JP3621031B2 - Anode for non-aqueous electrolyte secondary battery - Google Patents

Anode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3621031B2
JP3621031B2 JP2000267627A JP2000267627A JP3621031B2 JP 3621031 B2 JP3621031 B2 JP 3621031B2 JP 2000267627 A JP2000267627 A JP 2000267627A JP 2000267627 A JP2000267627 A JP 2000267627A JP 3621031 B2 JP3621031 B2 JP 3621031B2
Authority
JP
Japan
Prior art keywords
negative electrode
butadiene rubber
modified styrene
styrene butadiene
particulate modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000267627A
Other languages
Japanese (ja)
Other versions
JP2002075377A (en
Inventor
剛平 鈴木
和典 久保田
基 川村
明 黒田
政雄 福永
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000267627A priority Critical patent/JP3621031B2/en
Priority to US09/845,265 priority patent/US6773838B2/en
Priority to DE2001630296 priority patent/DE60130296T2/en
Priority to EP20040018679 priority patent/EP1478039B1/en
Priority to EP20010304270 priority patent/EP1184921B1/en
Priority to DE60134432T priority patent/DE60134432D1/en
Priority to EP20040077458 priority patent/EP1492182B1/en
Priority to DE2001629482 priority patent/DE60129482T2/en
Priority to CNB011211687A priority patent/CN1233056C/en
Priority to CNB2004100699563A priority patent/CN1253955C/en
Priority to CNB2004100699578A priority patent/CN1249834C/en
Publication of JP2002075377A publication Critical patent/JP2002075377A/en
Priority to US10/883,727 priority patent/US7147964B2/en
Priority to US10/943,839 priority patent/US7150937B2/en
Application granted granted Critical
Publication of JP3621031B2 publication Critical patent/JP3621031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用負極に関する。
【0002】
【従来の技術】
近年、携帯用電子機器の電源として利用されている非水電解質電池は、正極にリチウム含有遷移金属酸化物を用い、負極にリチウムの吸蔵・放出が可能な炭素材料を用いているため、高出力で高エネルギー密度である。ここで、これらの電池が有する電極は、活物質同士を結合するための結着剤を含んでおり、負極には、結着剤としてポリビニリデンジフルオライド(PVDF)やスチレンブタジエンゴム(SBR)などが用いられている。
【0003】
しかし、これらの結着剤を用いた場合、負極に充分な強度を付与し、かつ、充放電反応に寄与する活物質の表面積を充分に確保することは困難である。このことは、高率放電特性、低温特性、サイクル寿命等のバランスのよい電池を得る妨げとなっている。また、充放電反応に寄与する活物質の表面積が小さくなって活物質がLiを充分に吸蔵できなくなると、活物質表面に金属Liの析出が起こり、電池の安全性が損なわれる。
【0004】
【発明が解決しようとする課題】
本発明は、負極に含まれる結着剤の量と負極に含まれる活物質が有する総表面積との関係を制御しつつ、結着剤として粒子状変性スチレンブタジエンゴムを用いることにより、効果的に負極の強度および充放電反応に寄与する活物質の表面積を確保することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、活物質として炭素材料を含み、結着剤として粒子状変性スチレンブタジエンゴムを含む非水電解質二次電池用負極であって、前記炭素材料の比表面積は、2〜5m 2 /gであり、前記粒子状変性スチレンブタジエンゴムの量は、前記炭素材料100重量部に対して、0.6〜1.7重量部であり、前記粒子状変性スチレンブタジエンゴムは、コアシェル型粒子からなり、前記コアシェル型粒子は、コア部にアクリロニトリル単位を含み、前記負極が含有する前記炭素材料の表面積が、前記粒子状変性スチレンブタジエンゴム1gあたり300〜600m2である非水電解質二次電池用負極に関する。
【0006】
記粒子状変性スチレンブタジエンゴムのFT−IR測定で得られる吸収スペクトルにおいて、アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度は、ブタジエン単位のC=C伸縮振動に基づく吸収強度の0.1〜2倍であることが好ましい。
ここで、吸収強度とは、スペクトルのベースラインからみた吸収ピークの高さをいう。
【0007】
前記粒子状変性スチレンブタジエンゴムの平均粒径の好適範囲は、0.05〜0.4μmである
前記負極は、前記炭素材料100重量部あたり、0.7〜1.2重量部の増粘剤を含んでいることが好ましい。
前記増粘剤は、カルボキシメチルセルロース(CMC)であることが好ましい。
前記負極に含まれる前記粒子状変性スチレンブタジエンゴムおよび前記増粘剤の合計量は、前記炭素材料100重量部あたり、合計1.3〜2.4重量部であることが好ましい。
【0008】
【発明の実施の形態】
本発明の負極は、負極合剤と芯材(集電体)とからなり、例えば負極合剤を芯材の表面に塗着または芯材が有する細孔に充填し、圧延し、切断することで得られる。芯材としては、銅箔などの金属箔やパンチングメタルなどが用いられる。電池の小型軽量化の観点から、芯材の厚さは一般に8〜20μm程度であり、負極の厚さは一般に80〜200μmである。負極合剤は、負極活物質、結着剤としての粒子状変性スチレンブタジエンゴム、増粘剤などを所定の割合で配合して調製される。
【0009】
負極活物質としては、黒鉛粉末などの炭素材料が用いられる。なかでも塊状人造黒鉛、鱗片状黒鉛、球状人造黒鉛などが好ましく用いられる。黒鉛粉末の平均粒径は、例えば20〜30μmである。
【0010】
粒子状変性スチレンブタジエンゴムは、アクリロニトリル単位、スチレン単位およびブタジエン単位を含む共重合体からな、ゴム弾性を有するコア部分を有するコアシェル型粒子である。コア部分は、例えばアクリロニトリル単位、スチレン単位、ブタジエン単位、アクリレート単位などを含む共重合体を適当な架橋剤で架橋させたものが好ましい。また、シェル部分は、粘性の高い重合体であればよく、例えばアクリレート単位、スチレン単位などを含む共重合体が好ましい。
【0011】
コアシェル型粒子は、例えば架橋剤を含むコア部分の原料モノマー混合物を重合させてラテックスを製造した後、ラテックス粒子にシェル部分の原料モノマー混合物をグラフト重合させる二段階の工程によって製造できる。このときコア部分の原料モノマーにアクリロニトリルを含有させると、弾性率の高いコア部分を得ることができる。
【0012】
前記粒子状変性スチレンブタジエンゴムは、そのFT−IR測定で得られる吸収スペクトルにおいて、アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度が、ブタジエン単位のC=C伸縮振動に基づく吸収強度の0.1〜2倍となる程度にアクリロニトリル単位とブタジエン単位を含んでいることが好ましい。アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度が、ブタジエン単位のC=C伸縮振動に基づく吸収強度の0.1倍未満になると、粒子状変性スチレンブタジエンゴムを用いても充分な強度の負極が得られなくなったり、活物質の表面が結着剤で覆われすぎたりする。一方、アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度が、ブタジエン単位のC=C伸縮振動に基づく吸収強度の2倍をこえると、粒子状変性スチレンブタジエンゴムのゴム弾性が低下し、芯材から合剤が剥離しやすくなる。
【0013】
粒子状変性スチレンブタジエンゴムの平均粒径は、少量の使用で充分な強度の負極を得ることができることなどから、0.05〜0.4μmであることが好ましい。平均粒径が小さすぎると、活物質の表面の大部分が粒子状変性スチレンブタジエンゴムで被覆されてしまい、大きすぎると、活物質粒子間の距離が大きくなって負極内部の導電性が低下する。
【0014】
負極合剤における粒子状変性スチレンブタジエンゴムの配合量は、負極活物質である炭素材料100重量部に対して、0.6〜1.7重量部が適量である。粒子状変性スチレンブタジエンゴムの量が少なすぎると、充分な強度の負極が得られず、芯材から合剤が剥がれたりすることがあり、多すぎると、活物質の反応表面積が小さくなって高率放電特性がわるくなる。
なお、従来のPVDFの場合、負極合剤における好適配合量は、負極活物質100重量部に対して、5〜10重量部であり、SBRの場合でも2〜5重量部である。従って、本発明の負極は、結着剤の含有量が従来に比べて著しく低減されている。
【0015】
負極が含有する炭素材料の表面積は、負極が含有する粒子状変性スチレンブタジエンゴム1gあたり300〜600mである必要がある。負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が300m未満になると、余剰の結着剤が活物質を被覆して電池の充電特性が低下するため、サイクル寿命が短くなってしまう。また、負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が600mをこえると、結着剤の不足により合剤層と芯材との密着性が低下する。また、炭素材料の比表面積は、2〜5m/gであることが好ましい。
【0016】
負極合剤に用いる増粘剤としては、CMCなどのセルロース系増粘剤がよく用いられる。負極合剤における増粘剤の配合量は、負極活物質である炭素材料100重量部に対して、0.7〜1.2重量部が適量である。増粘剤の配合量が少なすぎると、ペースト状の負極合剤が得られず、芯材から合剤が剥がれやすくなり、多すぎると、活物質が増粘剤で覆われてしまい、その反応表面積が小さくなる。
【0017】
ただし、粒子状変性スチレンブタジエンゴムおよび増粘剤の合計量は、負極活物質である炭素材料100重量部に対して、1.3〜2.4重量部である必要がある。前記合計量が1.3重量部未満になると、活物質粒子同士を充分に結着させることができず、負極の強度が不充分となり、多すぎると、活物質が粒子状変性スチレンブタジエンゴムや増粘剤で覆われてしまい、その反応表面積が小さくなる。
【0018】
FT−IR測定において、粒子状変性スチレンブタジエンゴムの吸収スペクトルは、例えば粒子状変性スチレンブタジエンゴムをKBr板上に塗布したものを用いて測定すればよい。ここで、一般にブタジエン単位のC=C伸縮振動に基づく吸収は、880〜940cm−1付近に見られ、アクリロニトリル単位のC≡N伸縮振動に基づく吸収は、2200〜2280cm−1付近に見られる。
【0019】
【実施例】
次に、本発明を実施例に基づいて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
【0020】
《実施例1〜5および比較例1〜8》
電池A〜Mを以下に示すように作製し、その特性を評価した。
【0021】
(i)負極の作製
表1に示す性状の人造黒鉛を活物質として用い、表1に示す結着剤を用いて、各電池の負極に用いる負極合剤を調製した。活物質である人造黒鉛の比表面積、負極合剤における活物質100重量部に対する結着剤の配合量、および合剤に含まれる活物質の総表面積を結着剤の配合量で割った値を表1に示す。ただし、結着剤としてPVDFを用いた場合以外は、活物質100重量部あたり1.3重量部のCMCを増粘剤として用いた。
【0022】
【表1】

Figure 0003621031
【0023】
表1に示す結着剤について以下に説明する。
BM400B:日本ゼオン(株)製のアクリロニトリル単位、スチレン単位およびブタジエン単位を含む共重合体からなる粒子状変性スチレンブタジエンゴム。平均粒径0.2μm。そのFT−IR測定で得られる吸収スペクトルにおいて、アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度は、ブタジエン単位のC=C伸縮振動に基づく吸収強度の0.4倍である。その吸収スペクトルを図1に示す。
【0024】
図1中、2237cm−1付近に見られる吸収ピークがアクリロニトリル単位のC≡N伸縮振動に基づくものであり、911cm−1付近に見られる吸収ピークがブタジエン単位のC=C伸縮振動に基づくものである。
【0025】
測定条件は、サンプルスキャン回数32、バックグラウンドスキャン回数32、分解能4000、サンプルゲイン1.0であり、測定装置は、顕微FT−IR(Continuμm(ニコレー社製)、光源:AVATAR−360)を用いた。また、測定用の試料は、粒子状変性スチレンブタジエンゴムをN−メチルピロリドンに溶かしたものをKBr板上に塗布し、乾燥したものを用いた。
【0026】
PVDF:ポリビニリデンジフルオライド。
SBR:スチレンブタジエンゴム。
MPE:変性ポリエチレン樹脂。
【0027】
比較のためにSBRのFT−IR測定で得られる透過スペクトルを図2に示す。測定条件、測定装置等は図1の場合と同様である。図2中には、2237cm−1付近にアクリロニトリル単位のC≡N伸縮振動に基づく吸収ピークが見られない。
【0028】
得られた負極合剤を、厚さ15μmの銅箔の芯材の両面に塗布し、厚さ140μmに圧延し、所定の長さに切断し、負極を得た。負極には芯材と同材質の負極リードを接続した。
【0029】
(ii)正極の作製
100重量部のLiCoOに対し、結着剤としてPVDFを4重量部および導電剤としてアセチレンブラック3重量部を配合し、正極合剤を得た。次いで、得られた正極合剤を、厚さ20μmのアルミニウム箔の芯材の両面に塗布し、所定の厚さに圧延し、所定の長さに切断し、正極を得た。正極には芯材と同材質の正極リードを接続した。
【0030】
(iii)電池の作製
得られた正極および負極は、両者の間にセパレータを介在させて積層し、捲回して極板群を得た。セパレータとしては、厚さ27μmのポリエチレン製微多孔膜を用いた。捲回された極板群は、断面が略楕円形になるように一方向から圧縮した。
【0031】
一方、非水溶媒である等体積のエチレンカーボネートとエチルメチルカーボネートとの混合物に、塩濃度1.0モル/リットルになるように、LiPFを溶解した非水電解質を調製した。
【0032】
前記極板群は、絶縁リングをその上部および底部に配して所定のアルミニウム製ケース内に3.2gの非水電解質とともに収容した。そして、負極リードおよび正極リードを所定の箇所に接続したのち、ケースの開口部を封口板で封口し、非水電解質電池A〜Mを完成した。これらの電池は、幅30mm、高さ48mm、厚さ5mmの角形であり、電池の公称容量は600mAhである。
【0033】
次に、得られた非水電解質電池の評価内容について説明する。
(i)低温特性および容量回復率
電池A〜Mについて、20℃雰囲気下において、600mAで電池電圧が4.2Vになるまで充電し、120mAで電池電圧が3Vになるまで放電した。次いで、0℃雰囲気下において、600mAで電池電圧が4.2Vになるまで充電し、600mAで電池電圧が3Vになるまで放電した。そして再び20℃雰囲気下において、600mAで電池電圧が4.2Vになるまで充電し、120mAで電池電圧が3Vになるまで放電した。
【0034】
ここで、0℃雰囲気下において、600mAで電池電圧が4.2Vになるまで充電したときの充電容量を低温特性の指標として表1に示す。また、20℃雰囲気下における1回目の充電で得られた容量および20℃雰囲気下における2回目の充電で得られた容量を求め、後者の前者に対する比を求めた。結果を容量回復率として100分率で表1に示す。
【0035】
(ii)異常昇温の有無
容量回復率を調べた後の電池を20℃で1260mAで電池表面温度が80℃になるまで充電した。そして、しばらく放置し、電池の表面温度の推移を確認した。その際、表面温度が90℃以上になったものは有、それ以外は無とした。結果を表1に示す。
【0036】
(iii)容量維持率
電池A〜Mについて、600mAで電池電圧が4.2Vになるまで充電し、600mAで電池電圧が3Vになるまで放電する操作を200回繰り返した。そして、一回目の放電容量に対する200回目の放電容量の比を求めた。結果を100分率で表1に示す。
【0037】
表1の結果から、以下のことがわかる。
負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が900mになると芯材から合剤が剥離していることから、負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が600mをこえると、負極の強度が弱くなることがわかる。
【0038】
負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が225mになると、加熱試験で異常昇温が見られることから、負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積が300m未満になると、電池の安全性が損なわれる可能性があることがわかる。これは、負極活物質にLiが吸蔵されにくくなり、活物質の表面に金属Liが析出するためと考えられる。また、この現象は、分極の大きい低温充電時に起こりやすいと考えられる。
【0039】
低温特性の観点からは、負極が含有する粒子状変性スチレンブタジエンゴム1gあたりの炭素材料の表面積の最も好適な範囲は450〜600mであることがわかる。
【0040】
粒子状変性スチレンブタジエンゴム以外の結着剤を用いた場合、サイクル寿命が著しく低くなることがわかる。
【0041】
【発明の効果】
本発明によれば、効果的に負極の強度および充放電反応に寄与する活物質の表面積を確保することができる。従って、本発明の負極を用いれば、高率放電特性、低温特性、サイクル寿命等のバランスがよく、安全性の高い非水電解質二次電池を得ることが可能になる。
【図面の簡単な説明】
【図1】粒子状変性スチレンブタジエンゴムのFT−IR測定で得られた吸収スペクトルの一例である。
【図2】SBRのFT−IR測定で得られた透過スペクトルの一例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte batteries used as power sources for portable electronic devices use a lithium-containing transition metal oxide for the positive electrode and a carbon material capable of occluding and releasing lithium for the negative electrode. High energy density. Here, the electrodes of these batteries include a binder for bonding active materials, and the negative electrode includes polyvinylidene difluoride (PVDF) or styrene butadiene rubber (SBR) as a binder. Etc. are used.
[0003]
However, when these binders are used, it is difficult to secure sufficient surface area of the active material that imparts sufficient strength to the negative electrode and contributes to the charge / discharge reaction. This hinders obtaining a battery having a good balance of high rate discharge characteristics, low temperature characteristics, cycle life, and the like. Further, when the surface area of the active material contributing to the charge / discharge reaction is reduced and the active material cannot sufficiently absorb Li, metal Li is deposited on the active material surface, and the safety of the battery is impaired.
[0004]
[Problems to be solved by the invention]
The present invention effectively uses the particulate modified styrene butadiene rubber as the binder while controlling the relationship between the amount of the binder contained in the negative electrode and the total surface area of the active material contained in the negative electrode. It aims at ensuring the surface area of the active material which contributes to the intensity | strength of a negative electrode, and charging / discharging reaction.
[0005]
[Means for Solving the Problems]
The present invention is a negative electrode for a non-aqueous electrolyte secondary battery including a carbon material as an active material and a particulate modified styrene butadiene rubber as a binder , and the specific surface area of the carbon material is 2 to 5 m 2 / g. The amount of the particulate modified styrene butadiene rubber is 0.6 to 1.7 parts by weight with respect to 100 parts by weight of the carbon material, and the particulate modified styrene butadiene rubber is composed of core-shell type particles. The core-shell type particle includes an acrylonitrile unit in the core portion, and the surface area of the carbon material contained in the negative electrode is 300 to 600 m 2 per 1 g of the particulate modified styrene butadiene rubber. About.
[0006]
In the absorption spectrum obtained in the previous SL FT-IR measurement of particulate modified styrene-butadiene rubber, the absorption intensity based on C≡N stretching vibration of acrylonitrile units, 0.1 of the absorption intensity based on C = C stretching vibration of the butadiene units It is preferable that it is -2 times.
Here, the absorption intensity refers to the height of the absorption peak viewed from the baseline of the spectrum.
[0007]
The suitable range of the average particle diameter of the particulate modified styrene butadiene rubber is 0.05 to 0.4 μm .
The negative electrode preferably contains 0.7 to 1.2 parts by weight of a thickener per 100 parts by weight of the carbon material.
The thickener is preferably carboxymethylcellulose (CMC).
The total amount of the particulate modified styrene butadiene rubber and the thickener contained in the negative electrode is preferably 1.3 to 2.4 parts by weight per 100 parts by weight of the carbon material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The negative electrode of the present invention comprises a negative electrode mixture and a core material (current collector). For example, the negative electrode mixture is applied to the surface of the core material or filled into pores of the core material, rolled, and cut. It is obtained by. As the core material, metal foil such as copper foil or punching metal is used. From the viewpoint of reducing the size and weight of the battery, the thickness of the core is generally about 8 to 20 μm, and the thickness of the negative electrode is generally 80 to 200 μm. The negative electrode mixture is prepared by blending a negative electrode active material, particulate modified styrene butadiene rubber as a binder, a thickener, and the like at a predetermined ratio.
[0009]
A carbon material such as graphite powder is used as the negative electrode active material. Of these, massive artificial graphite, scaly graphite, spherical artificial graphite and the like are preferably used. The average particle diameter of the graphite powder is, for example, 20 to 30 μm.
[0010]
Particulate modified styrene-butadiene rubber, acrylonitrile units, Ri Do a copolymer comprising styrene units and butadiene units, a core-shell particles having a core portion having rubber elasticity. The core portion is preferably obtained by crosslinking a copolymer containing, for example, an acrylonitrile unit, a styrene unit, a butadiene unit, an acrylate unit, or the like with an appropriate crosslinking agent. Moreover, the shell part should just be a highly viscous polymer, for example, the copolymer containing an acrylate unit, a styrene unit, etc. is preferable.
[0011]
The core-shell type particles can be produced, for example, by a two-stage process in which a raw material monomer mixture in a core part containing a crosslinking agent is polymerized to produce a latex, and then a raw material monomer mixture in a shell part is grafted onto the latex particles. At this time, when acrylonitrile is contained in the raw material monomer of the core portion, a core portion having a high elastic modulus can be obtained.
[0012]
In the absorption spectrum obtained by FT-IR measurement, the particulate modified styrene butadiene rubber has an absorption intensity based on C≡N stretching vibration of acrylonitrile units of 0. It is preferable that the acrylonitrile unit and the butadiene unit are contained to the extent of 1 to 2 times. When the absorption strength based on the C≡N stretching vibration of the acrylonitrile unit is less than 0.1 times the absorption strength based on the C = C stretching vibration of the butadiene unit, a negative electrode having sufficient strength even if particulate modified styrene butadiene rubber is used. May not be obtained, or the surface of the active material may be excessively covered with a binder. On the other hand, when the absorption strength based on the C≡N stretching vibration of the acrylonitrile unit exceeds twice the absorption strength based on the C═C stretching vibration of the butadiene unit, the rubber elasticity of the particulate modified styrene butadiene rubber is reduced, and the core material The mixture becomes easy to peel off.
[0013]
The average particle diameter of the particulate modified styrene butadiene rubber is preferably 0.05 to 0.4 μm because a sufficiently strong negative electrode can be obtained with a small amount of use. If the average particle size is too small, most of the surface of the active material is covered with the particulate modified styrene butadiene rubber, and if it is too large, the distance between the active material particles increases and the conductivity inside the negative electrode decreases. .
[0014]
An appropriate amount of the particulate modified styrene butadiene rubber in the negative electrode mixture is 0.6 to 1.7 parts by weight with respect to 100 parts by weight of the carbon material as the negative electrode active material. If the amount of the particulate modified styrene butadiene rubber is too small, a sufficiently strong negative electrode may not be obtained, and the mixture may be peeled off from the core material. The rate discharge characteristic becomes unsatisfactory.
In addition, in the case of conventional PVDF, the suitable compounding quantity in a negative electrode mixture is 5-10 weight part with respect to 100 weight part of negative electrode active materials, and is 2-5 weight part also in the case of SBR. Therefore, in the negative electrode of the present invention, the content of the binder is significantly reduced as compared with the conventional case.
[0015]
The surface area of the carbon material contained in the negative electrode needs to be 300 to 600 m 2 per 1 g of the particulate modified styrene butadiene rubber contained in the negative electrode. If the surface area of the carbon material per 1 g of the particulate modified styrene butadiene rubber contained in the negative electrode is less than 300 m 2 , the surplus binder coats the active material and the charging characteristics of the battery deteriorate, so the cycle life is shortened. End up. On the other hand, when the surface area of the carbon material per 1 g of the particulate modified styrene butadiene rubber contained in the negative electrode exceeds 600 m 2 , the adhesion between the mixture layer and the core material decreases due to the shortage of the binder. Moreover, it is preferable that the specific surface area of a carbon material is 2-5 m < 2 > / g.
[0016]
As the thickener used in the negative electrode mixture, a cellulose-based thickener such as CMC is often used. The blending amount of the thickener in the negative electrode mixture is appropriately 0.7 to 1.2 parts by weight with respect to 100 parts by weight of the carbon material as the negative electrode active material. If the blending amount of the thickener is too small, a paste-like negative electrode mixture cannot be obtained and the mixture is easily peeled off from the core material. If it is too much, the active material is covered with the thickener, and the reaction The surface area is reduced.
[0017]
However, the total amount of the particulate modified styrene butadiene rubber and the thickener needs to be 1.3 to 2.4 parts by weight with respect to 100 parts by weight of the carbon material which is the negative electrode active material. When the total amount is less than 1.3 parts by weight, the active material particles cannot be sufficiently bonded to each other, and the strength of the negative electrode becomes insufficient. It is covered with a thickener, and its reaction surface area becomes small.
[0018]
In the FT-IR measurement, the absorption spectrum of the particulate modified styrene butadiene rubber may be measured, for example, by using a particulate modified styrene butadiene rubber coated on a KBr plate. Here, in general, absorption based on C═C stretching vibration of butadiene units is observed in the vicinity of 880 to 940 cm −1 , and absorption based on C≡N stretching vibration of acrylonitrile units is observed in the vicinity of 2200 to 2280 cm −1 .
[0019]
【Example】
Next, the present invention will be specifically described based on examples. However, the present invention is not limited to these.
[0020]
<< Examples 1-5 and Comparative Examples 1-8 >>
Batteries A to M were produced as shown below and their characteristics were evaluated.
[0021]
(I) Production of Negative Electrode Using artificial graphite having the properties shown in Table 1 as an active material, a negative electrode mixture used for the negative electrode of each battery was prepared using the binder shown in Table 1. The value obtained by dividing the specific surface area of artificial graphite as the active material, the blending amount of the binder with respect to 100 parts by weight of the active material in the negative electrode mixture, and the total surface area of the active material contained in the mixture by the blending amount of the binder. Table 1 shows. However, 1.3 parts by weight of CMC per 100 parts by weight of the active material was used as a thickener except when PVDF was used as the binder.
[0022]
[Table 1]
Figure 0003621031
[0023]
The binder shown in Table 1 will be described below.
BM400B: A particulate modified styrene butadiene rubber made of a copolymer containing acrylonitrile units, styrene units and butadiene units manufactured by Nippon Zeon Co., Ltd. Average particle size 0.2 μm. In the absorption spectrum obtained by the FT-IR measurement, the absorption intensity based on the C≡N stretching vibration of the acrylonitrile unit is 0.4 times the absorption intensity based on the C═C stretching vibration of the butadiene unit. The absorption spectrum is shown in FIG.
[0024]
In FIG. 1, the absorption peak observed near 2237 cm −1 is based on the C≡N stretching vibration of the acrylonitrile unit, and the absorption peak observed near 911 cm −1 is based on the C═C stretching vibration of the butadiene unit. is there.
[0025]
The measurement conditions are a sample scan count of 32, a background scan count of 32, a resolution of 4000, and a sample gain of 1.0. The measurement apparatus uses a microscopic FT-IR (Continuum (manufactured by Nicolet), light source: AVATAR-360). It was. Moreover, the sample for measurement used what melt | dissolved particulate modified styrene butadiene rubber in N-methylpyrrolidone, apply | coated on the KBr board, and dried.
[0026]
PVDF: polyvinylidene difluoride.
SBR: Styrene butadiene rubber.
MPE: Modified polyethylene resin.
[0027]
For comparison, a transmission spectrum obtained by FT-IR measurement of SBR is shown in FIG. The measurement conditions, measurement apparatus, etc. are the same as in the case of FIG. In FIG. 2, an absorption peak based on C≡N stretching vibration of acrylonitrile units is not observed in the vicinity of 2237 cm −1 .
[0028]
The obtained negative electrode mixture was applied to both surfaces of a core material of copper foil having a thickness of 15 μm, rolled to a thickness of 140 μm, and cut into a predetermined length to obtain a negative electrode. A negative electrode lead made of the same material as the core material was connected to the negative electrode.
[0029]
(Ii) Production of positive electrode 4 parts by weight of PVDF as a binder and 3 parts by weight of acetylene black as a conductive agent were blended with 100 parts by weight of LiCoO 2 to obtain a positive electrode mixture. Next, the obtained positive electrode mixture was applied to both surfaces of a 20 μm thick aluminum foil core, rolled to a predetermined thickness, cut into a predetermined length, and a positive electrode was obtained. A positive electrode lead made of the same material as the core material was connected to the positive electrode.
[0030]
(Iii) Production of Battery The obtained positive electrode and negative electrode were laminated with a separator interposed therebetween, and wound to obtain an electrode plate group. As the separator, a polyethylene microporous film having a thickness of 27 μm was used. The wound electrode plate group was compressed from one direction so that the cross section was substantially elliptical.
[0031]
On the other hand, a nonaqueous electrolyte in which LiPF 6 was dissolved in a mixture of an equal volume of ethylene carbonate and ethyl methyl carbonate as a nonaqueous solvent so as to have a salt concentration of 1.0 mol / liter was prepared.
[0032]
The electrode plate group was accommodated together with 3.2 g of a non-aqueous electrolyte in a predetermined aluminum case with insulating rings arranged on the top and bottom. And after connecting a negative electrode lead and a positive electrode lead to a predetermined location, the opening part of the case was sealed with the sealing board, and nonaqueous electrolyte battery AM was completed. These batteries are rectangular with a width of 30 mm, a height of 48 mm, and a thickness of 5 mm, and the nominal capacity of the battery is 600 mAh.
[0033]
Next, the evaluation content of the obtained nonaqueous electrolyte battery will be described.
(I) Low-temperature characteristics and capacity recovery rate The batteries A to M were charged in a 20 ° C atmosphere at 600 mA until the battery voltage reached 4.2 V, and discharged at 120 mA until the battery voltage reached 3 V. Next, in an atmosphere of 0 ° C., the battery was charged at 600 mA until the battery voltage reached 4.2 V, and discharged at 600 mA until the battery voltage reached 3 V. Then, in an atmosphere of 20 ° C., the battery was charged at 600 mA until the battery voltage reached 4.2 V, and discharged at 120 mA until the battery voltage reached 3 V.
[0034]
Here, Table 1 shows the charge capacity when charged at 600 mA until the battery voltage reaches 4.2 V in an atmosphere of 0 ° C. as an index of low temperature characteristics. Further, the capacity obtained by the first charge in the 20 ° C. atmosphere and the capacity obtained by the second charge in the 20 ° C. atmosphere were determined, and the ratio of the latter to the former was determined. The results are shown in Table 1 as the capacity recovery rate in terms of 100 minutes.
[0035]
(Ii) Presence / absence of abnormal temperature rise After the capacity recovery rate was examined, the battery was charged at 1260 mA at 20 ° C. until the battery surface temperature reached 80 ° C. Then, after standing for a while, the transition of the surface temperature of the battery was confirmed. At that time, the surface temperature was 90 ° C. or higher, and there were no others. The results are shown in Table 1.
[0036]
(Iii) Capacity maintenance rate For batteries A to M, an operation of charging at 600 mA until the battery voltage reached 4.2 V, and discharging at 600 mA until the battery voltage reached 3 V was repeated 200 times. Then, the ratio of the 200th discharge capacity to the first discharge capacity was determined. The results are shown in Table 1 in terms of 100 minutes.
[0037]
From the results in Table 1, the following can be understood.
When the surface area of the carbon material per gram of the particulate modified styrene butadiene rubber contained in the negative electrode becomes 900 m 2 , the mixture is peeled off from the core material. Therefore, the carbon material per gram of the particulate modified styrene butadiene rubber contained in the negative electrode It can be seen that when the surface area exceeds 600 m 2 , the strength of the negative electrode decreases.
[0038]
When the surface area of the carbon material per gram of the particulate modified styrene butadiene rubber contained in the negative electrode is 225 m 2 , an abnormal temperature rise is observed in the heating test. Therefore, the carbon material per gram of the particulate modified styrene butadiene rubber contained in the negative electrode It can be seen that when the surface area of the battery is less than 300 m 2 , the safety of the battery may be impaired. This is presumably because Li is less likely to be occluded in the negative electrode active material, and metal Li is deposited on the surface of the active material. In addition, this phenomenon is likely to occur during low temperature charging with large polarization.
[0039]
From the viewpoint of low temperature characteristics, it can be seen that the most preferable range of the surface area of the carbon material per 1 g of the particulate modified styrene butadiene rubber contained in the negative electrode is 450 to 600 m 2 .
[0040]
It can be seen that when a binder other than the particulate modified styrene butadiene rubber is used, the cycle life is remarkably lowered.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the surface area of the active material which contributes to the intensity | strength of a negative electrode and charge / discharge reaction effectively can be ensured. Therefore, by using the negative electrode of the present invention, it is possible to obtain a highly safe non-aqueous electrolyte secondary battery having a good balance of high rate discharge characteristics, low temperature characteristics, cycle life, and the like.
[Brief description of the drawings]
FIG. 1 is an example of an absorption spectrum obtained by FT-IR measurement of particulate modified styrene butadiene rubber.
FIG. 2 is an example of a transmission spectrum obtained by FT-IR measurement of SBR.

Claims (2)

活物質として炭素材料を含み、結着剤として粒子状変性スチレンブタジエンゴムを含む非水電解質二次電池用負極であって、
前記炭素材料の比表面積は、2〜5m 2 /gであり、
前記粒子状変性スチレンブタジエンゴムの量は、前記炭素材料100重量部に対して、0.6〜1.7重量部であり、
前記粒子状変性スチレンブタジエンゴムは、コアシェル型粒子からなり、
前記コアシェル型粒子は、コア部にアクリロニトリル単位を含み、
前記負極が含有する前記炭素材料の表面積が、前記粒子状変性スチレンブタジエンゴム1gあたり300〜600m2である非水電解質二次電池用負極。
A negative electrode for a non-aqueous electrolyte secondary battery comprising a carbon material as an active material and a particulate modified styrene butadiene rubber as a binder,
The carbon material has a specific surface area of 2 to 5 m 2 / g,
The amount of the particulate modified styrene butadiene rubber is 0.6 to 1.7 parts by weight with respect to 100 parts by weight of the carbon material,
The particulate modified styrene butadiene rubber is composed of core-shell type particles,
The core-shell type particle includes an acrylonitrile unit in the core part,
The negative electrode for a nonaqueous electrolyte secondary battery, wherein the carbon material contained in the negative electrode has a surface area of 300 to 600 m 2 per gram of the particulate modified styrene butadiene rubber.
前記粒子状変性スチレンブタジエンゴムのFT−IR測定で得られる吸収スペクトルにおいて、アクリロニトリル単位のC≡N伸縮振動に基づく吸収強度が、ブタジエン単位のC=C伸縮振動に基づく吸収強度の0.1〜2倍である請求項記載の非水電解質二次電池用負極。In the absorption spectrum obtained by FT-IR measurement of the particulate modified styrene butadiene rubber, the absorption intensity based on the C≡N stretching vibration of the acrylonitrile unit is 0.1 to 0.1 of the absorption intensity based on the C = C stretching vibration of the butadiene unit. The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1 , wherein the negative electrode is doubled.
JP2000267627A 2000-09-04 2000-09-04 Anode for non-aqueous electrolyte secondary battery Expired - Fee Related JP3621031B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2000267627A JP3621031B2 (en) 2000-09-04 2000-09-04 Anode for non-aqueous electrolyte secondary battery
US09/845,265 US6773838B2 (en) 2000-09-04 2001-05-01 Non-aqueous electrolyte secondary battery and negative electrode for the same
DE2001629482 DE60129482T2 (en) 2000-09-04 2001-05-14 Non-aqueous electrolyte secondary battery and negative electrode for it
EP20010304270 EP1184921B1 (en) 2000-09-04 2001-05-14 Non-aqueous electrolyte secondary battery and negative electrode for the same
DE60134432T DE60134432D1 (en) 2000-09-04 2001-05-14 Nonaqueous electrolyte secondary battery and negative electrode therefor
EP20040077458 EP1492182B1 (en) 2000-09-04 2001-05-14 Non-aqueous electrolyte secondary battery and negative electrode for the same
DE2001630296 DE60130296T2 (en) 2000-09-04 2001-05-14 Nonaqueous electrolyte secondary battery and negative electrode therefor
EP20040018679 EP1478039B1 (en) 2000-09-04 2001-05-14 Non-aqueous electrolyte secondary battery and negative electrode for the same
CNB011211687A CN1233056C (en) 2000-09-04 2001-06-04 Nonaqueous electrolyte secondary battery and negative electrode for nonaqueous electrolyte secondary battery
CNB2004100699563A CN1253955C (en) 2000-09-04 2001-06-04 Non-aqueous electrolyte secondary battery and negative electrode for the same
CNB2004100699578A CN1249834C (en) 2000-09-04 2001-06-04 Non-aqueous electrolyte secondary battery
US10/883,727 US7147964B2 (en) 2000-09-04 2004-07-06 Non-aqueous electrolyte secondary battery and negative electrode for the same
US10/943,839 US7150937B2 (en) 2000-09-04 2004-09-20 Non-aqueous electrolyte secondary battery and negative electrode for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267627A JP3621031B2 (en) 2000-09-04 2000-09-04 Anode for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004259121A Division JP3637351B2 (en) 2004-09-07 2004-09-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002075377A JP2002075377A (en) 2002-03-15
JP3621031B2 true JP3621031B2 (en) 2005-02-16

Family

ID=18754521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267627A Expired - Fee Related JP3621031B2 (en) 2000-09-04 2000-09-04 Anode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3621031B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032688A (en) * 2003-07-11 2005-02-03 Toshiba Corp Non-aqueous electrolyte secondary battery
JP4852836B2 (en) * 2004-10-05 2012-01-11 パナソニック株式会社 Method for producing electrode plate for negative electrode of non-aqueous secondary battery
JP5879673B2 (en) 2009-09-03 2016-03-08 ソニー株式会社 Method for producing negative electrode for non-aqueous electrolyte secondary battery
WO2017056466A1 (en) 2015-09-28 2017-04-06 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20210110295A (en) 2018-12-27 2021-09-07 니폰 제온 가부시키가이샤 A binder composition for a secondary battery electrode, a conductive material paste composition for a secondary battery electrode, a slurry composition for a secondary battery electrode, an electrode for a secondary battery, and a secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603397B2 (en) * 1991-09-13 2002-12-18 Asahi Kasei Kogyo Kabushiki Kaisha Secondary cell
JP4473967B2 (en) * 1997-03-04 2010-06-02 日本ゼオン株式会社 Binder for battery, binder composition for battery, slurry for battery electrode, electrode for lithium secondary battery, and lithium secondary battery
JPH11111300A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Negative electrode for nonaqueous secondary battery
JPH11288718A (en) * 1998-04-01 1999-10-19 Toyota Central Res & Dev Lab Inc Nonaqueous solvent secondary battery
JP4482953B2 (en) * 1998-06-09 2010-06-16 パナソニック株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2002075377A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
KR100414720B1 (en) Non-aqueous electrolyte secondary battery and positive electrode for the same
CN105958009B (en) A kind of high security lithium ion battery composite pole piece and preparation method thereof, lithium ion battery
EP1492182B1 (en) Non-aqueous electrolyte secondary battery and negative electrode for the same
US7700234B2 (en) Binder for electrode of lithium ion secondary battery
JP7031576B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
KR101875031B1 (en) Anode active material-containing slurry, method for producing the slurry, anode using the slurry and lithium secondary battery including the anode
KR20120090766A (en) A binder for lithium ion rechargeable battery cells
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2005150117A (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JP2971451B1 (en) Lithium secondary battery
JP3615472B2 (en) Non-aqueous electrolyte battery
JP3781955B2 (en) Non-aqueous electrolyte battery
JP2009110883A (en) Binder for electrochemical cell
JP6651931B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JPH1173943A (en) Nonaqueous electrolyte secondary battery
US9166223B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP3621031B2 (en) Anode for non-aqueous electrolyte secondary battery
JP3637351B2 (en) Nonaqueous electrolyte secondary battery
KR20010010226A (en) Binder for lithium secondary battery and lithium secondary battery comprising the same
JPH07211320A (en) Positive mix and battery using the same
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
JP4725163B2 (en) Nonaqueous electrolyte secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPH11339810A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141126

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees