wafer immediately after the heat treatment in an inert gas atmosphere containing a reducing gas such as hydrogen is The mechanical strength of the extreme surface layer is higher than that of a silicon wafer. Therefore, even when the wafer receives local stress or thermal stress, the dislocation spread is small, and it is possible to reduce the occurrence of defects such as an increase in leak current in the device process.

【0008】[0008]

【実施例】以下に本発明に係るシリコンウェーハの熱処
理方法の実施例について、図面を参照して説明する。イ
ントリンシックゲッタリングにおいて、シリコンウェー
ハの表面からの酸素の外方拡散を更に促進させるため
に、水素を含む不活性ガス雰囲気内で熱処理を施すが、
本発明は前記熱処理後に更に図1に示す熱処理を加える
ものである。
Embodiments of the method for heat treating a silicon wafer according to the present invention will be described below with reference to the drawings. In intrinsic gettering, a heat treatment is performed in an inert gas atmosphere containing hydrogen to further promote outward diffusion of oxygen from the surface of the silicon wafer.
The present invention adds the heat treatment shown in FIG. 1 after the heat treatment.

【0009】CZ法によって引き上げられたシリコン単
結晶をスライス、研磨加工してなるシリコンウェーハ
に、水素などの還元性ガスを含む不活性ガス雰囲気内で
熱処理を施すことにより、前記ウェーハの表面近傍の酸
素濃度は1018atoms/cm3 以下に低下する。こ
のような水素熱処理を施されたシリコンウェーハに、図
1に示すように20%の酸素を含む窒素ガス雰囲気内
で、1100°Cの温度で2時間の熱処理を加え、シリ
コンウェーハの極表面近傍に酸素を導入し、機械的強度
の改善を図る。
By subjecting a silicon wafer obtained by slicing and polishing a silicon single crystal pulled by the CZ method to a heat treatment in an inert gas atmosphere containing a reducing gas such as hydrogen, a wafer near the surface of the wafer can be obtained. The oxygen concentration drops to 10 18 atoms / cm 3 or less. As shown in FIG. 1, a silicon wafer that has been subjected to such a hydrogen heat treatment is subjected to a heat treatment at a temperature of 1100 ° C. for 2 hours in a nitrogen gas atmosphere containing 20% oxygen, and the vicinity of the extreme surface of the silicon wafer. Introduce oxygen to improve mechanical strength.

【0010】図2および図3は、シリコンウェーハの表
面から厚さ方向における酸素濃度の変化について、2次
イオン質量分析によって求めた結果を示す図である。前
記ウェーハの表面層の深さは約20μm、極表面層は表
面から3〜4μmの部分である。シリコンウェーハを水
素熱処理した後、本発明による熱処理を施した場合は、
極表面層に酸素が導入されるため、図2に示すように表
面の酸素濃度が高くなる。ただし、表面の酸素濃度は内
部の酸素濃度より低い。表面から深さ3〜4μmにかけ
て酸素濃度は次第に低下し、この点を過ぎると、すなわ
ち極表面層から表面層に入ると酸素濃度は再び上昇して
内部の酸素濃度に到達する。これに対して前記水素熱処
理の直後におけるシリコンウェーハの酸素濃度は、図3
に示すように表面層の部分で次第に低下し、表面で最も
低くなっている。
FIG. 2 and FIG. 3 are diagrams showing the results of the change in oxygen concentration in the thickness direction from the surface of the silicon wafer, obtained by secondary ion mass spectrometry. The depth of the surface layer of the wafer is about 20 μm, and the extreme surface layer is a portion 3 to 4 μm from the surface. When the silicon wafer is subjected to hydrogen heat treatment and then subjected to the heat treatment according to the present invention,
Since oxygen is introduced into the extreme surface layer, the oxygen concentration on the surface becomes high as shown in FIG. However, the oxygen concentration on the surface is lower than the oxygen concentration on the inside. The oxygen concentration gradually decreases from the surface to a depth of 3 to 4 μm, and beyond this point, that is, when entering from the extreme surface layer to the surface layer, the oxygen concentration rises again and reaches the internal oxygen concentration. On the other hand, the oxygen concentration of the silicon wafer immediately after the hydrogen heat treatment is shown in FIG.
As shown in, the surface layer gradually lowers and becomes the lowest on the surface.

【0011】本発明の熱処理を施したシリコンウェーハ
の品質について、S.M.Hn,J.Appl.Phy
s.46,1869(1975)などに示されているイ
ンデンテーション法を用いて評価した。すなわち図4に
示すように、マイクロビッカースかたさ試験機の圧子1
に荷重10gfを加えて熱処理済みのシリコンウェーハ
2に圧痕をつけ、転位を発生させた上、窒素ガス雰囲気
内で900°Cで1時間熱処理を加え、転位を増殖させ
た。その後エッチング液に浸漬し、ライトエッチを施し
た後、転位の広がり(rosette extent)
を測定した。図5は<100>方向に成長したCZ法に
よるシリコンウェーハにおける転位の広がりを模式的に
示す説明図である。図中の点線は転位を示し、転位は圧
痕3を中心として四方に広がっている。転位の広がりの
数値は(H1 +H2 )/2で算出され、結晶の相対的な
機械的強度を表す。この評価方法で水素熱処理前のCZ
ウェーハ、水素熱処理を施したCZウェーハ、本発明に
よる熱処理後のCZウェーハの3種類について転位の長
さを測定し、転位の広がりを算出したところ、下記の結
果が得られた。 (1)水素熱処理前のCZウェーハ : 10.6μm (2)水素熱処理を施したCZウェーハ :124.8μm (3)本発明による熱処理後のCZウェーハ: 12.3μm 本発明による熱処理を施した場合、転位の広がりは水素
熱処理を施したCZウェーハの約1/10となり、水素
熱処理前のCZウェーハの数値に近づく。これらの数値
から本発明によって機械的強度が改善されていることが
分かる。
Regarding the quality of the silicon wafer subjected to the heat treatment of the present invention, S. M. Hn, J. Appl. Phy
s. 46,1869 (1975) and the like. That is, as shown in FIG. 4, indenter 1 of the micro Vickers hardness tester
Was applied with a load of 10 gf to make indentations on the heat-treated silicon wafer 2 to generate dislocations, and then heat treatment was performed at 900 ° C. for 1 hour in a nitrogen gas atmosphere to propagate the dislocations. After that, the substrate is dipped in an etching solution and subjected to light etching, and then dislocation spread (rosette extent)
Was measured. FIG. 5 is an explanatory view schematically showing the dislocation spread in a silicon wafer grown in the <100> direction by the CZ method. The dotted line in the figure indicates a dislocation, and the dislocation spreads in all directions centering on the indentation 3. The number of dislocation broadenings is calculated as (H 1 + H 2 ) / 2 and represents the relative mechanical strength of the crystal. CZ before hydrogen heat treatment by this evaluation method
The following results were obtained when the dislocation length was measured and the dislocation spread was calculated for three types of wafers, a CZ wafer subjected to hydrogen heat treatment and a CZ wafer after heat treatment according to the present invention. (1) CZ wafer before hydrogen heat treatment: 10.6 μm (2) CZ wafer after hydrogen heat treatment: 124.8 μm (3) CZ wafer after heat treatment according to the present invention: 12.3 μm When heat treatment according to the present invention is performed The spread of dislocations is about 1/10 of that of the CZ wafer that has been subjected to the hydrogen heat treatment, which is close to the value of the CZ wafer before the hydrogen heat treatment. From these numerical values, it can be seen that the present invention improves the mechanical strength.

【0012】何らかの原因で転位がウェーハに導入され
たとき、酸素は不純物として働き、転位を不動態化する
ので、シリコンウェーハの結晶の機械的強度に寄与す
る。従って、極表面層の酸素濃度が著しく低いシリコン
ウェーハに対して本発明による熱処理を加えると、表面
近傍の酸素濃度が増し、特にウェーハの中で重要なIC
製作領域の機械的強度を改善することができる。
When dislocations are introduced into the wafer for some reason, oxygen acts as an impurity and passivates the dislocations, thus contributing to the mechanical strength of the crystal of the silicon wafer. Therefore, when the heat treatment according to the present invention is applied to a silicon wafer having an extremely low oxygen concentration in the extreme surface layer, the oxygen concentration in the vicinity of the surface is increased, and particularly in an important IC in the wafer.
The mechanical strength of the fabrication area can be improved.

【0013】本発明の熱処理方法は、水素熱処理を施し
たCZウェーハの他、イントリンシックゲッタリングの
熱処理温度が高い、または熱処理時間が長いなどの理由
でウェーハ表面近傍の酸素濃度が極端に低い場合のイン
トリンシックゲッタリング済みウェーハや、FZウェー
ハに対して適用することができる。
The heat treatment method of the present invention is applied to the case where the oxygen concentration near the wafer surface is extremely low due to a high heat treatment temperature of intrinsic gettering or a long heat treatment time in addition to the CZ wafer subjected to the hydrogen heat treatment. The present invention can be applied to the intrinsic gettered wafers and the FZ wafers.

【0014】[0014]

【発明の効果】以上説明したように本発明は、水素など
の還元性ガス雰囲気中での熱処理により、ウェーハ表面
近傍の酸素濃度が低く、その結果、素子形成領域の機械
的強度が低下したCZウェーハあるいはFZウェーハに
対して、酸素を含むガス雰囲気中で熱処理を施し、前記
ウェーハの極表面近傍に酸素を導入するものである。極
表面層の酸素濃度が低すぎると局所応力や熱応力による
転位の広がりが大きくなり、従来はデバイス工程におい
てリーク電流増大などの不良が発生していたが、本発明
の熱処理を追加することにより前記問題を解決すること
ができ、歩留りが向上する。また、本発明による熱処理
を施したシリコンウェーハは、前記水素ガス雰囲気中で
熱処理を施した従来のシリコンウェーハよりも極表面層
の機械的強度が高いため、応力による転位の広がりが小
さい。
As described above, according to the present invention, the oxygen concentration in the vicinity of the wafer surface is low due to the heat treatment in a reducing gas atmosphere such as hydrogen, and as a result, the mechanical strength of the element formation region is lowered. The wafer or FZ wafer is subjected to heat treatment in a gas atmosphere containing oxygen to introduce oxygen into the vicinity of the extreme surface of the wafer. When the oxygen concentration of the extreme surface layer is too low, the dislocation spread due to local stress and thermal stress becomes large, and conventionally, defects such as increase in leak current occurred in the device process, but by adding the heat treatment of the present invention, The above problems can be solved, and the yield is improved. Further, since the silicon wafer that has been subjected to the heat treatment according to the present invention has a higher mechanical strength of the extreme surface layer than the conventional silicon wafer that has been subjected to the heat treatment in the hydrogen gas atmosphere, the dislocation spread due to stress is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による熱処理のプロファイルを示す図で
ある。
FIG. 1 is a diagram showing a profile of heat treatment according to the present invention.

【図2】本発明による熱処理を施したシリコンウェーハ
について、厚さ方向の酸素濃度の変化を示す図である。
FIG. 2 is a diagram showing changes in oxygen concentration in the thickness direction of a silicon wafer that has been heat-treated according to the present invention.

【図3】水素ガス雰囲気中での熱処理を施した従来のシ
リコンウェーハについて、厚さ方向の酸素濃度の変化を
示す図である。
FIG. 3 is a diagram showing changes in oxygen concentration in the thickness direction of a conventional silicon wafer that has been heat-treated in a hydrogen gas atmosphere.

【図4】インデンテーション法の説明図で、本発明によ
る熱処理を施したシリコンウェーハに圧痕をつける工程
を示す。
FIG. 4 is an explanatory diagram of an indentation method and shows a step of making an indent on a silicon wafer that has been heat-treated according to the present invention.

【図5】圧痕をつけたシリコンウェーハにおける転位の
広がりを模式的に示す説明図である。
FIG. 5 is an explanatory view schematically showing the dislocation spread in a silicon wafer having an indentation.

【符号の説明】[Explanation of symbols]

1 圧子 2 シリコンウェーハ 3 圧痕 1 indenter 2 silicon wafer 3 indentation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面近傍の酸素濃度が1018atoms
/cm3 以下のシリコンウェーハを、酸素を含むガス雰
囲気中において1000°C以上の温度で加熱すること
により、前記シリコンウェーハの極表面近傍に酸素を導
入することを特徴とするシリコンウェーハの熱処理方
法。
1. The oxygen concentration near the surface is 10 18 atoms.
/ Cm 3 or less of the silicon wafer is heated at a temperature of 1000 ° C. or more in a gas atmosphere containing oxygen, oxygen is introduced into the vicinity of the extreme surface of the silicon wafer, the heat treatment method of the silicon wafer .
【請求項2】 表面近傍の酸素濃度が内部の酸素濃度よ
り低く、極表面近傍における酸素濃度が前記表面近傍の
酸素濃度より高くなっていることを特徴とするシリコン
ウェーハ。
2. A silicon wafer, wherein the oxygen concentration near the surface is lower than the oxygen concentration inside, and the oxygen concentration near the extreme surface is higher than the oxygen concentration near the surface.
JP14563094A 1994-06-03 1994-06-03 Silicon wafer manufacturing method and silicon wafer Expired - Lifetime JP3458342B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14563094A JP3458342B2 (en) 1994-06-03 1994-06-03 Silicon wafer manufacturing method and silicon wafer
TW084112414A TW363226B (en) 1994-06-03 1995-11-22 Heat treatment method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14563094A JP3458342B2 (en) 1994-06-03 1994-06-03 Silicon wafer manufacturing method and silicon wafer

Publications (2)

Publication Number Publication Date
JPH07335657A true JPH07335657A (en) 1995-12-22
JP3458342B2 JP3458342B2 (en) 2003-10-20

Family

ID=15389455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14563094A Expired - Lifetime JP3458342B2 (en) 1994-06-03 1994-06-03 Silicon wafer manufacturing method and silicon wafer

Country Status (2)

Country Link
JP (1) JP3458342B2 (en)
TW (1) TW363226B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6191010B1 (en) 1998-09-02 2001-02-20 Memc Electronic Materials, Inc. Process for preparing an ideal oxygen precipitating silicon wafer
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6284384B1 (en) 1998-12-09 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
US6339016B1 (en) 2000-06-30 2002-01-15 Memc Electronic Materials, Inc. Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US6361619B1 (en) 1998-09-02 2002-03-26 Memc Electronic Materials, Inc. Thermally annealed wafers having improved internal gettering
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6599815B1 (en) 2000-06-30 2003-07-29 Memc Electronic Materials, Inc. Method and apparatus for forming a silicon wafer with a denuded zone
KR100399946B1 (en) * 2001-06-30 2003-09-29 주식회사 하이닉스반도체 The method for annealing in flowable inter layer dielectrics
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
US6828690B1 (en) 1998-08-05 2004-12-07 Memc Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US6897084B2 (en) 2001-04-11 2005-05-24 Memc Electronic Materials, Inc. Control of oxygen precipitate formation in high resistivity CZ silicon
US6955718B2 (en) 2003-07-08 2005-10-18 Memc Electronic Materials, Inc. Process for preparing a stabilized ideal oxygen precipitating silicon wafer
KR100695004B1 (en) * 2005-11-01 2007-03-13 주식회사 하이닉스반도체 Method of forming an oxide film in a semiconductor device
US7485928B2 (en) 2005-11-09 2009-02-03 Memc Electronic Materials, Inc. Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
WO2010016586A1 (en) * 2008-08-08 2010-02-11 Sumco Techxiv株式会社 Method for manufacturing semiconductor wafer

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6180220B1 (en) 1997-02-26 2001-01-30 Memc Electronic Materials, Inc. Ideal Oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6204152B1 (en) 1997-02-26 2001-03-20 Memc Electronic Materials, Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6537368B2 (en) 1997-02-26 2003-03-25 Memc Electronic Materials Spa Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
US6306733B1 (en) 1997-02-26 2001-10-23 Memc Electronic Materials, Spa Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
US6849119B2 (en) 1997-02-26 2005-02-01 Memc Electronic Materials, Inc. Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6586068B1 (en) 1997-02-26 2003-07-01 Memc Electronic Materials, Inc. Ideal oxygen precipitating silicon wafer having an asymmetrical vacancy concentration profile and a process for the preparation thereof
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6555194B1 (en) 1997-04-09 2003-04-29 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US7442253B2 (en) 1997-04-09 2008-10-28 Memc Electronic Materials, Inc. Process for forming low defect density, ideal oxygen precipitating silicon
US7229693B2 (en) 1997-04-09 2007-06-12 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US7618879B2 (en) 1998-08-05 2009-11-17 Memc Electronics Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US6828690B1 (en) 1998-08-05 2004-12-07 Memc Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US7242037B2 (en) 1998-08-05 2007-07-10 Memc Electronic Materials, Inc. Process for making non-uniform minority carrier lifetime distribution in high performance silicon power devices
US6686260B2 (en) 1998-09-02 2004-02-03 Memc Electronics Materials, Inc. Process for producing thermally annealed wafers having improved internal gettering
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6579779B1 (en) 1998-09-02 2003-06-17 Memc Electronic Materials, Inc. Process for the preparation of an ideal oxygen precipitating silicon wafer having an asymmetrical vacancy concentration profile capable of forming an enhanced denuded zone
US6432197B2 (en) 1998-09-02 2002-08-13 Memc Electronic Materials, Inc. Process for the preparation of non-oxygen precipitating Czochralski silicon wafers
US6191010B1 (en) 1998-09-02 2001-02-20 Memc Electronic Materials, Inc. Process for preparing an ideal oxygen precipitating silicon wafer
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6342725B2 (en) 1998-09-02 2002-01-29 Memc Electronic Materials, Inc. Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US6709511B2 (en) 1998-09-02 2004-03-23 Memc Electronic Materials, Inc. Process for suppressing oxygen precipitation in vacancy dominated silicon
US6713370B2 (en) 1998-09-02 2004-03-30 Memc Electronic Materials, Inc. Process for the preparation of an ideal oxygen precipitating silicon wafer capable of forming an enhanced denuded zone
US6361619B1 (en) 1998-09-02 2002-03-26 Memc Electronic Materials, Inc. Thermally annealed wafers having improved internal gettering
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6743289B2 (en) 1998-10-14 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing low defect density single crystal silicon
US6958092B2 (en) 1998-12-09 2005-10-25 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US6284384B1 (en) 1998-12-09 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering
US6537655B2 (en) 1998-12-09 2003-03-25 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
US6599815B1 (en) 2000-06-30 2003-07-29 Memc Electronic Materials, Inc. Method and apparatus for forming a silicon wafer with a denuded zone
US6339016B1 (en) 2000-06-30 2002-01-15 Memc Electronic Materials, Inc. Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US6897084B2 (en) 2001-04-11 2005-05-24 Memc Electronic Materials, Inc. Control of oxygen precipitate formation in high resistivity CZ silicon
US7135351B2 (en) 2001-04-11 2006-11-14 Memc Electronic Materials, Inc. Method for controlling of thermal donor formation in high resistivity CZ silicon
KR100399946B1 (en) * 2001-06-30 2003-09-29 주식회사 하이닉스반도체 The method for annealing in flowable inter layer dielectrics
US6955718B2 (en) 2003-07-08 2005-10-18 Memc Electronic Materials, Inc. Process for preparing a stabilized ideal oxygen precipitating silicon wafer
KR100695004B1 (en) * 2005-11-01 2007-03-13 주식회사 하이닉스반도체 Method of forming an oxide film in a semiconductor device
US7485928B2 (en) 2005-11-09 2009-02-03 Memc Electronic Materials, Inc. Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
US8026145B2 (en) 2005-11-09 2011-09-27 Memc Electronic Materials, Inc. Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
WO2010016586A1 (en) * 2008-08-08 2010-02-11 Sumco Techxiv株式会社 Method for manufacturing semiconductor wafer
US8426297B2 (en) 2008-08-08 2013-04-23 Sumco Techxiv Corporation Method for manufacturing semiconductor wafer
JP5572091B2 (en) * 2008-08-08 2014-08-13 Sumco Techxiv株式会社 Manufacturing method of semiconductor wafer
US8853103B2 (en) 2008-08-08 2014-10-07 Sumco Techxiv Corporation Method for manufacturing semiconductor wafer

Also Published As

Publication number Publication date
TW363226B (en) 1999-07-01
JP3458342B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3458342B2 (en) Silicon wafer manufacturing method and silicon wafer
US7344689B2 (en) Silicon wafer for IGBT and method for producing same
US8231852B2 (en) Silicon wafer and method for producing the same
JP2001181090A (en) Method for producing single crystal
US6277193B1 (en) Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
JP2000272995A (en) Silicon single crystal, silicon wafer and epitaxial wafer
JP3381816B2 (en) Semiconductor substrate manufacturing method
US20040216659A1 (en) Method of making an epitaxial wafer
JP4013276B2 (en) Manufacturing method of silicon epitaxial wafer
JPH0633236B2 (en) Method and apparatus for heat treating silicon single crystal and manufacturing apparatus
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JPH08208374A (en) Silicon single crystal and its production
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JP3294723B2 (en) Silicon wafer manufacturing method and silicon wafer
KR20020060244A (en) Method for manufacturing annealed wafer and annealed wafer
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH023539B2 (en)
JP4182691B2 (en) A method for predicting pulling conditions of pure silicon single crystals.
US7160385B2 (en) Silicon wafer and method for manufacturing the same
JPH09223699A (en) Silicon wafer and its manufacturing method
JPH0969526A (en) Production of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term