JPH11111268A - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JPH11111268A
JPH11111268A JP9275562A JP27556297A JPH11111268A JP H11111268 A JPH11111268 A JP H11111268A JP 9275562 A JP9275562 A JP 9275562A JP 27556297 A JP27556297 A JP 27556297A JP H11111268 A JPH11111268 A JP H11111268A
Authority
JP
Japan
Prior art keywords
negative electrode
carboxy
modified
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275562A
Other languages
Japanese (ja)
Inventor
Akira Matsuo
明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9275562A priority Critical patent/JPH11111268A/en
Publication of JPH11111268A publication Critical patent/JPH11111268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve adhesive strength of mutual carbon materials and the carbon material and a current collecting body in a negative electrode, and remarkably improve a highly efficient discharge characteristic and a cycle characteristic by using hydrogenated carboxy modified rubber as a binding agent to bind a negative electrode active material composed of a powdery carbon material to store/release a lithium ion. SOLUTION: A hydrogenation rate of carboxy modified rubber is 30 to 90%, and it is carboxy modified butadiene rubber containing butadiene, and a copolymer of one or more kinds selected from a group composed of ethylene, isoprene and styrene and butadiene is used as a basic skeleton, and the copolymer is carboxilically modified. The carboxy modified butadiene rubber is desirable to be carboxilically modified by using a copolymer of acrylonitrile and butadiene as a basic skeleton. It is ideal to set the butadiene content of this binding agent not less than 20 wt.% and the gel content not less than 60%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵,放出することが可能な粉末状の炭素材料から成る
負極活物質と、この負極活物質同士を結着するための結
着剤とを備えたリチウム二次電池用負極に関する。
The present invention relates to a negative electrode active material comprising a powdery carbon material capable of inserting and extracting lithium ions, and a binder for binding the negative electrode active materials to each other. The present invention relates to a provided negative electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、リチウム二次電池の負極活物質と
しては、樹枝状リチウム金属の析出がなくサイクル寿命
が長いなどの理由から、リチウムイオンを吸蔵放出する
ことのできるコークスや黒鉛等の炭素材料が用いられる
ようになっている。そして、このような炭素材料を用い
る負極の結着剤としては、化学的安定性等の見地より、
ポリフッ化ビニリデン等のフッ素系樹脂が用いられてい
る。
2. Description of the Related Art In recent years, as a negative electrode active material of a lithium secondary battery, carbon dioxide such as coke or graphite, which can occlude and release lithium ions, has been used because dendritic lithium metal is not deposited and the cycle life is long. Materials are being used. And as a binder for a negative electrode using such a carbon material, from the viewpoint of chemical stability and the like,
Fluorine-based resins such as polyvinylidene fluoride are used.

【0003】しかし、フッ素系樹脂は、炭素材料や集電
体に対する結着力が十分でないので、負極活物質同士及
び負極活物質と集電体との密着力が不十分であり、この
結果、高率放電特性やサイクル特性等の電池特性が低下
し易い。特に、炭素材料として、格子面(002)面に
おけるd値(d002 )が3.40Å未満の黒鉛を用いた
場合に密着性が劣化し易く、その中でも上記d値(d
002 )が3.36Å未満の天然黒鉛を用いた場合にはこ
の傾向が一層顕著となる。
[0003] However, since the fluorine-based resin has insufficient binding force to the carbon material and the current collector, the adhesion between the negative electrode active materials and between the negative electrode active material and the current collector is insufficient. Battery characteristics such as rate discharge characteristics and cycle characteristics are apt to deteriorate. In particular, when graphite having a d value (d 002 ) of less than 3.40 ° on the lattice plane (002) plane is used as the carbon material, the adhesiveness is likely to be deteriorated.
This tendency becomes even more pronounced when natural graphite having a 002 ) of less than 3.36 ° is used.

【0004】そこで、特開平8−287915号公報で
は、結着剤としてカルボキシ変性されたビニル系ゴムを
用いる技術が提案されている。しかしながら、この技術
で使用する結着剤は、非水電解液に対する化学的安定性
が十分でない等により、未だ十分なサイクル特性や高率
放電特性が得られていない。
Therefore, Japanese Patent Application Laid-Open No. 8-287915 proposes a technique using a carboxy-modified vinyl rubber as a binder. However, the binder used in this technique has not yet obtained sufficient cycle characteristics and high-rate discharge characteristics due to insufficient chemical stability against a non-aqueous electrolyte.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を考慮してなされたものであって、負極における
炭素材料同士及び炭素材料と集電体との密着力を向上さ
せることにより、当該負極を用いた電池の高率放電特性
やサイクル特性を飛躍的に向上させることができるリチ
ウム二次電池用負極を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has been made by improving the adhesion between carbon materials in a negative electrode and between a carbon material and a current collector. It is another object of the present invention to provide a negative electrode for a lithium secondary battery that can dramatically improve high-rate discharge characteristics and cycle characteristics of a battery using the negative electrode.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、リチウムイオンを吸蔵・放出す
る粉末状の炭素材料から成る負極活物質と、負極集電体
と、前記負極活物質を結着するための結着剤とを備えた
リチウム二次電池用負極において、上記結着剤として、
水素添加されたカルボキシ変性ゴムを用いることを特徴
とする。
In order to achieve the above object, the present invention is directed to a negative electrode active material made of a powdery carbon material that occludes and releases lithium ions; a negative electrode current collector; In a negative electrode for a lithium secondary battery including a binder for binding a negative electrode active material, as the binder,
It is characterized by using a hydrogenated carboxy-modified rubber.

【0007】カルボキシ変性ゴムは粘弾性を持った接着
力を有すると共に、金属からなる集電体に対する結着力
に優れるが、化学的安定性が不十分であるため、リチウ
ムイオンや非水電解液やその他の電池内成分によって結
着力が劣化し易い。ここで、上記構成では、水素添加し
て不飽和結合部分を少なくしたカルボキシ変性ゴムを結
着剤として使用してある。よって、カルボキシ変性ゴム
の電池内における化学的安定性が向上し、その結果とし
て負極のサイクル特性や高率放電特性が向上する。
The carboxy-modified rubber has a viscoelastic adhesive force and an excellent binding force to a current collector made of metal, but has insufficient chemical stability. Other components in the battery tend to deteriorate the binding force. Here, in the above configuration, a carboxy-modified rubber in which the number of unsaturated bonds is reduced by hydrogenation is used as a binder. Therefore, the chemical stability of the carboxy-modified rubber in the battery is improved, and as a result, the cycle characteristics and the high-rate discharge characteristics of the negative electrode are improved.

【0008】請求項2記載の発明は、請求項1記載のリ
チウム二次電池用負極において、上記カルボキシ変性ゴ
ムにおける水素添加率を30〜90%としてある。この
ように、水素添加率を規制するのは次の理由による。す
なわち、水素添加率が30%未満であると、結着剤の化
学的安定性が低下する。その一方、水素添加率が90%
を超えると、結着剤の弾性が著しく低下し、活物質相互
或いは活物質層と集電体との密着性が低下し、負極の内
部抵抗が増大する。このため、上記範囲外であると、サ
イクル特性や高率放電特性が低下し易くなるという理由
による。
According to a second aspect of the present invention, in the negative electrode for a lithium secondary battery according to the first aspect, the carboxy-modified rubber has a hydrogenation rate of 30 to 90%. The reason for restricting the hydrogenation rate in this way is as follows. That is, when the hydrogenation rate is less than 30%, the chemical stability of the binder decreases. On the other hand, the hydrogenation rate is 90%
If it exceeds 300, the elasticity of the binder is remarkably reduced, the adhesion between the active materials or between the active material layer and the current collector is reduced, and the internal resistance of the negative electrode is increased. For this reason, if the ratio is outside the above range, the cycle characteristics and the high-rate discharge characteristics are likely to deteriorate.

【0009】請求項3記載の発明は、請求項1又は2記
載のリチウム二次電池用負極において、上記カルボキシ
変性ゴムとして、ブタジエンを含むカルボキシ変性ブタ
ジエンゴムを用いることを特徴とする。
According to a third aspect of the present invention, in the negative electrode for a lithium secondary battery according to the first or second aspect, a carboxy-modified butadiene rubber containing butadiene is used as the carboxy-modified rubber.

【0010】水素添加されたカルボキシ変性ブタジエン
ゴムは、ブタジエンゴムのもつ優れた粘弾性や接着性を
備えると共に、化学的安定性にも優れる。よって、長期
にわたる充放電サイクルによっても、好適な結着性が維
持されるので、リチウム二次電池用負極の結着剤として
優れている。
[0010] The hydrogenated carboxy-modified butadiene rubber has the excellent viscoelasticity and adhesiveness of butadiene rubber and also has excellent chemical stability. Therefore, even if the charge and discharge cycle is performed over a long period of time, the suitable binding property is maintained, and thus the composition is excellent as a binder for a negative electrode for a lithium secondary battery.

【0011】なお、本明細書におけるカルボキシ変性ブ
タジエンゴムの用語は、カルボキシ変性ゴムの下位概念
の用語として使用されている。
The term carboxy-modified butadiene rubber in the present specification is used as a term of a lower concept of carboxy-modified rubber.

【0012】請求項4記載の発明は、請求項3記載のリ
チウム二次電池用負極において、上記カルボキシ変性ブ
タジエンゴムとして、エチレン、イソプレン、スチレ
ン、及びビニルピリジンよりなる群から選択される一種
以上と、ブタジエンとの共重合体が基本骨格となり、且
つ当該共重合体がカルボキシ変性されたカルボキシ変性
ブタジエンゴムを用いることを特徴とする。
According to a fourth aspect of the present invention, there is provided the negative electrode for a lithium secondary battery according to the third aspect, wherein the carboxy-modified butadiene rubber is at least one selected from the group consisting of ethylene, isoprene, styrene, and vinylpyridine. And a butadiene as a basic skeleton, and using a carboxy-modified butadiene rubber in which the copolymer is carboxy-modified.

【0013】ブタジエンにエチレンやイソプレン等を共
重合させると、ブタジエン単独に比べてゴムの柔軟性が
増加する。よって、上記組成のカルボキシ変性ブタジエ
ンゴムであると、活物質相互および活物質層と集電体と
が柔軟かつ強力に結着できるので、密着不良が生じにく
い。
When butadiene is copolymerized with ethylene or isoprene, the flexibility of the rubber is increased as compared to butadiene alone. Therefore, in the case of the carboxy-modified butadiene rubber having the above composition, the active materials can be bonded to each other and the active material layer with the current collector flexibly and strongly, and poor adhesion hardly occurs.

【0014】請求項5記載の発明は、請求項3記載のリ
チウム二次電池用負極において、上記カルボキシ変性ブ
タジエンゴムとして、アクリロニトリルとブタジエンと
の共重合体が基本骨格となり、且つ当該共重合体がカル
ボキシ変性されたカルボキシ変性ブタジエンゴムを用い
ることを特徴とする。
According to a fifth aspect of the present invention, in the negative electrode for a lithium secondary battery according to the third aspect, a copolymer of acrylonitrile and butadiene serves as a basic skeleton as the carboxy-modified butadiene rubber, and the copolymer has It is characterized by using a carboxy-modified carboxy-modified butadiene rubber.

【0015】アクリロニトリルは極性の大きい物質であ
るので、ブタジエンとアクリロニトリルの共重合体より
なるカルボキシ変性ブタジエンゴムは、活物質や集電体
との親和性に優れる。よって、活物質相互および活物質
層と集電体とを強力に結着でき、その結果として負極の
高率放電特性やサイクル特性が大幅に向上する。
Since acrylonitrile is a substance having a large polarity, a carboxy-modified butadiene rubber composed of a copolymer of butadiene and acrylonitrile has excellent affinity with an active material and a current collector. Therefore, the active materials can be strongly bonded to each other and the active material layer and the current collector, and as a result, the high-rate discharge characteristics and the cycle characteristics of the negative electrode are significantly improved.

【0016】請求項6記載の発明は、請求項4または5
記載のリチウム二次電池用負極において、上記カルボキ
シ変性ブタジエンゴムにおけるブタジエンの含有量を2
0重量%以上とし、且つゲル含有量を60%以上とした
ことを特徴とする。この構成であると、負極のサイクル
特性および高率放電特性を顕著に向上させることができ
る。
The invention according to claim 6 is the invention according to claim 4 or 5.
The negative electrode for a rechargeable lithium battery according to the above, wherein the carboxy-modified butadiene rubber has a butadiene content of 2
0% by weight or more and the gel content is 60% or more. With this configuration, the cycle characteristics and high-rate discharge characteristics of the negative electrode can be significantly improved.

【0017】請求項7記載の発明は、請求項4または5
記載のリチウム二次電池用負極において、上記カルボキ
シ変性ブタジエンゴムにおけるブタジエンの含有量を2
0〜80重量%とし、且つゲル含有量を60%以上とし
たことを特徴とする。この構成であると、負極の負極の
サイクル特性および高率放電特性に加え、負極剥離強度
を一層向上させることができる。
The invention according to claim 7 is the invention according to claim 4 or 5.
The negative electrode for a rechargeable lithium battery according to the above, wherein the carboxy-modified butadiene rubber has a butadiene content of 2
0 to 80% by weight, and the gel content is 60% or more. With this configuration, in addition to the cycle characteristics and high-rate discharge characteristics of the negative electrode of the negative electrode, the negative electrode peel strength can be further improved.

【0018】請求項8記載の発明は、請求項3または7
記載のリチウム二次電池用負極において、上記カルボキ
シ変性ブタジエンゴムとして、エチレン性不飽和ジカル
ボン酸モノマー及び/又はエチレン性不飽和ジカルボン
酸モノマーの誘導体を用いてカルボキシ変性されたもの
を使用する。
The invention described in claim 8 is the third or seventh invention.
In the negative electrode for a lithium secondary battery described above, as the carboxy-modified butadiene rubber, a carboxy-modified one using an ethylenically unsaturated dicarboxylic acid monomer and / or a derivative of an ethylenically unsaturated dicarboxylic acid monomer is used.

【0019】エチレン性不飽和ジカルボン酸モノマー等
を用いたカルボキシ変性ブタジエンゴムは、活物質や集
電体となじみやすいので、活物質相互および活物質層と
集電体との結着性が向上する。
A carboxy-modified butadiene rubber using an ethylenically unsaturated dicarboxylic acid monomer or the like is easily compatible with an active material and a current collector, so that the binding properties between the active materials and between the active material layer and the current collector are improved. .

【0020】請求項9記載の発明は、請求項8記載のリ
チウム二次電池用負極において、上記エチレン性不飽和
ジカルボン酸モノマーとして、アクリル酸、メタクリル
酸、イタコン酸、フマル酸及びマイレン酸よりなる群か
ら選択される一種以上の酸を用いることを特徴とする。
この構成において、上記請求項7に記載した作用効果が
一層発揮される。
According to a ninth aspect of the present invention, in the negative electrode for a lithium secondary battery according to the eighth aspect, the ethylenically unsaturated dicarboxylic acid monomer comprises acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid. It is characterized by using one or more acids selected from the group.
With this configuration, the operation and effect described in the seventh aspect are further exhibited.

【0021】請求項10記載の発明は、請求項3ないし
9記載のリチウム二次電池用負極において、集電体を除
く負極総重量に対するカルボキシ変性ブタジエンゴムの
含有量を、0.1〜5.0重量%とすることを特徴とす
る。
According to a tenth aspect of the present invention, in the negative electrode for a lithium secondary battery according to any one of the third to ninth aspects, the content of the carboxy-modified butadiene rubber with respect to the total weight of the negative electrode excluding the current collector is 0.1 to 5. It is characterized by being 0% by weight.

【0022】集電体を除く負極総重量に対するカルボキ
シ変性ブタジエンゴムの含有量は、多過ぎても少な過ぎ
て十分な作用効果が得られにくく、上記範囲において十
分な密着性が得られる。この詳細は後記する。
The content of the carboxy-modified butadiene rubber relative to the total weight of the negative electrode excluding the current collector is too large or too small, so that it is difficult to obtain a sufficient action and effect, and sufficient adhesion is obtained in the above range. The details will be described later.

【0023】請求項11記載の発明は、請求項3ないし
9記載のリチウム二次電池用負極において、上記集電体
を除く負極総重量に対するカルボキシ変性ブタジエンゴ
ムの含有量を、0.3〜3.0重量%とすることを特徴
とする。この範囲の含有量において、特に顕著な作用効
果が得られる。
The invention according to claim 11 is the negative electrode for a lithium secondary battery according to any one of claims 3 to 9, wherein the content of the carboxy-modified butadiene rubber with respect to the total weight of the negative electrode excluding the current collector is 0.3 to 3%. 0.0% by weight. At a content in this range, particularly remarkable effects can be obtained.

【0024】請求項12記載の発明は、請求項1ないし
11記載のリチウム二次電池用負極において、上記炭素
材料として、格子面(002)面におけるd値
(d002 )が、3.40Å未満の黒鉛を使用したことを
特徴とする。このような黒鉛は、結着し難い性質を有す
るので、本発明の作用効果が一層発揮される。
According to a twelfth aspect of the present invention, in the negative electrode for a lithium secondary battery according to any one of the first to eleventh aspects, the carbon material has a d value (d 002 ) of less than 3.40 ° on a lattice (002) plane. Characterized by using graphite. Since such graphite has a property that it is difficult to bind, the operation and effect of the present invention are further exhibited.

【0025】また、請求項13記載の発明は、請求項1
1または12記載のリチウム二次電池用負極において、
上記炭素材料として、格子面(002)面におけるd値
(d 002 )が、3.36Å未満の天然黒鉛を使用したこ
とを特徴とする。このような天然黒鉛は、自己滑沢性や
劈開性が強いので、一層結着し難い性質を有する。よっ
て、本発明の作用効果が一層顕著に発揮される。
The invention of claim 13 is the first invention.
The negative electrode for a lithium secondary battery according to 1 or 12, wherein
As the above carbon material, d value in lattice (002) plane
(D 002) Uses less than 3.36 kg of natural graphite.
And features. Such natural graphite is self-lubricating and
Since it has a strong cleavage property, it has a property that it is more difficult to bind. Yo
Therefore, the function and effect of the present invention are more remarkably exhibited.

【0026】また、請求項14記載の発明は、請求項1
2または13記載のリチウム二次電池用負極において、
上記リチウム二次電池用負極が、負極と正極とをセパレ
ータを介し重ね合わせて巻回した渦巻き型発電体の負極
として使用されていることを特徴とする。
The invention according to claim 14 is the first invention.
The negative electrode for a lithium secondary battery according to 2 or 13, wherein
The negative electrode for a lithium secondary battery is characterized in that it is used as a negative electrode of a spiral power generator in which a negative electrode and a positive electrode are overlapped and wound with a separator interposed therebetween.

【0027】渦巻型発電体においては、巻回時に大きな
応力が作用し、また電池内にあっても常に巻回軸の外側
に向かう応力が作用しているので、負極活物質と集電体
との密着性が阻害され易い。したがって、このような渦
巻型発電体に使用される負極において、本発明の作用効
果が一層顕著に発揮される。
In the spiral power generator, a large stress acts upon winding, and a stress always acts toward the outside of the winding axis even in the battery, so that the negative electrode active material and the current collector are not connected to each other. Is easily hindered. Therefore, in the negative electrode used for such a spiral power generator, the operation and effect of the present invention are more remarkably exhibited.

【0028】[0028]

【発明の実施の形態】本発明のリチウム二次電池用負極
は、リチウムイオンを吸蔵・放出することのできる粉末
状の炭素材料から成る負極活物質と、集電体と、負極活
物質同士および負極活物質を前記集電体に結着するため
のゴム系結着剤とを有し構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A negative electrode for a lithium secondary battery according to the present invention comprises a negative electrode active material composed of a powdery carbon material capable of inserting and extracting lithium ions, a current collector, negative electrode active materials, and A rubber binder for binding the negative electrode active material to the current collector.

【0029】このような本発明にかかる負極の炭素材料
としては、リチウムイオンを吸蔵・放出することのでき
る黒鉛質炭素材料(人造黒鉛や天然黒鉛)や部分的に黒
鉛構造をもつ炭素質材料の何れをも使用できる。また、
本発明にかかる負極には、負極活物質としての炭素材料
の他に、例えばカルボキシメチルセルロースやポリビニ
ルピロリドンなどを結着補助剤として添加することもで
きる。
Examples of the carbon material of the negative electrode according to the present invention include a graphitic carbon material (artificial graphite and natural graphite) capable of inserting and extracting lithium ions and a carbonaceous material partially having a graphite structure. Either can be used. Also,
In addition to the carbon material as the negative electrode active material, for example, carboxymethyl cellulose, polyvinylpyrrolidone, or the like can be added to the negative electrode according to the present invention as a binding aid.

【0030】また、上記集電体としては、その材質が導
電性を有するものであれば特に限定されるものではな
く、例えば銅箔、ニッケル箔などの材料が使用できる。
The current collector is not particularly limited as long as the material is conductive. For example, a material such as a copper foil or a nickel foil can be used.

【0031】本発明にかかる負極の主要構成要素である
カルボキシ変性ゴムとしては、例えばカルボキシ変性さ
れたブタジエンゴム、エチレンブタジエンゴム、ブチル
ゴム、クロロプレンゴム、イソプレンゴム、イソブチレ
ン−イソプレンゴム、ビニルピリジンブタジエンゴムな
どが例示でき、これらのカルボキシ変性ゴムは、その化
学構造内に有する不飽和結合部分の一部または全部を水
素添加により飽和したものを用いる。そして、好ましく
はこの水素添加により、不飽和結合部分の30〜90%
を飽和したものを用いる。この理由は、後記する図1か
ら明らかなように、この範囲の水素添加率であると、負
極のサイクル特性を顕著に向上させることができるから
である。なお、水素添加率が30%未満においては、電
解液等に対する化学的安定性が低下する結果、サイクル
特性が悪くなり、他方、水素添加率が90%を超える
と、ゴム弾性の低下が大きくなって活物質と集電体の密
着性が不十分になり、長期サイクル特性や高率放電特性
が悪くなる。
Examples of the carboxy-modified rubber which is a main component of the negative electrode according to the present invention include carboxy-modified butadiene rubber, ethylene butadiene rubber, butyl rubber, chloroprene rubber, isoprene rubber, isobutylene-isoprene rubber, vinylpyridine butadiene rubber and the like. These carboxy-modified rubbers are those in which a part or all of the unsaturated bond portion in the chemical structure is saturated by hydrogenation. And preferably, this hydrogenation allows 30 to 90% of the unsaturated bond portion
Is used. The reason for this is that, as is apparent from FIG. 1 described later, when the hydrogenation rate is in this range, the cycle characteristics of the negative electrode can be significantly improved. When the hydrogenation rate is less than 30%, the chemical stability to the electrolyte or the like is reduced, resulting in poor cycle characteristics. On the other hand, when the hydrogenation rate exceeds 90%, the rubber elasticity is greatly reduced. As a result, the adhesion between the active material and the current collector becomes insufficient, and the long-term cycle characteristics and high-rate discharge characteristics deteriorate.

【0032】上記水素添加されたカルボキシ変性ゴムと
しては、接着力や粘弾性の点から、ブタジエン系のゴム
(ブタジエン単独からなるブタジエンゴムを含む)を使
用し、好ましくはエチレン、イソプレン、スチレン、及
びビニルピリジンよりなる群から選択される一種以上
と、ブタジエンとの共重合体が基本骨格となり、且つ当
該共重合体がカルボキシ変性されたものを使用し、より
好ましくはアクリロニトリルとブタジエンとが共重合さ
れたカルボキシ変性ブタジエンゴムを使用するのがよ
い。
As the hydrogenated carboxy-modified rubber, a butadiene rubber (including a butadiene rubber consisting of butadiene alone) is used from the viewpoint of adhesive strength and viscoelasticity, and ethylene, isoprene, styrene, and One or more selected from the group consisting of vinylpyridine and a copolymer of butadiene is used as a basic skeleton, and a carboxy-modified copolymer is used.More preferably, acrylonitrile and butadiene are copolymerized. It is preferable to use carboxy-modified butadiene rubber.

【0033】ブタジエンにエチレン、イソプレン等の1
種以上を共重合させたものは、活物質相互および活物質
と集電体との密着性に優れ、特にアクリロニトリルを共
重合させたブタジエン.アクリロニトリルゴムは、集電
体との親和性に優れる。よって、このような水素添加さ
れたカルボキシ変性ブタジエンゴムを、炭素材料を活物
質とする負極の結着剤として使用すると、炭素材料相互
および炭素材料と集電体とが強力に結着される。しかも
水素添加により電池内成分に対する化学的安定性が高め
てあるので、長期にわたって良好な結着が維持される。
この結果、負極のハイレート放電特性やサイクル特性が
顕著に向上する。
[0033] Butadiene is replaced with 1 such as ethylene or isoprene.
Those obtained by copolymerizing at least one kind are excellent in the adhesion between the active materials and between the active material and the current collector, and particularly, butadiene obtained by copolymerizing acrylonitrile. Acrylonitrile rubber has excellent affinity with the current collector. Therefore, when such a hydrogenated carboxy-modified butadiene rubber is used as a binder for a negative electrode using a carbon material as an active material, the carbon materials and the carbon material are strongly bonded to the current collector. Moreover, since the chemical stability to the components in the battery is increased by hydrogenation, good binding is maintained for a long time.
As a result, the high-rate discharge characteristics and cycle characteristics of the negative electrode are significantly improved.

【0034】更に、上記カルボキシ変性ブタジエンゴム
としては、、エチレン性不飽和ジカルボン酸モノマー及
び/又はエチレン性不飽和ジカルボン酸モノマーの誘導
体を用いてカルボキシ変性されたものを使用するのが好
ましく、このうち、アクリル酸、メタクリル酸、イタコ
ン酸、フマル酸及びマイレン酸などの酸でカルボキシ変
性させたブタジエンゴムが、集電体との密着性を向上さ
せることができる点で、特に好ましい。なお、カルボキ
シ変性の程度は、1〜5%程度であればよい。
Further, as the carboxy-modified butadiene rubber, it is preferable to use a carboxy-modified rubber using an ethylenically unsaturated dicarboxylic acid monomer and / or a derivative of an ethylenically unsaturated dicarboxylic acid monomer. Butadiene rubber modified by carboxy with an acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid is particularly preferred in that the adhesiveness to the current collector can be improved. The degree of carboxy modification may be about 1 to 5%.

【0035】更に、上記のカルボキシ変性ブタジエンゴ
ムのブタジエン含有量が20重量%以上で、かつゲル含
有量を60%以上のものが好ましく、より好ましくはブ
タジエン含有量が40〜80重量%でゲル含有量が60
%以上のものとする。この理由は次のようである。
The carboxy-modified butadiene rubber preferably has a butadiene content of 20% by weight or more and a gel content of 60% or more, more preferably a butadiene content of 40 to 80% by weight and a gel content of 40 to 80% by weight. Quantity is 60
% Or more. The reason is as follows.

【0036】先ず、後記図3に示すように、ブタジエン
含有量を20%以上とすると優れたサイクル特性が得ら
れる。また、後記図4より、ゲル含有量を60%とする
とハイレート放電特性を向上させることができる。よっ
て、ブタジエン含有量を20重量%以上とし、ゲル含有
量を60%以上とするのが好ましい。また、後記図2よ
り、ブタジエン含有量を20〜80%とすると、負極の
剥離強度を顕著に高めることができる。そして、一般に
剥離強度が大きいと、電池組立時や充放電時における活
物質の脱落が防止され、活物質の脱落に起因するエネル
ギー密度の低下が防止される。よって、剥離強度を一層
高めることができる点を考慮した場合、ブタジエン含有
量を20〜80%とし、かつゲル含有量を60%以上と
するのがより好ましい。なお、各図における実験条件等
の詳細は後記する(他の図についても同様)。
First, as shown in FIG. 3 described below, when the butadiene content is 20% or more, excellent cycle characteristics can be obtained. Further, from FIG. 4 described later, when the gel content is set to 60%, the high-rate discharge characteristics can be improved. Therefore, it is preferable that the butadiene content be 20% by weight or more and the gel content be 60% or more. Further, from FIG. 2 described later, when the butadiene content is 20 to 80%, the peel strength of the negative electrode can be significantly increased. In general, when the peel strength is high, the active material is prevented from dropping during battery assembly or charge / discharge, and a decrease in energy density due to the drop of the active material is prevented. Therefore, when considering that the peel strength can be further increased, it is more preferable that the butadiene content be 20 to 80% and the gel content be 60% or more. The details of the experimental conditions and the like in each figure will be described later (the same applies to other figures).

【0037】ここで、上記ゲル含有量とは、全重量に占
めるトルエンに対する不溶成分の割合であり、具体的に
はトルエンを用いたソックスレイ循環抽出法によっても
抽出されない成分(乾燥重量)をゲル成分とし、このゲ
ル成分を全重量(乾燥重量)で割り百分率で表したもの
である。このゲル含有量が大きいことは、分子量の大き
いゴム成分の割合が高いことを意味している。そして、
分子量の大きい成分は、分子量の小さい成分に比較し
て、化学的に安定であると共に、リチウム電解液中で膨
潤し難くなる。そして、後記図4に示す結果によると、
このゲル含有量を60%以上とすれば、ハイレート放電
特性を顕著に向上することができることが確認されてい
る。
Here, the above-mentioned gel content is a ratio of an insoluble component to toluene relative to the total weight, and specifically, a component (dry weight) which is not extracted even by the Soxhlet circulation extraction method using toluene is a gel. The gel component is expressed as a percentage, divided by the total weight (dry weight). The large gel content means that the proportion of the rubber component having a large molecular weight is high. And
Components having a high molecular weight are chemically more stable than components having a low molecular weight, and are less likely to swell in a lithium electrolyte. Then, according to the results shown in FIG.
It has been confirmed that when the gel content is 60% or more, high-rate discharge characteristics can be significantly improved.

【0038】上記した本発明にかかる水素添加のカルボ
キシ変性ゴムゴムの負極への添加量(含有量)として
は、集電体を除く負極重量に対し、好ましくは0.1〜
5.0重量%とし、より好ましくは0.3〜3.0重量
%とする。後記図5に示すように、ゴム系結着剤の含有
量が0.1〜5.0重量%であると、500サイクル後
においても初期容量の70%以上が確保できる。その一
方、含有量が0.1重量%未満、および含有量が5.0
重量%を超えた場合において、サイクル特性が悪くな
る。この理由は、結着剤含有量が0.1〜5.0重量%
では、十分な結着力が得らず、他方、含有量が5.0重
量%を超えると、電極の内部抵抗が増大するためと考え
られる。よって、含有量を0.1〜5.0重量%の範囲
とするのがよいが、内部抵抗の面からは結着剤が少ない
方がよいので、結着力と内部抵抗とのバランスを考慮し
た場合、より好ましくは含有量を0.3〜3.0重量%
とするのがよい。
The addition amount (content) of the hydrogenated carboxy-modified rubber rubber to the negative electrode according to the present invention is preferably 0.1 to 0.1 with respect to the weight of the negative electrode excluding the current collector.
5.0 wt%, more preferably 0.3 to 3.0 wt%. As shown in FIG. 5 described later, when the content of the rubber binder is 0.1 to 5.0% by weight, 70% or more of the initial capacity can be secured even after 500 cycles. On the other hand, the content is less than 0.1% by weight and the content is 5.0
If the amount exceeds 10% by weight, the cycle characteristics deteriorate. The reason is that the binder content is 0.1 to 5.0% by weight.
Thus, it is considered that a sufficient binding force cannot be obtained, and when the content exceeds 5.0% by weight, the internal resistance of the electrode increases. Therefore, the content is preferably in the range of 0.1 to 5.0% by weight, but from the viewpoint of the internal resistance, the smaller the amount of the binder, the better the balance between the binding force and the internal resistance. In this case, the content is more preferably 0.3 to 3.0% by weight.
It is good to do.

【0039】なお、集電体を除く負極重量とは、活物質
本体(炭素材料)と本発明にかかる水素添加のカルボキ
シ変性ゴム、結着補助剤、またはその他の添加成分を含
めた総量(集電体を除く)を意味している。
The weight of the negative electrode excluding the current collector refers to the total amount (collection amount) including the active material main body (carbon material) and the hydrogenated carboxy-modified rubber, binding aid, or other additional components according to the present invention. Excluding electrical conductors).

【0040】また、本発明にかかる水素添加のカルボキ
シ変性ゴムは、通常、溶媒に溶かした状態、或いは乳化
剤によりコロイド状に水中に分散した乳濁液(ラテック
ス)として用い、この状態のカルボキシ変性ゴムを活物
質等と十分に混練した後、集電体に塗布し、更に乾燥さ
せることによりその効果を発揮する。
The hydrogenated carboxy-modified rubber according to the present invention is usually used in a state of being dissolved in a solvent or as an emulsion (latex) which is colloidally dispersed in water with an emulsifier. Is sufficiently kneaded with an active material and the like, applied to a current collector, and further dried to exert its effect.

【0041】ところで、以上に説明した本発明にかかる
水素添加のカルボキシ変性ゴムは、、活物質である炭素
材料の種類を問わずその優れた作用効果を発揮するが、
特に格子面(002)面における面間隔d002 が3.4
0Å未満の黒鉛との組み合わせにおいて顕著な効果が得
られ、3.36Å未満の天然黒鉛との組み合わせにおい
て一層顕著な効果が得られる(後記の表1、表2参
照)。この理由は、黒鉛は自己滑沢性や劈開性を有する
ため、コークスに比べ、結着力が作用し難いためであ
り、なかんずく天然黒鉛は強い自己滑沢性や劈開性を有
し、従来の結着剤では十分に結着させることが困難であ
るからである。
By the way, the hydrogenated carboxy-modified rubber according to the present invention described above exerts its excellent effects regardless of the kind of the carbon material as the active material.
In particular, the plane distance d 002 in the lattice plane (002) plane is 3.4.
A remarkable effect is obtained in combination with graphite of less than 0 °, and a more remarkable effect is obtained in combination with natural graphite of less than 3.36 ° (see Tables 1 and 2 below). The reason for this is that graphite has self-lubricating properties and cleavage properties, so that the binding force is less apt to act than coke. This is because it is difficult for the adhesive to bind sufficiently.

【0042】更にまた、水素添加のカルボキシ変性ゴム
は、負極と正極とをセパレータを介し重ね合わせて巻回
してなる渦巻型発電体を構成する負極に使用した場合に
おいて、一層顕著な作用効果を奏する。この理由は、渦
巻型であると、発電体を作製する際に電極に対し大きな
応力が作用すると共に、電池缶内に収容された後も、集
電体から負極活物質層が剥がれる方向の応力が常に作用
しているため、従来の結着剤では活物質の脱落や集電不
良が発生し、電池容量の低下やサイクル特性およびハイ
レート放電特性が劣化するが、本発明にかかる水素添加
のカルボキシ変性ゴムであると、結着剤に弾力性があ
り、かつこれらの応力に抗して結着を維持し得るだけの
強力な結着力で活物質相互および集電体との結着が図ら
れているからである。
Furthermore, the hydrogenated carboxy-modified rubber exhibits a more remarkable effect when used for a negative electrode constituting a spiral power generator in which a negative electrode and a positive electrode are superposed and wound via a separator. . The reason for this is that, when a spiral type is used, a large stress acts on the electrode when producing the power generator, and the stress in the direction in which the negative electrode active material layer is peeled off from the current collector even after being housed in the battery can. Is constantly acting, the conventional binder causes the active material to fall off or poor current collection, resulting in a decrease in battery capacity and deterioration in cycle characteristics and high-rate discharge characteristics. If it is a modified rubber, the binding agent has elasticity, and the binding between the active material and the current collector is achieved with a strong binding force capable of maintaining the binding against these stresses. Because it is.

【0043】[0043]

【実施例】以下では、上記した本発明の内容を実験に基
づいてより具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described more specifically based on experiments.

【0044】(各種負極の作製)先ず、負極活物質とし
ての炭素材料として、粒子径が1〜30μmの人造黒鉛
(d002 =3.36Å〜3.40Å)を用意した。ま
た、結着剤としてのカルボキシ変性ゴムとして、各種の
ブタジエンゴムを用意した。そして、その各々を用いて
下記製法に従って炭素負極を作製した。
(Preparation of Various Negative Electrodes) First, artificial graphite (d 002 = 3.36 ° to 3.40 °) having a particle diameter of 1 to 30 μm was prepared as a carbon material as a negative electrode active material. Various butadiene rubbers were prepared as the carboxy-modified rubber as a binder. Then, using each of them, a carbon negative electrode was produced according to the following production method.

【0045】炭素負極の製法 天然黒鉛粉末を98重量部と、ブタジエン系ゴムからな
る結着剤(ラテクッスタイプとして使用)を乾燥重量と
して1重量部と、スラリー安定剤としてのカルボキシメ
チルセルロースを1重量部とを、適量の水を加えて混練
し負極活物質スラリーを調製し、このスラリーを厚さ1
8μmの銅箔の両面に塗布し、110℃で3時間減圧乾
燥し、負極となした。基本的にはこのようにして作製し
た炭素負極(詳細な条件は各実験の部に記載)を用い
て、以下の実験を行った。
Preparation of carbon negative electrode 98 parts by weight of natural graphite powder, 1 part by weight of a binder consisting of butadiene rubber (used as latex type) as dry weight, and 1 part by weight of carboxymethyl cellulose as a slurry stabilizer And an appropriate amount of water, and kneaded to prepare a negative electrode active material slurry.
It was applied on both sides of an 8 μm copper foil and dried under reduced pressure at 110 ° C. for 3 hours to form a negative electrode. Basically, the following experiments were performed using the carbon negative electrode produced in this manner (detailed conditions are described in each experimental section).

【0046】〔実験1〕実験1では、アクリロニトリル
ブタジエンゴムに対する水素添加率を変えて、水素添加
率とサイクル特性の関係を調べた。具体的には、次のよ
うに行った。先ず、水素添加率の異なるアクリロニトリ
ルブタジエンゴムを10通り用意し、これらのゴムを用
いて上記製法に従って負極を作製した。次に、この負極
と公知の正極と組み合わせて下記構造のリチウム二次電
池となし、この電池を用いてサイクル特性試験を行っ
た。
[Experiment 1] In Experiment 1, the relationship between the hydrogenation rate and the cycle characteristics was examined by changing the hydrogenation rate for acrylonitrile butadiene rubber. Specifically, the procedure was performed as follows. First, 10 kinds of acrylonitrile butadiene rubbers having different hydrogenation rates were prepared, and these rubbers were used to produce a negative electrode according to the above-mentioned method. Next, a lithium secondary battery having the following structure was formed by combining this negative electrode with a known positive electrode, and a cycle characteristic test was performed using this battery.

【0047】電池構造 先ず、図6を参照しながら、実験1(該当する他の実験
についても同様)で使用したリチウム二次電池の全体構
造を説明する。図6は、電池の断面模式図であり、1は
LiCoO2 から成る公知の正極である。2はブタジエ
ン系ゴムラテックスを結着剤として用い、上記製法に従
って作製した炭素負極である。更に、3は正負電極を離
間するセパレータ、4は正極リード、5は負極リード、
6は正極外部端子、7は電池缶、8は封口板、9は絶縁
パッキングである。
Battery Structure First, the overall structure of the lithium secondary battery used in Experiment 1 (the same applies to other applicable experiments) will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view of a battery, where 1 is a known positive electrode made of LiCoO 2 . Reference numeral 2 denotes a carbon negative electrode manufactured using the butadiene-based rubber latex as a binder according to the above-described method. Further, 3 is a separator for separating the positive and negative electrodes, 4 is a positive electrode lead, 5 is a negative electrode lead,
Reference numeral 6 denotes a positive electrode external terminal, 7 denotes a battery can, 8 denotes a sealing plate, and 9 denotes an insulating packing.

【0048】正極1及び負極2は、セパレータ3を介し
て渦巻き状に巻き取られた状態で、電池缶7内に収容さ
れ、電池缶7内にはリチウム電解液が注液されている。
正極1は正極リード4を介して正極外部端子6に接続さ
れ、負極2は負極リード5を介して負極外部端子を兼ね
る電池缶7に接続された構造をしている。
The positive electrode 1 and the negative electrode 2 are accommodated in a battery can 7 while being spirally wound via a separator 3, and a lithium electrolyte is injected into the battery can 7.
The positive electrode 1 is connected to a positive electrode external terminal 6 via a positive electrode lead 4, and the negative electrode 2 is connected to a battery can 7 also serving as a negative electrode external terminal via a negative electrode lead 5.

【0049】上記正極1は次のようにして作製した。8
00℃で熱処理したリチウム含有二酸化コバルトLiC
oO2 を正極材料とし、この正極材料LiCoO2 と、
導電剤としてのカーボン粉末と、結着剤としてのフッ素
樹脂粉末とを、85:10:5の重量比で混合し、この
混合物をアルミニウム箔からなる正極集電体の両面にに
塗布し、150℃で熱処理して正極となした。
The positive electrode 1 was manufactured as follows. 8
Lithium-containing cobalt dioxide LiC heat-treated at 00 ° C
oO 2 as a cathode material, this cathode material LiCoO 2 ,
A carbon powder as a conductive agent and a fluororesin powder as a binder are mixed at a weight ratio of 85: 10: 5, and this mixture is applied to both surfaces of a positive electrode current collector made of aluminum foil, A heat treatment was performed at ° C. to form a positive electrode.

【0050】非水系電解液としては、エチレンカーボネ
ートと、1,2−ジメトキシエタンとを体積比1:1で
混合し、これにヘキサフルオロリン酸リチウムLiPF
6 を1MOL/L の割合で溶解して用いた。
As the non-aqueous electrolyte, ethylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 and mixed with lithium hexafluorophosphate LiPF.
6 was dissolved at a rate of 1 MOL / L and used.

【0051】セパレータ3としては、厚さ30μmのリ
チウムイオン透過性のポリプロピレン製の微多孔膜(ヘ
キストセラニーズ社製セルカード)を用いた。
As the separator 3, a 30 μm-thick lithium-ion-permeable polypropylene microporous membrane (Cell Card manufactured by Hoechst Celanese Corporation) was used.

【0052】サイクル特性試験法 電池電圧4.1Vに達するまで1.25Aで充電し、更
に電池電圧4.1Vを保持したままで充電電流値を徐々
に20mAまで減じる方法で充電した後、電池電圧が
2.75Vに達するまで1.25Aの電流値で放電する
サイクルを、25℃で500回繰り返すという条件でサ
イクル特性試験を行った。この充放電サイクルにおける
初回放電容量に対する500サイクル後の放電容量の比
率をサイクル特性値とした。
Cycle Characteristics Test Method The battery was charged at 1.25 A until the battery voltage reached 4.1 V, and further charged while gradually reducing the charging current value to 20 mA while maintaining the battery voltage at 4.1 V. A cycle characteristic test was performed under the condition that a cycle of discharging at a current value of 1.25 A until the temperature reached 2.75 V was repeated 500 times at 25 ° C. The ratio of the discharge capacity after 500 cycles to the initial discharge capacity in this charge / discharge cycle was taken as the cycle characteristic value.

【0053】(実験1の結果)図1に水素添加率(%)
とサイクル特性の関係を示した。図1において、水素添
加率が30%以上、90%以下の範囲で、良好なサイク
ル特性が得れることが認められた。ここで、水素添加率
(%)とは、ブタジエン系ゴム中の不飽和結合部分の全
てに水素を付加したときの水素添加率を100とし、実
際に水素を付加した割合を百分率で表したものである。
(Results of Experiment 1) FIG. 1 shows the hydrogenation rate (%).
And the relationship between cycle characteristics. In FIG. 1, it was recognized that good cycle characteristics were obtained when the hydrogenation rate was in the range of 30% or more and 90% or less. Here, the hydrogenation rate (%) is defined as a percentage in which the hydrogenation rate when hydrogen is added to all of the unsaturated bond portions in the butadiene rubber is 100, and the actual hydrogenation rate is expressed as a percentage. It is.

【0054】〔実験2〕実験2では、ブタジエンと他の
成分との共重合体からなる各種のブタジエン系ゴムにつ
いて、ブタジエン含有量の異なるものを用意し、ブタジ
エン共重合体の種類およびブタジエン含有量の違いが負
極剥離強度(Kg/cm2 )に及ぼす影響を調べた。具
体的には、ブタジエン含有量の異なるエチレンブタジエ
ン共重合体、イソプレンブタジエン共重合体、スチレン
ブタジエン共重合体、ビニルピリジンブタジエン共重合
体、及びアクリロニトリルブタジエン共重合体の5種類
を用意し、これらのゴムラテックスを結着剤として用い
て上記製法に従って負極を作製した。そして、これらの
負極について、下記方法により負極に対する剥離強度試
験を行った。
[Experiment 2] In experiment 2, various butadiene rubbers having different butadiene contents were prepared for various butadiene rubbers composed of a copolymer of butadiene and other components, and the kind of butadiene copolymer and butadiene content were prepared. The effect of this difference on the negative electrode peel strength (Kg / cm 2 ) was examined. Specifically, five kinds of ethylene butadiene copolymers having different butadiene contents, isoprene butadiene copolymers, styrene butadiene copolymers, vinylpyridine butadiene copolymers, and acrylonitrile butadiene copolymers are prepared. A negative electrode was prepared according to the above-mentioned method using rubber latex as a binder. And about these negative electrodes, the peeling strength test with respect to the negative electrode was performed by the following method.

【0055】負極に対する剥離強度試験法 負極の表面(活物質層)に粘着テープを張り付け、その
テープの端をバネ秤に取付けて引張力を作用させ、粘着
テープが負極表面から剥がれるときの引張荷重を測定し
た。なお、粘着テープは、十分な接着力を有するものを
使用した。よって、負極表面からの粘着テープの剥がれ
は、集電体から活物質層が剥がれたことを意味する。
Peel Strength Test Method for Negative Electrode A pressure-sensitive adhesive tape was attached to the surface (active material layer) of the negative electrode, and the end of the tape was attached to a spring balance to apply a tensile force. Was measured. The adhesive tape used had a sufficient adhesive strength. Therefore, peeling of the pressure-sensitive adhesive tape from the negative electrode surface means that the active material layer was peeled from the current collector.

【0056】(実験2の結果)実験結果を図2に示し
た。図2において、何れのブタジエン共重合体ともブタ
ジエン含有量が20〜80%の範囲内において、より大
きい負極剥離強度を示した。そして、このなかでも特に
アクリロニトリルブタジエン共重合体(アクリロニトリ
ルブタジエンゴム)の剥離強度が大きかった。
(Results of Experiment 2) The results of the experiment are shown in FIG. In FIG. 2, all butadiene copolymers exhibited higher negative electrode peel strengths when the butadiene content was in the range of 20 to 80%. Among these, the peel strength of the acrylonitrile-butadiene copolymer (acrylonitrile-butadiene rubber) was particularly high.

【0057】〔実験3〕実験3では、上記実験を踏ま
え、結着剤としてアクリロニトリルブタジエン共重合体
を用い、アクリロニトリルブタジエン共重合体における
ブタジエン含有量の違いがサイクル特性に及ぼす影響を
調べた。なお、実験方法及びサイクル特性の測定方法
は、上記実験1と同様である。その結果を図3に示し
た。図3において、アクリロニトリルブタジエン共重合
体のブタジエン含有量が20重量%を超えると、サイク
ル特性が顕著に向上することが認められた。
[Experiment 3] In Experiment 3, based on the above experiment, an acrylonitrile-butadiene copolymer was used as a binder, and the effect of a difference in butadiene content in the acrylonitrile-butadiene copolymer on cycle characteristics was examined. The experimental method and the method for measuring the cycle characteristics are the same as those in the above-described experiment 1. The result is shown in FIG. FIG. 3 shows that when the butadiene content of the acrylonitrile-butadiene copolymer exceeds 20% by weight, the cycle characteristics are significantly improved.

【0058】〔実験4〕実験4では、アクリロニトリル
ブタジエン共重合体を用い、この共重合体のゲル含有量
とハイレート放電特性の関係を調べた。ハイレート放電
特性の測定は、下記方法に従って行い、負極の作製方法
等は上記と同様に行った。
[Experiment 4] In Experiment 4, an acrylonitrile-butadiene copolymer was used, and the relationship between the gel content of the copolymer and high-rate discharge characteristics was examined. The measurement of the high-rate discharge characteristics was performed according to the following method, and the method for manufacturing the negative electrode was the same as described above.

【0059】ハイレート放電特性試験法 1.25A(1C)の電流値で4.1Vまで充電(20
mAカットオフ充電)した後、0.25A(0.2C)
の電流値で電池電圧が2.75Vとなるまで放電したと
きの放電容量C1 と、2.5A(2C)の電流値で電池
電圧が2.75Vとなるまで放電したときの放電容量C
2 を測定した。そして、C1 に対するC 2 の比を求め、
この値(C2 /C1 )をハイレート放電特性値とした。
[0059]High-rate discharge characteristics test method Charged to 4.1 V at a current value of 1.25 A (1 C) (20
0.25A (0.2C)
At a current value of 2.75 V until the battery voltage reaches 2.75 V
Discharge capacity C1And a battery with a current value of 2.5A (2C)
Discharge capacity C when discharging until the voltage reaches 2.75 V
TwoWas measured. And C1C for TwoFind the ratio of
This value (CTwo/ C1) Is the high-rate discharge characteristic value.

【0060】(実験結果)図4に、ゲル含有量とハイレ
ート放電特性の関係を示した。図4において、ゲル含有
量が50%を超えると、ハイレート放電特性の改善程度
が大きくなり、60%以上において、0.97程度の高
いハイレート放電特性値が得られた。この結果により、
ゴム系結着剤のゲル含有量(%)を60%以上とする
と、高いハイレート放電特性が得られることが実証され
た。
(Experimental Results) FIG. 4 shows the relationship between the gel content and the high-rate discharge characteristics. In FIG. 4, when the gel content exceeds 50%, the degree of improvement in the high-rate discharge characteristics increases, and at 60% or more, a high-rate discharge characteristic value of about 0.97 is obtained. With this result,
It was demonstrated that when the gel content (%) of the rubber-based binder is 60% or more, high high-rate discharge characteristics can be obtained.

【0061】なお、前述したように、ゲル含有量が少な
いゴム系結着剤は、ゲル含有量の多い結着剤に比べ低分
子量成分の割合が大きい。よって、ゲル含有量の少ない
ゴム系結着剤を用いた負極では、非水系電解液により活
物質層が膨潤し、負極活物質相互および負極活物質層と
集電体との密着性が悪くなる。そして、その結果として
集電効率が低下し、ハイレート放電特性が悪くなるもの
と考えられる。
As described above, the rubber binder having a low gel content has a higher proportion of low molecular weight components than the binder having a high gel content. Therefore, in the negative electrode using the rubber-based binder having a low gel content, the active material layer swells due to the non-aqueous electrolyte, and the adhesion between the negative electrode active materials and between the negative electrode active material layer and the current collector deteriorates. . Then, as a result, it is considered that the current collection efficiency decreases and the high-rate discharge characteristics deteriorate.

【0062】〔実験5〕実験5では、アクリロニトリル
ブタジエン共重合体を用い、ブタジエン系ゴムの使用量
(集電体を除く負極重量に対する含有量を重量%で表
示)を変えた負極を作製し、サイクル特性の関係を調べ
た。測定方法、測定条件等は実験1と同様である。
[Experiment 5] In Experiment 5, an acrylonitrile-butadiene copolymer was used to produce a negative electrode in which the amount of butadiene-based rubber used was changed (the content relative to the weight of the negative electrode excluding the current collector is expressed in% by weight). The relationship between cycle characteristics was investigated. The measurement method and measurement conditions are the same as those in Experiment 1.

【0063】(実験結果)図5に、集電体を除く負極に
占める結着剤含有量(%)とサイクル特性の関係を示し
た。図5から明らかなごとく、アクリロニトリルブタジ
エン共重合体の含有量が0.3重量%〜5.0重量%の
範囲において、サイクル特性が顕著に向上した。
(Experimental Results) FIG. 5 shows the relationship between the binder content (%) in the negative electrode excluding the current collector and the cycle characteristics. As is clear from FIG. 5, when the content of the acrylonitrile-butadiene copolymer was in the range of 0.3% by weight to 5.0% by weight, the cycle characteristics were significantly improved.

【0064】但し、ここでは、結着剤含有量(%)とハ
イレート放電特性の関係が示してないが、一般にゴム系
結着剤の含有量が増えると、電極の内部抵抗が上昇する
結果、ハイレート放電特性が悪くなる。よって、十分な
結着力が得られる限り結着剤含有量を少なくするのが好
ましいが、図5において、集電体を除く負極重量に対す
る含有量(%)が3.0%を超えても更なるサイクル特
性の向上がないことが認められる。よって、本発明にか
かるゴム系結着剤の含有量としては、より好ましくは
0.3〜3.0重量%とするのがよい。
Here, the relationship between the binder content (%) and the high-rate discharge characteristics is not shown, but in general, when the content of the rubber-based binder increases, the internal resistance of the electrode increases. High-rate discharge characteristics deteriorate. Therefore, it is preferable to reduce the binder content as long as a sufficient binding force can be obtained. However, in FIG. 5, even if the content (%) with respect to the negative electrode weight excluding the current collector exceeds 3.0%, It is recognized that there is no improvement in the cycle characteristics. Therefore, the content of the rubber binder according to the present invention is more preferably 0.3 to 3.0% by weight.

【0065】〔実験6〕実験6では、負極活物質(炭素
材料)として粒子径が1〜30μmの天然黒鉛、人造黒
鉛、コークスを用意した。他方、酸変性剤としてイタコ
ン酸、フマル酸、マレイン酸を用いて各々酸変性させ、
かつ水素添加率を45%とした本発明にかかるアクリロ
ニトリルブタジエン共重合体(ブタジエン含有量60
%、ゲル含有量95%)を用意した。そして、上記炭素
材料と上記アクリロニトリルブタジエン共重合体(アク
リロニトリルブタジエンゴム)用いて、上記製法に従っ
て各種の負極を作製し、更に実験2の方法に従って各負
極の剥離強度を測定し、炭素材料の種類および酸変性剤
の種類と負極剥離強度との関係を調べた。
[Experiment 6] In Experiment 6, natural graphite, artificial graphite and coke having a particle diameter of 1 to 30 μm were prepared as a negative electrode active material (carbon material). On the other hand, itaconic acid, fumaric acid, each acid-modified using maleic acid as an acid denaturing agent,
The acrylonitrile butadiene copolymer of the present invention (butadiene content 60
%, Gel content 95%). Then, using the carbon material and the acrylonitrile-butadiene copolymer (acrylonitrile-butadiene rubber), various negative electrodes were produced according to the above-described method, and the peel strength of each negative electrode was measured according to the method of Experiment 2, and the type of carbon material and The relationship between the type of acid modifier and the peel strength of the negative electrode was examined.

【0066】なお、各炭素材料の格子面(002)面に
おけるd値(d002 )は、天然黒鉛が3.36Å未満、
人造黒鉛は3.36Å〜3.40Å、コークスは3.4
0Å〜3.60Åである。また、酸変性に際しては、ア
クリロニトリルブタジエン共重合体と酸変性剤との総重
量に対し10%の酸変性剤を用いた。
The d value (d 002 ) of each carbon material on the lattice plane (002) plane is less than 3.36 ° for natural graphite,
Artificial graphite is 3.36Å3.40Å, coke is 3.4
0 ° to 3.60 °. In the acid modification, 10% of the acid modifier was used based on the total weight of the acrylonitrile butadiene copolymer and the acid modifier.

【0067】他方、比較対象として未変性のもの、アク
リル酸またはメタクリル酸で酸変性したもの、およびア
クリロニトリルブタジエンゴムに代えて、ポリフッ化ビ
ニリデン(PVdF)を5重量%用いて各種の炭素負極
を上記と同様にして作製した。そして、この炭素負極に
ついても同様な剥離試験を行った。なお、ポリフッ化ビ
ニリデンは、N−メチル−2−ピロリドンに溶解して用
いた。
On the other hand, various carbon anodes were prepared by using 5% by weight of polyvinylidene fluoride (PVdF) instead of unmodified, acid-modified with acrylic acid or methacrylic acid, and acrylonitrile-butadiene rubber for comparison. It was produced in the same manner as described above. Then, a similar peeling test was performed on the carbon negative electrode. In addition, polyvinylidene fluoride was used by dissolving it in N-methyl-2-pyrrolidone.

【0068】(実験結果)表1、表2に実験結果を示し
た。表1、2から明らかなように、結着剤としてポリフ
ッ化ビニリデンを用いた各種負極は、その他の負極に比
べ大幅に剥離強度が小さかった。また、結着剤として酸
変性したアクリロニトリルブタジエンゴムを用いた各種
負極は何れもポリフッ化ビニリデンを用いた負極に比較
して、剥離強度が大きかった。更に、イタコン酸、フマ
ル酸、マレイン酸などの不飽和ジカルボン酸で酸変性し
たアクリロニトリルブタジエンゴムを用いた本発明例負
極は、天然黒鉛、人造黒鉛、コークスとも、ポリフッ化
ビニリデンを用いた比較例に比べ顕著に剥離強度が大き
く、またアクリル酸、メタクリル酸で酸変性したアクリ
ロニトリルブタジエンゴムに比較した場合においても、
大幅な剥離強度の向上が認められた。
(Experimental Results) Tables 1 and 2 show the experimental results. As is clear from Tables 1 and 2, the various negative electrodes using polyvinylidene fluoride as the binder had a significantly lower peel strength than the other negative electrodes. Further, all of the various negative electrodes using the acid-modified acrylonitrile butadiene rubber as the binder had higher peeling strength than the negative electrode using polyvinylidene fluoride. Furthermore, the negative electrode of the present invention using acrylonitrile butadiene rubber acid-modified with an unsaturated dicarboxylic acid such as itaconic acid, fumaric acid, and maleic acid is a natural graphite, artificial graphite, and coke, both of which are comparative examples using polyvinylidene fluoride. The peel strength is remarkably large compared to acrylic acid, acrylonitrile butadiene rubber acid-modified with methacrylic acid,
Significant improvement in peel strength was observed.

【0069】そして、天然黒鉛負極において、特に顕著
な剥離強度の向上(PVdFに対し2869%の向上)
が認められた。これらの結果により、本発明の優れた作
用効果が確認された。
In the case of a natural graphite negative electrode, a particularly remarkable improvement in peel strength (2869% improvement over PVdF)
Was observed. From these results, the excellent effects of the present invention were confirmed.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【発明の効果】前述の如く、リチウム二次電池用負極に
使用される活物質としての炭素材料は、結着剤が作用し
難く、特に天然黒鉛はリチウムイオンが挿入脱離するの
に好都合な層間構造を有する反面、自己滑沢性や劈開性
が強いので、結着力不足に起因する集電効率の低下が生
じやすい。
As described above, a carbon material as an active material used for a negative electrode for a lithium secondary battery is hardly affected by a binder, and natural graphite is particularly advantageous for lithium ions to be inserted and desorbed. Although it has an interlayer structure, it has strong self-lubricating properties and cleavage properties, so that the current collecting efficiency is likely to be reduced due to insufficient binding force.

【0073】このため、従来の炭素負極では、炭素材料
のもつ優れたイオン挿入脱離性を十分に活用できていな
かったが、本発明によると、長期サイクルによっても活
物質の脱落や集電効率の低下を抑制できるので、炭素材
料の持つ発電能力、なかんずく天然黒鉛の持つ優れた発
電能力を十分に引き出し得る。
For this reason, in the conventional carbon anode, the excellent ion insertion / desorption property of the carbon material could not be fully utilized. However, according to the present invention, the active material fell off and the current collection efficiency was prolonged even in a long cycle. Therefore, the power generation capability of the carbon material, in particular, the excellent power generation capability of the natural graphite can be sufficiently obtained.

【0074】即ち、本発明は、負極剥離強度、ハイレー
ト放電特性およびサイクル特性に格段に優れたリチウム
二次電池用負極が提供できるという優れた効果を奏す
る。
That is, the present invention has an excellent effect that it is possible to provide a negative electrode for a lithium secondary battery having remarkably excellent negative electrode peel strength, high rate discharge characteristics and cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ブタジエン系ゴムに対する水素添加率(%)と
サイクル特性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the hydrogenation rate (%) for a butadiene rubber and cycle characteristics.

【図2】各種ブタジエン共重合体におけるブタジエン含
有量(%)と負極剥離強度の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the butadiene content (%) of various butadiene copolymers and the negative electrode peel strength.

【図3】ブタジエン系ゴムのブタジエン含有量とサイク
ル特性の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a butadiene content of a butadiene rubber and cycle characteristics.

【図4】ブタジエン系ゴムのゲル含有量(%)とハイレ
ート放電特性との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the gel content (%) of butadiene rubber and high-rate discharge characteristics.

【図5】集電体を除く負極重量中に占めるゴム系結着剤
の含有量(%)とサイクル特性との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between the content (%) of a rubber binder in the weight of a negative electrode excluding a current collector and cycle characteristics.

【図6】サイクル特性試験、ハイレート放電特性試験に
用いた試験用リチウム二次電池の断面模式図である。
FIG. 6 is a schematic cross-sectional view of a test lithium secondary battery used in a cycle characteristic test and a high-rate discharge characteristic test.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する粉末状
の炭素材料から成る負極活物質と、負極集電体と、前記
負極活物質を結着するための結着剤とを備えたリチウム
二次電池用負極において、 上記結着剤として、水素添加されたカルボキシ変性ゴム
が用いられていることを特徴とするリチウム二次電池用
負極。
1. A lithium secondary battery comprising: a negative electrode active material made of a powdery carbon material that occludes and releases lithium ions; a negative electrode current collector; and a binder for binding the negative electrode active material. A negative electrode for a lithium secondary battery, wherein a hydrogenated carboxy-modified rubber is used as the binder.
【請求項2】 上記カルボキシ変性ゴムにおける水素添
加率が、30〜90%である、請求項1記載のリチウム
二次電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the carboxy-modified rubber has a hydrogenation ratio of 30 to 90%.
【請求項3】 上記カルボキシ変性ゴムは、ブタジエン
を含むカルボキシ変性ブタジエンゴムである、請求項1
または2記載のリチウム二次電池用負極。
3. The carboxy-modified rubber according to claim 1, wherein the carboxy-modified rubber is a carboxy-modified butadiene rubber containing butadiene.
Or the negative electrode for a lithium secondary battery according to 2.
【請求項4】 上記カルボキシ変性ブタジエンゴムは、 エチレン、イソプレン、スチレン、及びビニルピリジン
よりなる群から選択される一種以上と、ブタジエンとの
共重合体が基本骨格となり、 且つ当該共重合体がカルボキシ変性されている、 請求項3記載のリチウム二次電池用負極。
4. The carboxy-modified butadiene rubber comprises a copolymer of butadiene and one or more members selected from the group consisting of ethylene, isoprene, styrene and vinylpyridine as a basic skeleton, and the copolymer is a carboxy-modified butadiene rubber. The negative electrode for a lithium secondary battery according to claim 3, wherein the negative electrode is modified.
【請求項5】 上記カルボキシ変性ブタジエンゴムは、 アクリロニトリルとブタジエンとの共重合体が基本骨格
となり、 且つ当該共重合体がカルボキシ変性されている、 請求項3記載のリチウム二次電池用負極。
5. The negative electrode for a lithium secondary battery according to claim 3, wherein the carboxy-modified butadiene rubber has a basic skeleton of a copolymer of acrylonitrile and butadiene, and the copolymer is carboxy-modified.
【請求項6】 上記カルボキシ変性ブタジエンゴムにお
けるブタジエンの含有量が、20重量%以上であり、且
つゲル含有量が、60%以上である、 請求項4または5記載のリチウム二次電池用負極。
6. The negative electrode for a lithium secondary battery according to claim 4, wherein the butadiene content in the carboxy-modified butadiene rubber is 20% by weight or more, and the gel content is 60% or more.
【請求項7】 上記カルボキシ変性ブタジエンゴムにお
けるブタジエンの含有量が、20〜80重量%であり、
且つゲル含有量が、60%以上である、 請求項4または5記載のリチウム二次電池用負極。
7. The carboxy-modified butadiene rubber has a butadiene content of 20 to 80% by weight,
The negative electrode for a lithium secondary battery according to claim 4, wherein the gel content is 60% or more.
【請求項8】 上記カルボキシ変性ブタジエンゴムは、 エチレン性不飽和ジカルボン酸モノマー及び/又はエチ
レン性不飽和ジカルボン酸モノマーの誘導体を用いてカ
ルボキシ変性されている、請求項3ないし7記載のリチ
ウム二次電池用負極。
8. The lithium secondary according to claim 3, wherein the carboxy-modified butadiene rubber is carboxy-modified using an ethylenically unsaturated dicarboxylic acid monomer and / or a derivative of an ethylenically unsaturated dicarboxylic acid monomer. Negative electrode for battery.
【請求項9】 上記エチレン性不飽和ジカルボン酸モノ
マーは、 アクリル酸、メタクリル酸、イタコン酸、フマル酸及び
マイレン酸よりなる群から選択される一種以上の酸であ
る、 請求項8記載のリチウム二次電池用負極。
9. The lithium secondary battery according to claim 8, wherein the ethylenically unsaturated dicarboxylic acid monomer is at least one acid selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid. Negative electrode for secondary battery.
【請求項10】 上記集電体を除く負極総重量に対する
カルボキシ変性ブタジエンゴムの含有量が、0.1〜
5.0重量%である、請求項3ないし9記載のリチウム
二次電池用負極。
10. The content of the carboxy-modified butadiene rubber relative to the total weight of the negative electrode excluding the current collector is 0.1 to 10%.
The negative electrode for a lithium secondary battery according to claim 3, wherein the amount is 5.0% by weight.
【請求項11】 上記集電体を除く負極総重量に対する
カルボキシ変性ブタジエンゴムの含有量が、0.3〜
3.0重量%である、請求項3ないし9記載のリチウム
二次電池用負極。
11. The content of the carboxy-modified butadiene rubber in the total weight of the negative electrode excluding the current collector is 0.3 to 0.3.
The negative electrode for a lithium secondary battery according to claim 3, wherein the amount is 3.0% by weight.
【請求項12】 上記炭素材料が、格子面(002)面
におけるd値(d00 2 )が、3.40Å未満の黒鉛であ
る、請求項1ないし11記載のリチウム二次電池用負
極。
12. The negative electrode for a lithium secondary battery according to claim 1, wherein the carbon material is graphite having a d value (d 00 2 ) of less than 3.40 ° on a lattice plane (002) plane.
【請求項13】 上記炭素材料が、格子面(002)面
におけるd値(d00 2 )が、3.36Å未満の天然黒鉛
である、請求項1ないし11記載のリチウム二次電池用
負極。
13. The negative electrode for a lithium secondary battery according to claim 1, wherein the carbon material is a natural graphite having a d value (d 00 2 ) of less than 3.36 ° on a lattice (002) plane.
【請求項14】 上記リチウム二次電池用負極は、負極
と正極とをセパレータを介し重ね合わせて巻回した渦巻
き型発電体の負極として使用されている、請求項12ま
たは13記載のリチウム二次電池用負極。
14. The lithium secondary battery according to claim 12, wherein the negative electrode for a lithium secondary battery is used as a negative electrode of a spiral type power generator in which a negative electrode and a positive electrode are overlapped and wound with a separator interposed therebetween. Negative electrode for battery.
JP9275562A 1997-10-08 1997-10-08 Negative electrode for lithium secondary battery Pending JPH11111268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275562A JPH11111268A (en) 1997-10-08 1997-10-08 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275562A JPH11111268A (en) 1997-10-08 1997-10-08 Negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11111268A true JPH11111268A (en) 1999-04-23

Family

ID=17557187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275562A Pending JPH11111268A (en) 1997-10-08 1997-10-08 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11111268A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096463A1 (en) * 2010-02-03 2011-08-11 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
WO2012057324A1 (en) * 2010-10-28 2012-05-03 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
WO2013018862A1 (en) * 2011-08-04 2013-02-07 日本ゼオン株式会社 Composite particles for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013122914A (en) * 2011-11-11 2013-06-20 Mitsubishi Rayon Co Ltd Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery
WO2018003636A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP2019527457A (en) * 2016-07-26 2019-09-26 ハッチンソンHutchinson Lithium ion battery cell anode, method for producing the same, and battery including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011096463A1 (en) * 2010-02-03 2013-06-10 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium secondary battery
WO2011096463A1 (en) * 2010-02-03 2011-08-11 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JPWO2012057324A1 (en) * 2010-10-28 2014-05-12 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
CN103283061A (en) * 2010-10-28 2013-09-04 日本瑞翁株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
WO2012057324A1 (en) * 2010-10-28 2012-05-03 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
JP5803931B2 (en) * 2010-10-28 2015-11-04 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
US9437856B2 (en) 2010-10-28 2016-09-06 Zeon Corporation Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
EP2634839A4 (en) * 2010-10-28 2017-01-04 Zeon Corporation Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
WO2013018862A1 (en) * 2011-08-04 2013-02-07 日本ゼオン株式会社 Composite particles for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013122914A (en) * 2011-11-11 2013-06-20 Mitsubishi Rayon Co Ltd Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery
WO2018003636A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JPWO2018003636A1 (en) * 2016-06-29 2019-04-18 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2019527457A (en) * 2016-07-26 2019-09-26 ハッチンソンHutchinson Lithium ion battery cell anode, method for producing the same, and battery including the same

Similar Documents

Publication Publication Date Title
JP4461498B2 (en) Nonaqueous electrolyte secondary battery and negative electrode thereof
KR101354050B1 (en) A Binder for Lithium Ion Rechargeable Battery Cells
JP4986629B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4859373B2 (en) Non-aqueous electrolyte secondary battery
JP6897253B2 (en) Negative electrode for lithium ion secondary battery
WO2022037092A1 (en) Current collector, pole piece and battery
US20030104280A1 (en) Active electrode composition with graphite additive
JP2006339093A (en) Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP5325413B2 (en) Binder for electrochemical cell
JP5082406B2 (en) Method for producing negative electrode of nonaqueous electrolyte secondary battery
JP5736049B2 (en) Non-aqueous electrolyte secondary battery
JPH10144298A (en) Lithium secondary battery
CN109860597A (en) A kind of aqueous compound binding agent of lithium ion battery
JPH11111300A (en) Negative electrode for nonaqueous secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH11111268A (en) Negative electrode for lithium secondary battery
JP2000011995A (en) Positive electrode plate for secondary battery and manufacture thereof
JPH11126600A (en) Lithium ion secondary battery
JPH10275615A (en) Negative electrode for lithium ion secondary battery
JP4725163B2 (en) Nonaqueous electrolyte secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP2012129083A (en) Nonaqueous electrolyte secondary battery
JP3621031B2 (en) Anode for non-aqueous electrolyte secondary battery
CN112652761A (en) Ternary lithium ion battery capable of discharging to 0V and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207