JPH11107107A - Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic - Google Patents

Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic

Info

Publication number
JPH11107107A
JPH11107107A JP10106459A JP10645998A JPH11107107A JP H11107107 A JPH11107107 A JP H11107107A JP 10106459 A JP10106459 A JP 10106459A JP 10645998 A JP10645998 A JP 10645998A JP H11107107 A JPH11107107 A JP H11107107A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
resin
yarn
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10106459A
Other languages
Japanese (ja)
Other versions
JP3991440B2 (en
Inventor
Akira Nishimura
明 西村
Kiyoshi Honma
清 本間
Ikuo Horibe
郁夫 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10645998A priority Critical patent/JP3991440B2/en
Publication of JPH11107107A publication Critical patent/JPH11107107A/en
Application granted granted Critical
Publication of JP3991440B2 publication Critical patent/JP3991440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive carbon fiber woven fabric large in carbon fiber metsuke (a weight unit of cloth), excellent in resin flowability and permeability on molding, and giving molded products excellent in mechanical characteristics. SOLUTION: This unidirectional carbon fiber woven fabric comprises tow-like carbon fiber yarns 2 each having filament number of 40,000-4000,000 and has spaces between the carbon fiber yarns. The carbon fiber yarns are arranged in the warp direction, and auxiliary yarns are arranged in the weft directions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素繊維からなる織
物、さらに詳しくはトウ状の太い炭素繊維糸条からなる
炭素繊維織物およびそれを用いた繊維強化プラスチック
の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a woven fabric made of carbon fibers, and more particularly to a carbon fiber woven fabric made of thick tow-like carbon fiber yarns and a method of molding fiber-reinforced plastic using the same.

【0002】[0002]

【従来の技術】炭素繊維は比重が小さくて引張強度が高
くかつ引張弾性率も高く、それを樹脂で固めた炭素繊維
強化プラスチック(以下CFRPと呼称する)は比強度
および比弾性率の高い材料となり、先端複合材料と呼ば
れている。
2. Description of the Related Art Carbon fiber has a low specific gravity, a high tensile strength and a high tensile modulus, and carbon fiber reinforced plastic (hereinafter referred to as CFRP) obtained by solidifying the resin with resin has a high specific strength and a high specific modulus. And is called an advanced composite material.

【0003】ところが、従来のCFRPは、たとえば
3,000フイラメントの細い炭素繊維糸条からからな
り、炭素繊維糸条がたて方向とよこ方向に配列した、炭
素繊維目付が200〜400g/m2 の薄い二方向性織
物の、あらかじめ樹脂を含浸したプリプレグを多数枚積
層してオートクレーブ成形して成形品を製造しているの
で、下記の状況から製造コストが高くなり、性能には優
れるがその展開分野は航空機関連構造材やプレミヤム製
品である高級なスポーツ用具などに限定され、一般産業
分野への展開が困難となっていた。
However, the conventional CFRP is composed of, for example, 3,000 filaments of fine carbon fiber yarns, and the carbon fiber yarns are arranged in the vertical direction and the horizontal direction, and have a carbon fiber weight of 200 to 400 g / m 2 . Since a thin bidirectional fabric is manufactured by laminating a large number of prepregs impregnated with resin in advance and molding it by autoclaving, the manufacturing cost is high and the performance is excellent in the following situations, but its development field is Is limited to aircraft-related structural materials and premium sports equipment such as premium products, and has been difficult to deploy in general industrial fields.

【0004】A.細い炭素繊維糸条は、炭素繊維の生産
性が低くなる。
A. Fine carbon fiber yarns reduce the productivity of carbon fibers.

【0005】B.細い糸条で織物を製造するから、織物
の生産性が低くなる。
B. Since the woven fabric is manufactured with thin yarns, the productivity of the woven fabric is low.

【0006】C.織物が薄いから、所定の炭素繊維量を
積層するには、積層枚数が多くなり、積層の手間が大き
くなる。
C. Since the woven fabric is thin, laminating a predetermined amount of carbon fibers requires a large number of laminations, which increases labor for lamination.

【0007】D.プリプレグ工程が必要となるので、プ
リプレグの加工コストが加わる。
D. Since a prepreg process is required, a processing cost of the prepreg is added.

【0008】E.オートクレーブが必要となり、大きな
設備投資が必要となる。
E. An autoclave is required, and a large capital investment is required.

【0009】とくに大型成形品のコストダウンを図るた
め、従来の炭素繊維織物を使用して、これらを成形型の
なかに積層し常温硬化型の樹脂を加圧で注入するレジン
・トランスファー成形法とか、これらを型の上に積層し
てバッグフイルムで覆い、その中を真空状態となし、常
温硬化型の樹脂を注入する、いわゆる真空バッグ成形法
が知られている。この方法は上記のD項およびE項によ
るCFRPのコストはかなり削減されるが、A項、B項
およびC項によって、成形されるCFRP製品は高価な
ものとなる。
In particular, in order to reduce the cost of large molded products, there is a resin transfer molding method in which conventional carbon fiber fabrics are laminated in a molding die and a room temperature curing resin is injected under pressure. A so-called vacuum bag molding method is known in which these are laminated on a mold, covered with a bag film, a vacuum state is formed in the inside, and a room temperature-curable resin is injected. This method significantly reduces the cost of CFRP according to D and E above, but A, B and C make the molded CFRP product expensive.

【0010】一方、従来の炭素繊維糸条を用いて、炭素
繊維目付の大きな炭素繊維織物を使うことも考えられる
が、下記の問題がありほとんど実用化されるには至って
いない。
On the other hand, it is conceivable to use a carbon fiber woven fabric having a large basis weight of carbon fiber using a conventional carbon fiber thread, but it has hardly been put into practical use due to the following problems.

【0011】F.たて方向とよこ方向の2方向に炭素繊
維が配列した2方向織物にすると炭素繊維目付の大きな
織物にすることができるが、たて糸とよこ糸による交錯
によって織糸の屈曲(クリンプ)が大きくなるので、F
RPにすると応力集中により強度および弾性率 が低く
なってしまう。
F. A two-way woven fabric in which carbon fibers are arranged in two directions, the warp direction and the weft direction, makes it possible to obtain a woven fabric having a large carbon fiber basis weight. However, since the warp yarn and the weft yarn intersect, the weaving yarn crimp increases. F
When RP is used, strength and elastic modulus are reduced due to stress concentration.

【0012】G.一方向に配列した織物はクリンプによ
る強度低下はきたさないが、炭素繊維糸条が一方向のみ
に配列するから、織物の炭素繊維目付を大きくすると、
繊維密度が大きくなり、密に繊維が充填されることにな
るので、レジン・トランスファー成形や真空バッグ成形
などの成形法では樹脂の流れが悪くなり、樹脂注入に時
間がかかるし、炭素繊維織物への樹脂の含浸性が悪くな
る。
G. Although the woven fabric arranged in one direction does not cause a decrease in strength due to crimping, since the carbon fiber yarns are arranged only in one direction, if the basis weight of the woven fabric is increased,
Since the fiber density increases and the fibers are densely packed, the resin flow deteriorates in molding methods such as resin transfer molding and vacuum bag molding. Impregnating property of the resin becomes worse.

【0013】[0013]

【発明が解決しようとする課題】本発明は、このような
現状に着目し、織物の炭素繊維目付は大きいが、成形の
際に樹脂の流動性および含浸性に優れ、成形されたとき
に機械的特性に優れる安価な炭素繊維織物を提供するこ
とにある。また、前記の炭素繊維織物を使用しての機械
的特性に優れる安価で繊維強化プラスチックを提供する
ことにある。さらに、前記の織物を使用しての繊維強化
プラスチック(以下FRPと呼称する)の成形方法を提
供することにある。
The present invention focuses on such a situation, and the woven fabric has a large basis weight of carbon fiber, but has excellent fluidity and impregnation of resin at the time of molding, and has good mechanical properties at the time of molding. To provide an inexpensive carbon fiber woven fabric having excellent mechanical properties. Another object of the present invention is to provide an inexpensive fiber-reinforced plastic having excellent mechanical properties using the carbon fiber fabric. Another object of the present invention is to provide a method for molding a fiber-reinforced plastic (hereinafter, referred to as FRP) using the woven fabric.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、基本的には下記の構成を有する。即ち、
トウ状の炭素繊維糸条からなり、炭素繊維糸条のフイラ
メント数が40,000〜400,000本であり、炭
素繊維糸条がたて方向に配列し、かつ、補助糸がよこ方
向に配列していて、炭素繊維糸条間に隙間があることを
特徴とする一方向性炭素繊維織物である。
In order to achieve the above object, the present invention basically has the following arrangement. That is,
It is composed of tow-like carbon fiber yarns, the number of filaments of the carbon fiber yarns is 40,000 to 400,000, the carbon fiber yarns are arranged in the warp direction, and the auxiliary yarns are arranged in the weft direction. A unidirectional carbon fiber woven fabric having a gap between carbon fiber yarns.

【0015】[0015]

【発明の実施の形態】本発明に使用する炭素繊維糸条
は、好ましくは炭素繊維の単糸径が5〜15ミクロンの
40,000〜400,000本のマルチフイラメント
が集束してトウ状となすもので、炭素繊維糸条の繊度は
25,000〜350,000デニールである。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon fiber yarn used in the present invention is preferably formed in a tow-like shape by bundling 40,000 to 400,000 multifilaments having a single fiber diameter of 5 to 15 microns. The carbon fiber yarn has a fineness of 25,000 to 350,000 denier.

【0016】炭素繊維糸条のフイラメント数が40,0
00本以下、糸条の繊度が25,000デニール以下で
あると、糸条が比較的細くなるから糸条を構成する炭素
繊維への樹脂の含浸性の点では好ましいが、糸条の厚み
は薄なる。したがって、炭素繊維織物の目付を大きくす
ると、使用する炭素繊維糸条本数が多くなり、炭素繊維
糸条間の隙間を設けることが難しくなり、レジン・トラ
ンスファー成形や真空バッグ成形などの成形法では樹脂
の流れが悪くなる。また、さほど炭素繊維糸条のコスト
ダウンが期待されない。一方、炭素繊維糸条のフイラメ
ント数が400,000本以上、糸条の繊度が350,
000デニール以上であると炭素繊維糸条は安価とな
り、また、糸条の厚みが厚くなるので、炭素繊維織物の
目付を大きくしても炭素繊維糸条間の隙間を設けること
が可能となるが、糸条が太くなるので、糸条の中央部ま
での距離が大きくなり、糸条の周囲から進む樹脂の含浸
が不完全となる。フイラメント数が40,000〜40
0,000本、炭素繊維糸条の繊度は25,000〜3
50,000デニール、より好ましくは、炭素繊維糸条
のフイラメント数が40,000〜100,000本、
糸条繊度が30,000〜70,000デニールである
と、炭素繊維糸条間に隙間を設けることができるので、
レジン・トランスファー成形や真空バッグ成形で樹脂が
流れ、積層体が厚くなっても全体に早く樹脂を行き渡ら
せることが出来、糸条の周囲から進む樹脂の含浸も完全
なものとすることが出来るのである。
The number of filaments of the carbon fiber yarn is 40,0.
When the fineness of the yarn is less than or equal to 25,000 deniers, the yarn becomes relatively thin, so that the carbon fiber constituting the yarn is preferably impregnated with the resin. Thin. Therefore, if the basis weight of the carbon fiber fabric is increased, the number of carbon fiber yarns to be used increases, and it becomes difficult to provide a gap between the carbon fiber yarns. In a molding method such as resin transfer molding or vacuum bag molding, resin is used. Flow becomes worse. Further, it is not expected that the cost of the carbon fiber yarn is reduced so much. On the other hand, the number of filaments of the carbon fiber yarn is 400,000 or more, and the fineness of the yarn is 350,
If the denier is 000 denier or more, the carbon fiber yarn becomes inexpensive, and the thickness of the yarn increases, so that even if the basis weight of the carbon fiber woven fabric is increased, it is possible to provide a gap between the carbon fiber yarns. Since the yarn becomes thicker, the distance to the center of the yarn is increased, and impregnation of the resin that advances from the periphery of the yarn becomes incomplete. The number of filaments is 40,000-40
000 fibers, fineness of carbon fiber yarn is 25,000-3
50,000 denier, more preferably the number of filaments of carbon fiber yarn is 40,000 to 100,000,
When the yarn fineness is 30,000 to 70,000 denier, a gap can be provided between the carbon fiber yarns.
The resin flows through resin transfer molding and vacuum bag molding, and even if the laminate becomes thicker, the resin can be quickly spread throughout the entire body, and the impregnation of the resin that progresses from around the yarn can be completed. is there.

【0017】本発明の炭素繊維織物における糸条間の隙
間は0.2〜2mmが好ましい。糸条間の隙間が2mm
以上であると、一方向性織物でよこ糸が細いから、織物
のドレープ性が大きくなり、織物が柔らかになり取扱い
にくくなる。また、隙間には繊維が存在しないから、F
RPにすると硬化の際の樹脂の収縮で、FRPの表面が
凸凹する。一方、糸条間の隙間が0.2mm以下である
と、糸条間の隙間への樹脂流れ抵抗が大きくなり、繊維
基材積層体への樹脂注入速度が遅くなる。
The gap between yarns in the carbon fiber fabric of the present invention is preferably 0.2 to 2 mm. 2mm gap between yarns
With the above, since the weft is thin in the unidirectional woven fabric, the draping property of the woven fabric is increased, and the woven fabric becomes soft and difficult to handle. Further, since no fiber exists in the gap, F
When RP is used, the surface of the FRP becomes uneven due to shrinkage of the resin during curing. On the other hand, if the gap between the yarns is 0.2 mm or less, the flow resistance of the resin into the gap between the yarns increases, and the resin injection speed into the fibrous base material laminate decreases.

【0018】糸条間の隙間が0.2〜2mmであるとレ
ジン・トランスファー成形や真空バッグ成形などの、型
やバッグフイルムに密閉された繊維基材に樹脂を注入し
て成形する際に、糸条間の隙間が樹脂の流路となり、樹
脂の注入時間が短縮され、成形の効率化に繋がるのであ
る。
When the gap between the yarns is 0.2 to 2 mm, when resin is injected into a fiber base material sealed in a mold or bag film, such as resin transfer molding or vacuum bag molding, molding is performed. The gap between the yarns serves as a resin flow path, which reduces the time for injecting the resin and leads to more efficient molding.

【0019】このような炭素繊維糸条は、たとえばポリ
アクリロニトリル繊維のトウを耐炎化、炭化処理した
後、サイジング剤を付着させて集束することによって製
造することが出来る。トウは太い糸条として製造するこ
とが出来るから、ポリアクリロニトリル繊維や耐炎化、
炭化の炭素繊維の製造工程での生産性を向上させ、安価
な炭素繊維糸条を製造することが可能となるのである。
Such a carbon fiber thread can be produced, for example, by subjecting a tow of polyacrylonitrile fiber to flame resistance and carbonization, and then attaching a sizing agent and bunching. Because tow can be manufactured as a thick thread, polyacrylonitrile fiber and flame-resistant,
It is possible to improve the productivity in the process of producing carbonized carbon fibers and to produce inexpensive carbon fiber yarns.

【0020】また、本発明の炭素繊維は、JIS R7
601法による引張強度は3〜4GPaで引張弾性率は
200〜300GPa程度であり、また織物製造工程で
の製織操作を向上させるため0.5〜2重量%程度のサ
イジング剤を付着させると好ましい。また、織物を構成
する炭素繊維糸条に撚がかかっていると、撚による炭素
繊維束の集束部が樹脂の含浸が阻害されるので、無撚で
あることが好ましい。
Further, the carbon fiber of the present invention is JIS R7
The tensile strength according to the 601 method is 3 to 4 GPa, the tensile modulus is about 200 to 300 GPa, and it is preferable to attach a sizing agent of about 0.5 to 2% by weight in order to improve the weaving operation in the fabric manufacturing process. In addition, if the carbon fiber yarns constituting the woven fabric are twisted, impregnation with the resin is hindered at the convergence portion of the carbon fiber bundle due to the twisting.

【0021】なお、本発明では糸条を構成する炭素繊維
同志を交絡させておくと、炭素繊維同志の交差または交
絡によって炭素繊維間に隙間を設けることができるか
ら、炭素繊維糸条および織物が嵩高となり、織物の炭素
繊維糸条に樹脂を含浸させやすくなるので好ましい。こ
の炭素繊維の交絡度合はフックドロップ値で表わすこと
ができ、フックドロップ値FD(15)が30cm以下の交
絡度合が好ましい。フックドロップ値FD(15)が30c
m以上であると繊維の交絡度合いが小さく、樹脂の含浸
性を改善するまでには至らない。また、フックドロップ
値FD(15)が2cm以下であると炭素繊維の交絡が大き
くなり、炭素繊維糸条および織物が嵩高となり、炭素繊
維間の隙間が多くなり樹脂が含浸されやすくなるが、炭
素繊維の屈曲が大きくなるから、FRPにしたとき応力
集中をもたらし強度が低下してしまう。フックドロップ
値が2〜30cmの範囲、より好ましくは2〜10cm
の範囲であると適度な樹脂の含浸性が与えられ、またF
RPにしたとき高強度となる。
In the present invention, if the carbon fibers constituting the yarn are entangled with each other, a gap can be provided between the carbon fibers by the intersection or entanglement of the carbon fibers. This is preferable because it becomes bulky and makes it easy to impregnate the resin into the carbon fiber thread of the woven fabric. The degree of entanglement of this carbon fiber can be represented by a hook drop value, and the degree of entanglement with a hook drop value FD (15) of 30 cm or less is preferable. Hook drop value FD (15) is 30c
If it is more than m, the degree of entanglement of the fibers is small, and the impregnation of the resin is not improved. If the hook drop value FD (15) is 2 cm or less, the entanglement of the carbon fiber becomes large, the carbon fiber thread and the fabric become bulky, the gap between the carbon fibers increases, and the resin is easily impregnated. Since the bending of the fiber becomes large, when FRP is used, stress concentration occurs, and the strength is reduced. Hook drop value is in the range of 2 to 30 cm, more preferably 2 to 10 cm
Within the range, a suitable resin impregnation property is given.
High strength when RP is used.

【0022】ただし、フックドロップ値はあくまで交絡
度合を示すための指標に過ぎず、たとえフックドロップ
値を直接測定することが困難だったり不可能であっても
他の測定手段で測定してその値を適当な方法でフックド
ロップ値に換算して、前記数値範囲で有れば良い。
However, the hook drop value is merely an index for indicating the degree of confounding. Even if it is difficult or impossible to directly measure the hook drop value, the hook drop value is measured by other measuring means and the value is measured. Is converted into a hook drop value by an appropriate method, and the value may be within the above numerical range.

【0023】フックドロップ値FD(15)とは、織物を構
成する炭素繊維糸条の繊維の交絡の程度を表すのもで、
図5〜7に示す測定装置によって測定した金属フックの
自由落下距離をもって表すことが出来る。
The hook drop value FD (15) indicates the degree of entanglement of the fibers of the carbon fiber yarn constituting the woven fabric.
It can be represented by the free fall distance of the metal hook measured by the measuring device shown in FIGS.

【0024】なお、炭素繊維糸条にサイジング剤が付着
している場合は、サイジング剤の付着量や付着状態によ
って金属フックの自由落下距離が影響を受けるから、完
全にサイジング剤を除去してから本測定を行う。たとえ
ば、サイジング剤は700℃の窒素雰囲気中で1時間加
熱処理することによって除去することが出来る。
When the sizing agent is attached to the carbon fiber yarn, the free fall distance of the metal hook is affected by the amount and state of the sizing agent attached. Perform this measurement. For example, the sizing agent can be removed by heat treatment in a nitrogen atmosphere at 700 ° C. for one hour.

【0025】また、炭素繊維糸条にプリプレグあるいは
CFRPの樹脂が付着乃至は含浸している場合も、金属
フックの自由落下距離が影響を受けるか、殆ど測定がで
きないから、完全にこれらの樹脂を除去してから本測定
を行う。たとえば、ビニルエステル樹脂ならば700℃
の窒素雰囲気中で5時間加熱処理することによって除去
することが出来る。
Also, when the prepreg or CFRP resin adheres to or impregnates the carbon fiber thread, the free fall distance of the metal hook is affected or almost no measurement is possible. Perform this measurement after removal. For example, 700 ° C for vinyl ester resin
Can be removed by performing a heat treatment in a nitrogen atmosphere for 5 hours.

【0026】織物の炭素繊維糸条のフックドロップ値F
(15)は、幅1,000mm、長さ1,000mmの織
物を3枚抽出し、各織物から、各織物からたて糸を毛羽
が発生しないように、また撚が加わらないようにほぐし
て、長さ1,000mmの炭素繊維糸条を採集する。ほ
ぐした炭素繊維糸条の繊維配列状態が乱れないように脱
サイジング処理を行い、この上端を上部クランプ104
で装置に固定する。なお、固定する糸条の幅、すなわち
糸条の厚みがフックドロップ値に影響するので、固定す
る糸条の幅B(mm)と糸条繊度D(デニール)との関
係を下記の式に従うようにし、糸条の厚みが均一になる
ように上部クランプ104固定した。
Hook drop value F of carbon fiber yarn of woven fabric
D (15) extracts three woven fabrics having a width of 1,000 mm and a length of 1,000 mm, and loosens the warp yarns from each woven fabric so as not to generate fluff and to prevent twisting, A carbon fiber thread having a length of 1,000 mm is collected. A desizing process is performed so that the fiber arrangement state of the loosened carbon fiber yarn is not disturbed,
Fix the device with. Since the width of the fixed yarn, that is, the thickness of the yarn, affects the hook drop value, the relationship between the width B (mm) of the fixed yarn and the yarn fineness D (denier) is determined according to the following equation. Then, the upper clamp 104 was fixed so that the thickness of the yarn became uniform.

【0027】糸条の幅B=4×10-4×D 次に、下端に4mg/デニールの荷重をかけた状態で、
撚が加わらないように掴み間隔が950mmになるよう
に下部クランプ105で鉛直方向に固定する。
Next, with a load of 4 mg / denier applied to the lower end, the width B = 4 × 10 −4 × D
In order to prevent twisting, the lower clamp 105 is used to fix the grip vertically in the vertical direction so that the grip distance is 950 mm.

【0028】次に、上下端を固定した炭素繊維糸条10
1の幅方向中央部に、金属フック102(ワイヤー直
径:1mm、半径:5mm)に綿糸106で重り103
を取り付けた重錘(フック102の上端から重り103
の上端までの距離:30mm)のその金属フック102
を上部クランプの下端から金属フック102の上端まで
の距離が50mmになるように引っ掛け、手を離して金
属フック102の自由落下距離(上記50mmの位置か
ら、落下位置における金属フック102の上端までの距
離)を測定する。金属フック102および綿糸106の
重量は極力軽くし、金属フック102、綿糸106およ
び重り103の合計重量、すなわち重錘の重量が15g
になるようにしておく。フックドロップ値FD(15)は、
1枚の織物のたて糸について10回の測定を行い、n=
30の平均値をもって表す。なお、金属フック102が
下部クランプ105の位置まで落下してしまう場合もあ
るが、そのときの自由落下距離は900mmとみなす。
そのためには、下部クランプ105に金属フック102
は当たるが綿糸106や重り103は引っ掛からないよ
うにしておく必要があり、図7にこの場合の落下状態を
示すように、下部クランプ105の下方に十分な空間を
設けておく必要がある。なお、測定は織物を温度25
℃、相対湿度60%の環境下に24時間放置した後、温
度25℃、相対湿度60%の環境下で行う。
Next, the carbon fiber yarn 10 with the upper and lower ends fixed
In the center in the width direction of No. 1, a weight 103 with a cotton thread 106 is attached to a metal hook 102 (wire diameter: 1 mm, radius: 5 mm).
Weight (from the upper end of the hook 102 to the weight 103)
Distance to the top of the metal: 30 mm) its metal hook 102
Is hooked so that the distance from the lower end of the upper clamp to the upper end of the metal hook 102 becomes 50 mm, and then release the hand to allow the free fall distance of the metal hook 102 (from the above 50 mm position to the upper end of the metal hook 102 at the drop position). Distance). The weight of the metal hook 102 and the cotton thread 106 is reduced as much as possible, and the total weight of the metal hook 102, the cotton thread 106 and the weight 103, that is, the weight of the weight is 15 g.
So that The hook drop value FD (15) is
Ten measurements were made on the warp yarn of one woven fabric and n =
It is represented by an average value of 30. Although the metal hook 102 may fall to the position of the lower clamp 105, the free fall distance at that time is considered to be 900 mm.
For that purpose, the metal hook 102 is attached to the lower clamp 105.
However, it is necessary to prevent the cotton thread 106 and the weight 103 from being caught, and it is necessary to provide a sufficient space below the lower clamp 105 as shown in FIG. The measurement was carried out at a temperature of 25 ° C.
After leaving for 24 hours in an environment at a temperature of 60 ° C. and a relative humidity of 60%, the process is performed in an environment of a temperature of 25 ° C. and a relative humidity of 60%.

【0029】また、本発明の炭素繊維織物は、嵩密度が
0.65g/cm3 以下であることが好ましい。嵩密度
が0.65g/cm3 以下であると炭素繊維糸条および
織物が嵩高となり、炭素繊維間の隙間が多くなり樹脂が
含浸されやすくなり、レジン・トランスファー成形や真
空バッグ成形のみならずハンドレイアップ成形でも樹脂
含浸が可能となる。
The carbon fiber fabric of the present invention preferably has a bulk density of 0.65 g / cm 3 or less. When the bulk density is 0.65 g / cm 3 or less, the carbon fiber thread and the woven fabric become bulky, the gap between the carbon fibers increases, and the resin is easily impregnated. Resin impregnation is possible even in lay-up molding.

【0030】本発明において嵩密度Vとは、下記の算出
式で計算される値をいう。
In the present invention, the bulk density V means a value calculated by the following formula.

【0031】V=w/(t×A) ここで、t:織物の厚さ(cm) A:織物の面積(cm2 ) w:織物の面積Aにおける炭素繊維重量(g) なお、織物の厚さの測定方法は、JIS R 7602
5.6項の、厚さ測定器がダイヤルゲージ法に準じ
た。ただし、荷重は3kPaとし、織物を5枚重ね合わ
せて、荷重をかけてから20秒経過後の値を読取り、織
物枚数で割り、1枚あたりの厚さとした。なお、補助糸
であるよこ糸が織物の厚さに及ぼす影響を極力少なくな
るように、織物の重ね合わせは、重ね合わせる織物のよ
こ糸の位置が互いにずれるように織物を重ね合わせた。
V = w / (t × A) where t: thickness of fabric (cm) A: area of fabric (cm 2 ) w: weight of carbon fiber in area A of fabric (g) The measuring method of the thickness is JIS R 7602
The thickness measuring device described in Section 5.6 complies with the dial gauge method. However, the load was set to 3 kPa, five woven fabrics were superimposed, the value 20 seconds after the load was applied was read, and the value was divided by the number of woven fabrics to obtain the thickness per one fabric. In addition, in order to minimize the influence of the weft yarn as the auxiliary yarn on the thickness of the woven fabric, the woven fabrics were overlapped so that the positions of the weft yarns of the woven fabric to be overlapped were shifted from each other.

【0032】本発明の具体的な実施態様を図面を参照し
て説明する。図1は本発明の一実施態様に係わる一方向
性炭素繊維織物を示しており、図において、2は炭素繊
維糸条で、多数本の炭素繊維糸条がたて方向に並行に配
列し、よこ方向の補助糸3が炭素繊維糸に交錯してい
る、いわゆる一方向性織物である。
A specific embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a unidirectional carbon fiber woven fabric according to an embodiment of the present invention. In the drawing, reference numeral 2 denotes a carbon fiber yarn, and a large number of carbon fiber yarns are arranged in parallel in the warp direction, This is a so-called unidirectional woven fabric in which the auxiliary yarns 3 in the weft direction are interlaced with the carbon fiber yarns.

【0033】図2は、本発明の炭素繊維織物の他の実施
態様を示しており、たて方向に、実質的に屈曲を有しな
い炭素繊維糸条2を一方向性に互いに並行かつシート状
に引き揃えてなる糸条群ロのシート面の両側によこ糸補
助糸3の糸条群ニが位置し、それらよこ糸補助糸群と、
炭素繊維糸条群と並行するたて方向補助糸4の糸条群ハ
とが織組織をなして糸条群を一体に保持している、一方
向性炭素繊維織物である。このような織物はたて方向の
炭素繊維糸条に屈曲を有しないので、成形してCFRP
にしても応力が集中するようなことはなく、高い強度と
なる。
FIG. 2 shows another embodiment of the carbon fiber woven fabric of the present invention, in which the carbon fiber yarns 2 having substantially no bending in the warp direction are unidirectionally parallel to each other and in a sheet form. The yarn group d of the weft auxiliary yarn 3 is located on both sides of the sheet surface of the yarn group b which is aligned with the weft yarn auxiliary yarn group,
This is a unidirectional carbon fiber woven fabric in which the yarn group C of the warp direction auxiliary yarn 4 parallel to the carbon fiber yarn group forms a weave structure and integrally holds the yarn group. Since such a woven fabric has no bending in the warp direction carbon fiber thread, it is molded and CFRP.
Even so, stress does not concentrate and high strength is obtained.

【0034】本発明に使用する補助糸は、本質的にはF
RPとなったときに荷重を負担させるものではなく、織
物の形態保持に使用するものであるから、100〜2,
000デニール程度で、炭素繊維糸条に比べて細い糸が
好ましい。とくに、100〜500デニールと炭素繊維
糸条に比べ極端に細く、また、よこ糸密度が0.5〜8
本/cm程度であると、よこ糸の補助糸による炭素繊維
糸条の拘束が弱くなるので、嵩高な織物となる。なお、
補助糸は、織物の寸法安定性や目どめ処理の際の加熱に
よる収縮を防止する点から、150℃における乾熱収縮
率が0.1%以下のものが好ましい。そのような補助糸
を構成する繊維としては炭素繊維、ガラス繊維やポリア
ラミド繊維などである。
The auxiliary yarn used in the present invention is essentially F
Since it is not used to bear the load when it becomes RP, it is used for maintaining the form of the woven fabric.
Yarns of about 000 denier and finer than carbon fiber yarns are preferred. In particular, 100-500 denier, extremely thin compared to carbon fiber yarn, and weft yarn density of 0.5-8
When the number is about book / cm, the restraint of the carbon fiber thread by the auxiliary yarn of the weft becomes weak, so that a bulky woven fabric is obtained. In addition,
The auxiliary yarn preferably has a dry heat shrinkage at 150 ° C. of 0.1% or less from the viewpoint of dimensional stability of the woven fabric and prevention of shrinkage due to heating at the time of staple treatment. Fibers constituting such an auxiliary yarn include carbon fiber, glass fiber, polyaramid fiber and the like.

【0035】上記一方向性織物において、炭素繊維の目
付が400〜1,500g/m2 程度にすると積層の枚
数が少なくてよいから、成形の際の繊維基材の積層の手
間が少なくなり、成形の省力化に繋がる。なお、炭素繊
維の目付が400〜700g/m2 程度であると、織物
も適度に柔らかく、また織物目付が比較的軽いので、積
層ではコーナなどの複雑な形状にも織物を沿わせること
が出来るし、樹脂粘度が2〜7ポイズの常温硬化型樹脂
で通常のハンドレイアップ成形における含浸ローラ掛け
でも十分樹脂含浸が可能である。
In the above unidirectional woven fabric, if the basis weight of the carbon fiber is about 400 to 1,500 g / m 2 , the number of laminations may be small, so that the labor for laminating the fiber base material during molding is reduced. This leads to labor saving in molding. When the basis weight of the carbon fiber is about 400 to 700 g / m 2 , the woven fabric is moderately soft and the woven fabric weight is relatively light, so that the woven fabric can follow a complicated shape such as a corner in lamination. However, it is possible to sufficiently impregnate the resin with a normal temperature-curable resin having a resin viscosity of 2 to 7 poise by using an impregnating roller in usual hand lay-up molding.

【0036】なお、本発明の炭素繊維織物は炭素繊維糸
条が太いので、織物を構成する糸条本数が少なくなる。
したがって、よこ糸との交錯点数が少なくなり、裁断し
た際に炭素繊維糸条がほつれ、作業性が悪くなる。
Since the carbon fiber woven fabric of the present invention has a thick carbon fiber yarn, the number of yarns constituting the woven fabric is reduced.
Therefore, the number of crossing points with the weft yarns is reduced, and the carbon fiber yarns are frayed at the time of cutting, resulting in poor workability.

【0037】したがって、本発明の一方向性の炭素繊維
織物では、図1および図2に示すように、よこ方向の補
助糸のその長さ方向に線状または点状に延びる低融点ポ
リマー5を付着させ、この低融点ポリマーが互いに直交
する糸、すなわちたて方向の炭素繊維糸条とたて方向の
補助糸が交点において接着している、いわゆる目どめ織
物であることが好ましい。なお、図1および図2では低
融点ポリマーがよこ方向の補助糸に付着した例を示した
が、たて方向の炭素繊維糸条および/またはたて方向補
助糸に付着させてもよいし、またはたて方向の炭素繊維
糸条および/またはたて方向補助糸とよこ方向の補助糸
に付着させてもよい。
Therefore, in the unidirectional carbon fiber woven fabric of the present invention, as shown in FIGS. 1 and 2, the low melting point polymer 5 extending linearly or dotwise in the length direction of the weft auxiliary yarn is used. It is preferable that the low-melting polymer is a so-called blind woven fabric in which the low-melting polymer is adhered at the intersection of the yarns orthogonal to each other, that is, the warp-direction carbon fiber yarns and the warp-direction auxiliary yarns. 1 and 2 show an example in which the low-melting polymer adheres to the weft-direction auxiliary yarn, but may be attached to the warp-direction carbon fiber yarn and / or the warp-direction auxiliary yarn. Alternatively, it may be attached to the warp direction carbon fiber yarn and / or the warp direction auxiliary yarn and the weft direction auxiliary yarn.

【0038】このように目どめされた織物は、レジン・
トランスファー成形や真空バッグ成形などでは、織物を
裁断し型に積層するが、裁断の際、糸条のほつれが防止
でき、成形の作業性が大幅に向上する。
The woven fabric thus obtained is made of resin
In transfer molding, vacuum bag molding, and the like, the fabric is cut and laminated into a mold. At the time of cutting, fraying of the yarn can be prevented, and the workability of forming is greatly improved.

【0039】また、低融点ポリマーの付着量は、多いと
樹脂含浸を阻害したり、CFRPの機械的性質を低下さ
せるので、6g/m2 以下が好ましい。ただし、0.5
g/m2 未満であると目どめ効果が薄れるので、0.5
〜6g/m2 が好ましい。
The amount of the low-melting polymer adhered is preferably 6 g / m 2 or less, since a large amount impairs resin impregnation or lowers the mechanical properties of CFRP. However, 0.5
When the amount is less than g / m 2 , the effect of the eye is weakened.
~6g / m 2 is preferred.

【0040】一方向性炭素繊維織物の場合、これら低融
点ポリマーが細い補助糸に多量に付くと、補助糸は基本
的には補強を担わせていないが、破壊の起点が補助糸か
ら始まるので、これらを防止するには、低融点ポリマー
の付着量が補助糸の40重量%以下が好ましい。
In the case of a unidirectional carbon fiber woven fabric, if a large amount of these low-melting polymers adhere to a thin auxiliary yarn, the auxiliary yarn basically does not support reinforcement, but the starting point of destruction starts from the auxiliary yarn. To prevent these, the amount of the low-melting polymer adhered is preferably 40% by weight or less of the auxiliary yarn.

【0041】本発明に用いる低融点ポリマーは、通常、
ナイロン、共重合ナイロン、ポリエステル、共重合ポリ
エステル、塩化ビニリデン、塩化ビニル、ポリウレタン
から選ばれたものである。なかでも、低温でポリマーを
溶融でき、かつ接着力が強く、僅かな使用量で期待する
目どめ効果が得られることから共重合ナイロンがとくに
好ましく用いられる。
The low melting point polymer used in the present invention is usually
It is selected from nylon, copolymer nylon, polyester, copolymer polyester, vinylidene chloride, vinyl chloride, and polyurethane. Among them, copolymerized nylon is particularly preferably used because the polymer can be melted at a low temperature, the adhesive strength is strong, and the expected effect can be obtained with a small amount of use.

【0042】本発明の繊維強化プラスチックは、強化繊
維基材のすべてが本発明の炭素繊維織物が単層又は多層
で積層され、樹脂が含浸して繊維強化されたものであっ
てよいが、少なくとも、繊維基材の少なくとも1層が本
発明の炭素繊維織物であって、ガラス繊維やポリアラミ
ド繊維などの他の強化繊維からなる基材と組み合わせる
ことが出来る。
The fiber-reinforced plastic of the present invention may be a fiber-reinforced plastic in which all of the reinforcing fiber bases are formed by laminating the carbon fiber fabric of the present invention in a single layer or in multiple layers and impregnated with a resin. At least one layer of the fiber substrate is the carbon fiber fabric of the present invention, and can be combined with a substrate made of another reinforcing fiber such as glass fiber or polyaramid fiber.

【0043】本発明の繊維強化プラスチックに用いる樹
脂は、たとえばエポキシ樹脂、不飽和ポリエステル樹
脂、ビニルエステル樹脂やフェノール樹脂などの熱硬化
性樹脂やナイロン樹脂、ポリエステル樹脂、ABS樹
脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化
ビニル樹脂、ポリエーテルエーテルケトン樹脂やポリフ
ェニレンサルファイド樹脂などの熱可塑性樹脂である。
The resin used for the fiber reinforced plastic of the present invention includes, for example, thermosetting resins such as epoxy resin, unsaturated polyester resin, vinyl ester resin and phenol resin, nylon resin, polyester resin, ABS resin, polyethylene resin and polypropylene resin. And thermoplastic resins such as polyvinyl chloride resin, polyether ether ketone resin and polyphenylene sulfide resin.

【0044】本発明の繊維強化プラスチックは、繊維基
材がトウ状の太い糸条からなり、高目付ではあるが、炭
素繊維糸条間に隙間のある炭素繊維織物を使用するか
ら、真空バッブ成形の際の樹脂の流動性や含浸性がよ
く、機械的特性に優れて安価なFRPとなる。
The fiber reinforced plastic of the present invention uses a carbon fiber woven fabric in which the fiber base is made of a thick tow-like yarn and has a high basis weight but has a gap between the carbon fiber yarns. In this case, the resin has good fluidity and impregnating property, is excellent in mechanical properties, and is inexpensive.

【0045】本発明の具体的な実施態様を図面を参照し
て説明する。図1は本発明の一実施態様に係わる一方向
性炭素繊維織物を示しており、図において、2は炭素繊
維糸条で、多数本の炭素繊維糸条がたて方向に並行に配
列し、よこ方向の補助糸3が炭素繊維糸に交錯してい
る、いわゆる一方向性織物である。
A specific embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a unidirectional carbon fiber woven fabric according to an embodiment of the present invention. In the drawing, reference numeral 2 denotes a carbon fiber yarn, and a large number of carbon fiber yarns are arranged in parallel in the warp direction, This is a so-called unidirectional woven fabric in which the auxiliary yarns 3 in the weft direction are interlaced with the carbon fiber yarns.

【0046】図2は、本発明の炭素繊維織物の他の実施
態様を示しており、たて方向に、実質的に屈曲(クリン
プ)を有しない炭素繊維糸条2を一方向性に互いに並行
かつシート状に引き揃えてなる糸条群ロのシート面の両
側によこ糸補助糸3の糸条群ニが位置し、それらよこ糸
補助糸群と、炭素繊維糸条群と並行するたて方向補助糸
4の糸条群ハとが織組織をなして糸条群を一体に保持し
ている、一方向性炭素繊維織物である。このような織物
はたて方向の炭素繊維糸条に屈曲(クリンプ)を有しな
いので、成形してCFRPにしても応力が集中するよう
なことはなく、高い強度となる。
FIG. 2 shows another embodiment of the carbon fiber woven fabric of the present invention. In the warp direction, the carbon fiber yarns 2 having substantially no bending (crimp) are unidirectionally parallel to each other. In addition, the yarn group d of the weft auxiliary yarn 3 is located on both sides of the sheet surface of the yarn group B aligned in a sheet shape, and the weft auxiliary yarn group and the warp direction auxiliary yarn parallel to the carbon fiber yarn group. 4 is a unidirectional carbon fiber woven fabric in which the yarn group C has a woven structure and holds the yarn group integrally. Since such a woven fabric does not have a crimp on the carbon fiber thread in the warp direction, stress is not concentrated even when it is molded and CFRP, and high strength is obtained.

【0047】本発明に使用する補助糸は、本質的にはF
RPとなったときに荷重を負担させるものではなく、織
物の形態保持に使用するものであるから、100〜2,
000デニール程度で、炭素繊維糸条に比べて細い糸が
好ましい。とくに、100〜500デニールと炭素繊維
糸条に比べ極端に細く、また、よこ糸密度が0.5〜8
本/cm程度であると、よこ糸の補助糸による炭素繊維
糸条の拘束が弱くなるので、嵩高な織物となる。なお、
補助糸は、織物の寸法安定性や目どめ処理の際の加熱に
よる収縮を防止する点から、150℃における乾熱収縮
率が0.1%以下のものが好ましい。そのような補助糸
を構成する繊維としては炭素繊維、ガラス繊維やポリア
ラミド繊維などである。
The auxiliary yarn used in the present invention is essentially F
Since it is not used to bear the load when it becomes RP, it is used for maintaining the form of the woven fabric.
Yarns of about 000 denier and finer than carbon fiber yarns are preferred. In particular, 100-500 denier, extremely thin compared to carbon fiber yarn, and weft yarn density of 0.5-8
When the number is about book / cm, the restraint of the carbon fiber thread by the auxiliary yarn of the weft becomes weak, so that a bulky woven fabric is obtained. In addition,
The auxiliary yarn preferably has a dry heat shrinkage at 150 ° C. of 0.1% or less from the viewpoint of dimensional stability of the woven fabric and prevention of shrinkage due to heating at the time of staple treatment. Fibers constituting such an auxiliary yarn include carbon fiber, glass fiber, polyaramid fiber and the like.

【0048】上記一方向性織物において、炭素繊維の目
付が400〜2,000g/m2 程度にすると積層の枚
数が少なくてよいから、成形の際の繊維基材の積層の手
間が少なくなり、成形する際に、糸条間の隙間が樹脂の
流路となり、樹脂の注入時間が短縮され、成形の効率化
に繋がる。
In the above unidirectional woven fabric, if the basis weight of the carbon fibers is about 400 to 2,000 g / m 2 , the number of laminations may be small, so that the labor of laminating the fiber base material during molding is reduced. At the time of molding, the gap between the yarns serves as a resin flow path, shortens the resin injection time, and leads to more efficient molding.

【0049】本発明の織物は、従来から知られている方
法でFRPを成形することが出来るが、なかでもレジン
・トランスファー成形法や真空バッグ成形法では大型の
成形品が安価に製造することができるので、好ましく用
いられる。
The fabric of the present invention can be used to form FRP by a conventionally known method. Among them, the resin transfer molding method and the vacuum bag molding method allow a large molded product to be produced at low cost. Since it can be used, it is preferably used.

【0050】ついで、本発明によるFRPの成形法を説
明するに、図3は本発明のFRPの成形法を説明する一
実施例の断面図である。図3において、型6の上に、繊
維基材として本発明の炭素繊維織物7が所定の方向に所
定の枚数が積層され、その上に樹脂が硬化した後に引き
剥がして除去するシート、いわゆるピールプライ8を積
層し、その上に樹脂を繊維基材の全面に拡散させるため
の媒体9を置く。繊維基材の周囲には、真空ポンプの空
気の吸引口10を取り付けた、エッジ・ブリーザ11と
して織物など多孔性の材料を多数枚積層して張り巡ら
し、全体をバッグ・フイルム12で覆い、空気が漏れな
いようにバッグ・フイルムの周囲を、ブチルゴム系やシ
リコーンゴム系のシーラント13で型に接着させる。バ
ッグ・フイルムの上部に樹脂タンクからの注入される樹
脂の吐出口14を取り付け、吐出口の取り付け部から空
気が漏れないようにシーラント13で接着する。樹脂タ
ンクには、硬化剤を所定量入れた常温でシロップ状の常
温硬化型の熱硬化性樹脂を入れておく。ついで、真空ポ
ンプでバッグ・フイルムで覆われた繊維基材を含めた内
部を、真空圧力が700〜760Torr程度の真空状
態にしたのち、バルブ15を解放して樹脂を注入する。
バッグ・フイルムで覆われた中が真空状態であり、繊維
基材の厚さ方向より媒体の面方向が樹脂の流通抵抗が小
さいから、まず樹脂は媒体の全面に拡がったのち、つい
で繊維基材の厚さ方向の含浸が進行する。この方法であ
ると樹脂の流れなければならない距離は、繊維基材積層
体の厚さでよいから、樹脂含浸が非常に早くて完了す
る。なお、真空ポンプは少なくとも樹脂の含浸が完了す
るまで運転し、バッグ・フイルムの中を真空状態に保つ
ことが好ましい。樹脂含浸完了後、バルブを閉口し室温
に放置して樹脂を硬化させる。樹脂の硬化後、ピールプ
ライを剥いで、媒体やバッグ・フイルムを除去し、型か
ら脱型することによってFRP成形品が得られる。
FIG. 3 is a cross-sectional view of an embodiment for explaining a method of forming an FRP according to the present invention. In FIG. 3, a predetermined number of carbon fiber fabrics 7 of the present invention as a fiber base material are laminated on a mold 6 in a predetermined direction, and a sheet which is peeled off after the resin is cured, which is a so-called peel ply. 8 are laminated, and a medium 9 for diffusing the resin over the entire surface of the fiber base material is placed thereon. Around the fiber substrate, a porous material such as woven fabric is laminated and stretched as an edge breather 11 to which an air suction port 10 of a vacuum pump is attached, and the whole is covered with a bag film 12. The periphery of the bag / film is adhered to the mold with a butyl rubber-based or silicone rubber-based sealant 13 to prevent leakage. A discharge port 14 for the resin to be injected from the resin tank is attached to the upper part of the bag film, and the resin film is bonded with a sealant 13 so that air does not leak from a mounting portion of the discharge port. The resin tank is filled with a thermosetting resin in a syrup at room temperature containing a predetermined amount of a curing agent. Then, after the interior including the fiber base material covered with the bag film is evacuated to a vacuum pressure of about 700 to 760 Torr by a vacuum pump, the valve 15 is opened to inject the resin.
Since the inside covered with the bag film is in a vacuum state and the flow resistance of the resin is smaller in the surface direction of the medium than in the thickness direction of the fiber base material, the resin first spreads over the entire surface of the medium, and then the fiber base material Impregnation in the thickness direction proceeds. According to this method, the distance over which the resin must flow may be the thickness of the fiber base material laminate, so that the resin impregnation is completed very quickly. Preferably, the vacuum pump is operated at least until the impregnation of the resin is completed, and the inside of the bag film is kept in a vacuum state. After completion of the resin impregnation, the valve is closed and left at room temperature to cure the resin. After the resin is cured, the peel ply is peeled off, the medium, the bag and the film are removed, and the FRP molded article is obtained by removing the mold from the mold.

【0051】本発明に使用する媒体9の一例を図4に示
したが、媒体はバッグ内の真空圧力を繊維基材に伝え、
かつ注入される樹脂を媒体の隙間を通して、媒体側の繊
維基材上面の全体に樹脂を行き渡らせるものである。す
なわち、バッグ・フイルムとピールプライ間に位置する
媒体に樹脂が注入されると、図4において、注入された
樹脂はバッグ・フイルムに接するA群のバー16の間隙
を流れてバー16の方向とB群の矩形断面のバー17の
間隙を流れてバー17の方向に流れるから全面に樹脂が
拡散することとなる。また、バー16にかかる力をバー
17に伝えることが出来るから真空圧力を繊維基材に伝
えることが出来るのである。バーの太さは特に限定され
るものではないが、0.2〜2mmが好ましい。又、間
隙の幅は0.2〜2cmが好ましい。媒体の具体的なも
のとしては、ポリプロピレン、ポリエチレン、ポリエス
テル、ポリ塩化ビニルや金属などからなるメッシュ状の
シートで、たとえば、メッシュ状樹脂フイルム、織物、
網状物や編物などであり、必要に応じてこれらを数枚重
ねて使用することが出来る。
FIG. 4 shows an example of the medium 9 used in the present invention. The medium transmits the vacuum pressure in the bag to the fiber base material.
In addition, the resin to be injected is made to spread over the entire upper surface of the fiber base material on the medium side through the gap of the medium. That is, when the resin is injected into the medium located between the bag film and the peel ply, in FIG. 4, the injected resin flows through the gap between the bars 16 in the group A in contact with the bag film, and Since the resin flows through the gap between the bars 17 having a rectangular cross section and flows in the direction of the bars 17, the resin is diffused over the entire surface. Further, since the force applied to the bar 16 can be transmitted to the bar 17, the vacuum pressure can be transmitted to the fiber base material. The thickness of the bar is not particularly limited, but is preferably 0.2 to 2 mm. Further, the width of the gap is preferably 0.2 to 2 cm. Specific examples of the medium include polypropylene, polyethylene, polyester, polyvinyl chloride, and a mesh sheet made of metal, such as a mesh resin film, a woven fabric,
It is a net-like or knitted fabric, and several of these can be used as needed.

【0052】なお、上記は媒体を繊維基材積層体の上面
の一面に設置する場合について説明したが、繊維基材積
層体が厚い場合は、繊維基材積層体の下面と上面に設置
して、繊維基材積層体の両面から樹脂含浸をおこなうこ
とも出来る。
Although the above description has been made on the case where the medium is placed on one surface of the upper surface of the fiber base laminate, when the fiber base laminate is thick, the medium is placed on the lower surface and the upper surface of the fiber base laminate. Alternatively, resin impregnation can be performed from both sides of the fiber base laminate.

【0053】上記に記載した成形法は、大きくは真空バ
ッグ成形法の範疇に入るが、樹脂注入と同時に樹脂を繊
維基材積層体の全面に拡散させる点で、従来の真空バッ
グ成形法とは異なり、とくに大型のFRP成形品の成形
に用いると好適である。
Although the molding method described above falls broadly in the category of the vacuum bag molding method, it differs from the conventional vacuum bag molding method in that the resin is diffused over the entire surface of the fiber base material laminate at the same time as the resin is injected. Differently, it is particularly suitable for use in molding large FRP molded articles.

【0054】また、表面に樹脂の流路となる溝を有する
成形材の上に、繊維基材と接するように積層し、さら
に、全体をバックフィルムで覆い、次にバックフィルム
で覆われた内部を真空状態にし、繊維基材と接している
成形材の溝から樹脂を拡散させ、積層された繊維基材に
常温硬化型熱硬化性樹脂を含浸させながら繊維基材と成
形材とを一体化させることも出来る。この方法によれ
ば、FRPを表皮材とし板状板を芯材とするサンドイッ
チ構造体を簡単に成形することが出来る。この方法によ
ればFRPを表皮材とし、板状板と一体化した繊維強化
プラスチック構造体を簡単に成形することが出来る。図
8は、本発明のFRPの成形方法を説明する断面図であ
る。図8において、型6の上に、繊維基材としての炭素
繊維織物7を成形材18に所定の枚数巻き付けたブロッ
ク19を必要個数分を配置し、全体をバッグ・フイルム
12で覆い、空気が漏れないようにバッグ・フイルムの
周囲をシール材13で型6に接着させる。なお、成形材
の1例を図9に示すが、成形材の上面C、下面D、側面
Eおよび正面Fには樹脂の流路となる溝20が設けられ
ている。
[0054] Further, on a molding material having a groove serving as a resin flow path on the surface thereof, it is laminated so as to be in contact with the fiber base material, further covered entirely with a back film, and then covered with the back film. Is vacuumed, the resin is diffused from the groove of the molding material in contact with the fiber base material, and the fiber base material and the molding material are integrated while impregnating the laminated fiber base material with the room-temperature curing type thermosetting resin. It can also be done. According to this method, a sandwich structure using FRP as a skin material and a plate-like plate as a core material can be easily formed. According to this method, a fiber-reinforced plastic structure integrated with a plate-like plate using FRP as a skin material can be easily formed. FIG. 8 is a cross-sectional view illustrating a method of forming an FRP according to the present invention. In FIG. 8, a required number of blocks 19 in which a predetermined number of carbon fiber woven fabrics 7 as a fiber base material are wound around a molding material 18 are arranged on a mold 6, and the whole is covered with a bag film 12, and air is released. The periphery of the bag film is adhered to the mold 6 with a sealing material 13 so as not to leak. FIG. 9 shows an example of the molding material. Grooves 20 serving as resin flow paths are provided on the upper surface C, the lower surface D, the side surface E, and the front surface F of the molding material.

【0055】真空ポンプで吸引口からバッグ・フイルム
で覆われた内部を真空状態にし、吐出口から樹脂を流し
込むと、樹脂が成形材の上下面および側面に設けられ
た、流動抵抗の小さな溝から成形材の全面に行き渡り、
その後繊維基材への樹脂含浸が行われる。
When the interior covered with the bag film is evacuated from the suction port with a vacuum pump and the resin is poured from the discharge port, the resin flows from the grooves with small flow resistance provided on the upper and lower surfaces and side surfaces of the molding material. All over the molding material,
After that, the fiber base material is impregnated with the resin.

【0056】ついで、常温で樹脂が硬化すると、成形材
の溝にマトリックス樹脂が充填されて、成形材の溝とマ
トリックス樹脂が接着し、同時に繊維強化プラスチック
とマトリックス樹脂が接着し、本発明の繊維強化プラス
チック構造体が得られる。
Then, when the resin cures at room temperature, the groove of the molding material is filled with the matrix resin, and the groove of the molding material and the matrix resin adhere to each other. At the same time, the fiber-reinforced plastic and the matrix resin adhere to each other. A reinforced plastic structure is obtained.

【0057】本発明の繊維強化プラスチック構造体によ
れば、繊維強化プラスチックと成形材の接着が単なる繊
維強化プラスチックと成形材面のみならず、成形材の溝
とマトリックス樹脂とも接着しているので接着面積が大
きくなり、繊維強化プラスチックと成形材の一体化が強
固となる。
According to the fiber-reinforced plastic structure of the present invention, the bonding between the fiber-reinforced plastic and the molding material is not limited to the mere fiber-reinforced plastic and the molding material surface, but also the groove of the molding material and the matrix resin. The area is increased, and the integration of the fiber-reinforced plastic and the molding material becomes strong.

【0058】なお、成形材の溝の断面形状は矩形、台形
や半球形などであり、これら断面形状や断面寸法は樹脂
の流動性や繊維強化プラスチックと成形材の接着度合い
によって適宜決めることが出来る。なかでも、断面形状
が成形材に対してくさび型となるような台形にすると、
繊維強化プラスチックと成形材の接合はより強固なもの
となる。
The cross-sectional shape of the groove of the molding material is rectangular, trapezoidal, hemispherical, or the like, and these cross-sectional shapes and cross-sectional dimensions can be appropriately determined depending on the fluidity of the resin and the degree of adhesion between the fiber-reinforced plastic and the molding material. . Above all, if you make the trapezoid so that the cross-sectional shape becomes a wedge shape for the molding material,
The bonding between the fiber reinforced plastic and the molding material becomes stronger.

【0059】本発明に使用する成形材は、有機系あるい
は無機系の発泡体であると、得られる成形体が軽くなる
ので好ましく用いられるが、発泡していない樹脂板や無
機系の板、または金属板や木材やであってもよい。有機
系あるいは無機系の発泡体としては、ポリウレタン、ポ
リスチレン、ポリエチレン、ポリプロピレン、PVC、
シリコーン、イソシアヌレート、フェノール、アクリル
樹脂のフォームや軽量気泡コンクリート、珪酸カルシュ
ームフォームや炭酸カルシュームフォームなどがあげら
れる。
The molding material used in the present invention is preferably used if it is an organic or inorganic foam, since the resulting molded body becomes lighter. However, a non-foamed resin plate or inorganic plate, or It may be a metal plate or wood. Organic or inorganic foams include polyurethane, polystyrene, polyethylene, polypropylene, PVC,
Examples include foams of silicone, isocyanurate, phenol, and acrylic resin, lightweight cellular concrete, calcium silicate foam and calcium carbonate foam.

【0060】なお、成形材の圧縮強さは、1.0kgf
/cm2 以上が好ましい。圧縮強さが1.0kgf/c
2 以下であると、成形時に真空バッグする際真空減圧
され、成形材の潰れが発生してしまうので好ましくな
い。
The compression strength of the molding material is 1.0 kgf
/ Cm 2 or more is preferred. Compressive strength is 1.0kgf / c
If it is less than m 2 , the vacuum pressure is reduced during vacuum bagging during molding, and the molded material is crushed, which is not preferable.

【0061】本発明の炭素繊維織物は1枚あたりの繊維
目付が大きいにも拘らず、この織物の炭素繊維糸条間に
隙間がある、また、本発明の成形方法によれば、樹脂の
流れやすい繊維基材積層体の面方向に全面に樹脂が拡が
り、繊維基材積層体の厚さ方向に樹脂含浸が進むから、
積層の手間が少なくなるのみならず、樹脂の含浸が完全
に行われ、また樹脂の注入時間も少なくなり、作業性が
向上する。
Although the carbon fiber woven fabric of the present invention has a large fiber basis weight per sheet, there is a gap between the carbon fiber yarns of the woven fabric. Since the resin spreads over the entire surface in the surface direction of the fiber base laminate, resin impregnation proceeds in the thickness direction of the fiber base laminate,
Not only the labor for lamination is reduced, but also the impregnation of the resin is completely performed, and the time for injecting the resin is reduced, so that the workability is improved.

【0062】なお、本発明に使用する繊維基材は、全て
が本発明の炭素繊維織物である必要はなく、少なくとも
1層以上用いればよい。その他の繊維基材は、たとえば
通常の炭素繊維織物や、また他の強化繊維、たとえばガ
ラス繊維やポリアラミド繊維からなる織物やチョップド
・ストランド・マット、コンティニュアス・ストランド
・マットであってもよいし、これら強化繊維糸を並行に
配列したシートを0゜(繊維基材の長さ方向)、90゜
(繊維基材の幅方向)や±45゜(繊維基材の斜め方
向)に積層され、これをガラス繊維、ポリエステル繊維
な、ポリアラミド繊維などのステッチ糸で縫合した多軸
ステッチ布帛であってもよい。
The fiber base material used in the present invention does not need to be all the carbon fiber fabric of the present invention, and may be used in at least one layer. The other fibrous base material may be, for example, a normal carbon fiber woven fabric, or another reinforced fiber, for example, a woven fabric made of glass fiber or polyaramid fiber, a chopped strand mat, or a continuous strand mat. Sheets in which these reinforcing fiber yarns are arranged in parallel are laminated at 0 ° (length direction of the fiber base), 90 ° (width direction of the fiber base) or ± 45 ° (diagonal direction of the fiber base), This may be a multiaxial stitched fabric sewn with a stitch thread such as glass fiber, polyester fiber, or polyaramid fiber.

【0063】とくに、繊維基材の組み合わせが、本発明
の一方向性炭素繊維織物と多軸ステッチ布帛であると、
FRP構造体の補強が必要な方向を一方向性炭素繊維織
物で荷重を担わせ、その他の方向は多軸ステッチ布帛で
荷重を担わせると、これら繊維基材は、布帛形成のため
の炭素繊維糸条同士およびその他の強化繊維糸条同士の
交錯がなく、かつ曲がること無く真直ぐに繊維配向して
いるから、また繊維体積含有率も大きくなるからFRP
にしたとき機械的性質に優れる。また、糸条同士の交錯
によって、炭素繊維またはその他の強化繊維が締め付け
られることもないので、本発明の真空バッグ成形でも樹
脂は十分に含浸させることが出来るし、含浸速度を早く
することができる。
In particular, when the combination of the fiber base material is the unidirectional carbon fiber fabric of the present invention and the multiaxial stitch fabric,
When a unidirectional carbon fiber woven fabric is used to carry a load in the direction in which the FRP structure is required to be reinforced and a multiaxial stitch fabric is used to carry a load in other directions, these fiber base materials are used as carbon fibers for fabric formation. Since there is no crossing between the yarns and other reinforcing fiber yarns and the fibers are oriented straight without bending, and the fiber volume content increases, FRP
Excellent mechanical properties when used. In addition, since the carbon fibers or other reinforcing fibers are not tightened by interlacing of the yarns, the resin can be sufficiently impregnated even in the vacuum bag molding of the present invention, and the impregnation speed can be increased. .

【0064】本発明の成形に用いる樹脂は、常温で液状
の常温硬化型の、エポキシ樹脂、不飽和ポリエステル樹
脂、ビニルエステル樹脂やフェノール樹脂などの熱硬化
性樹脂である。なお、使用する樹脂の粘度は、樹脂の含
浸性や含浸速度の点から低粘度樹脂が好ましく、0.5
〜10ポイズ程度、より好ましくは0.5〜5ポイズ未
満である。なかでもビニルエステル樹脂は、樹脂を低粘
度とすることができることや、樹脂伸度を3.5〜12
%大きくすることが出来るので、成形性に優れるのみな
らず、強度が高く、耐衝撃性にも優れるので、好ましく
用いられる。
The resin used in the molding of the present invention is a room temperature-curable, thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin or a phenol resin which is liquid at room temperature. The viscosity of the resin used is preferably a low-viscosity resin from the viewpoint of the impregnation property and the impregnation rate of the resin.
It is about 10 to 10 poise, more preferably 0.5 to less than 5 poise. Among them, the vinyl ester resin is capable of reducing the viscosity of the resin and has a resin elongation of 3.5 to 12
%, It is preferably used because it not only has excellent moldability but also has high strength and excellent impact resistance.

【0065】本発明の成形に用いるピールプライは、樹
脂が硬化した後にFRPから引き剥がして除去するシー
トであるが、樹脂を通過させることができることが必要
であり、ナイロン繊維織物、ポリエステル繊維織物やガ
ラス繊維織物などである。なお、ナイロン繊維織物やポ
リエステル繊維織物は安価であるため好ましく用いられ
るが、これら織物を製造する際に用いられている油剤や
サイジング剤がFRPの樹脂に混入するのを防ぐため、
精練を行い、また常温硬化型樹脂の硬化発熱による収縮
を防ぐため、熱セットされた織物を使用することが好ま
しい。
The peel ply used in the molding of the present invention is a sheet that is peeled off from the FRP after the resin is cured, but it is necessary that the resin can pass through the ply, and it is necessary to be able to pass the resin. Fiber fabrics and the like. In addition, nylon fiber woven fabrics and polyester fiber woven fabrics are preferably used because they are inexpensive, but in order to prevent oils and sizing agents used in manufacturing these woven fabrics from being mixed into the FRP resin,
In order to perform scouring and to prevent shrinkage of the room-temperature-curable resin due to heat generated by curing, it is preferable to use a heat-set fabric.

【0066】本発明の成形に用いるエッジ・ブリーザ
は、空気および樹脂を通過させることができることが必
要であり、ナイロン繊維織物、ポリエステル繊維織物、
ガラス繊維織物やナイロン繊維、ポリエステル繊維から
なるマットを使用することができる。
The edge breather used in the molding of the present invention needs to be able to pass air and resin, and is made of nylon fiber fabric, polyester fiber fabric,
A mat made of glass fiber fabric, nylon fiber, or polyester fiber can be used.

【0067】また、本発明の成形に用いるバッグ・フイ
ルムは、気密性であることが必要でありナイロンフイル
ム、ポリエステルフイルムやPVCフイルムなどであ
る。
The bag film used in the molding of the present invention is required to be airtight, and may be a nylon film, a polyester film, a PVC film, or the like.

【0068】[0068]

【実施例】【Example】

(実施例1)フイラメント数が70,000本、繊度が
52,000デニールトウ状のマルチフイラメントの炭
素繊維糸条をたて糸とし、608デニールのガラス繊維
からなる補助糸をよこ糸とし、たて糸密度が0.87本
/cm,よこ糸密度が2本/cmの、一方向に炭素繊維
が配列した平組織の、炭素繊維目付が503g/m2
目どめ処理した炭素繊維織物Aを作製した。なお、目ど
め処理は、ガラス繊維糸のよこ糸の挿入は低融点の50
デニールの共重合ナイロン糸と引き揃えて行い、よこ糸
挿入後、織機上に取り付けた遠赤外線ヒータで共重合ナ
イロン糸を溶融し、炭素繊維糸条とガラス繊維糸を接着
する方法で行った。トウ状の糸条をたて糸としてること
もあって、得られた織物の炭素繊維糸条間の隙間が確保
出来、1.2mmであった。
(Example 1) A carbon fiber yarn of a multifilament having a filament count of 70,000 and a fineness of 52,000 denier is used as a warp yarn, an auxiliary yarn made of 608 denier glass fiber is used as a weft yarn, and a warp yarn density is 0. A carbon fiber woven fabric A having a flat structure of 87 fibers / cm and a weft yarn density of 2 fibers / cm, in which carbon fibers are arranged in one direction and having a basis weight of 503 g / m 2 , was produced. In addition, in the eye-stopping treatment, the insertion of the weft of the glass fiber yarn is performed with a low melting point of 50 mm.
The method was performed in such a manner that the nylon fiber was aligned with the denier copolymerized nylon yarn, and after inserting the weft yarn, the copolymerized nylon yarn was melted by a far-infrared heater mounted on a loom, and the carbon fiber yarn and the glass fiber yarn were bonded. Since a tow-like yarn was used as a warp yarn, a gap between carbon fiber yarns of the obtained woven fabric could be secured, and the length was 1.2 mm.

【0069】次に、上記の炭素繊維織物を使用して、下
記の本発明の成形法の方法で成形を行った。
Next, using the above-mentioned carbon fiber fabric, molding was carried out by the following method of the present invention.

【0070】幅が100cmで長さが100cmの本発
明の炭素繊維織物Aを2枚と、幅が100cmで長さが
100cmのガラス繊維からなる、繊維目付が450g
/m2 のチョップドストランドマットを3枚準備した。
Two carbon fiber woven fabrics A of the present invention having a width of 100 cm and a length of 100 cm, glass fibers of a width of 100 cm and a length of 100 cm, and a fiber weight of 450 g
/ M 2 chopped strand mats were prepared.

【0071】離形剤を塗布した成形型の上に、強化繊維
基材としてまず本発明の炭素繊維織物A(以下、この炭
素繊維織物Aを炭素繊維織物A1と呼称する。)を1枚
積層し、次にその上にマットの端部と織物の端部が合う
ようにチョップドストランドマットを1枚づつ3枚積層
し、さらにその上に本発明の炭素繊維織物(以下、この
炭素繊維織物Aを炭素繊維織物A2と呼称する。)を1
枚積層、合計5層の繊維基材を積層した。
First, a carbon fiber woven fabric A of the present invention (hereinafter, this carbon fiber woven fabric A is referred to as carbon fiber woven fabric A 1 ) as a reinforcing fiber base is placed on a mold on which a release agent is applied. Then, three chopped strand mats are laminated one by one so that the end of the mat and the end of the fabric are aligned, and the carbon fiber fabric of the present invention (hereinafter, this carbon fiber fabric) is further laminated thereon. the a is referred to as the carbon fiber fabric a 2.) of 1
A total of five fiber substrates were laminated.

【0072】繊維基材の上に、ピールプライとしてのナ
イロンフイラメント織物を置き、その上に媒体としてポ
リエチレンからなる厚みが1.0mm、メッシュの開口
寸法が2.6×2.6mm、メッシュの開口率(全体面
積;100に対するメッシュの開口部面積の比率)が6
2%のメッシュのシートを2枚、繊維基材の全面覆うよ
うに置いた。
A nylon filament woven fabric as a peel ply is placed on a fiber base material, and a polyethylene medium having a thickness of 1.0 mm, a mesh opening size of 2.6 × 2.6 mm, and a mesh opening ratio are placed thereon. (Total area; ratio of mesh opening area to 100) is 6
Two sheets of 2% mesh were placed so as to cover the entire surface of the fiber base material.

【0073】積層した繊維基材の周囲にエッジブリーザ
としてのガラス繊維織物を、基材積層体とほぼ同じ厚さ
になるように張り巡らし、真空ポンプの吸引口を取り付
けた。
A glass fiber woven fabric as an edge breather was stretched around the laminated fiber base material so as to have substantially the same thickness as the base material laminate, and a suction port of a vacuum pump was attached.

【0074】全体をナイロンフイルムからなるバッグフ
イルムで覆い、真空状態が保てるようにバッグフイルム
と成形型および吸引口の取り付け口をシール材で接着し
た。
The whole was covered with a bag film made of a nylon film, and the bag film was bonded with a molding die and a mounting port of a suction port with a sealing material so that a vacuum state could be maintained.

【0075】バッグフイルムの中央部に樹脂の吐出口を
設け、同様に真空状態が保てるようフイルムと吐出口を
シール材で接着した。
A resin discharge port was provided at the center of the bag film, and the film and the discharge port were similarly bonded with a sealant so that a vacuum state could be maintained.

【0076】つぎに、真空ポンプでバッグフイルムに覆
われた内部を755Torrの真空状態にしたのち、バ
ルブを解放して樹脂粘度が3ポイズの常温硬化型ビニル
エステル樹脂を注入した。樹脂の拡散媒体に樹脂が積層
基材の全面に直ちに拡散した。次に炭素繊維織物A1
ら、また炭素繊維織物A1 の炭素繊維糸条の隙間を通過
して、チョップドストランドマット層へと積層基材の厚
さ方向に樹脂が流れて繊維間に樹脂が含浸し、積層基材
への樹脂含浸するに要した時間は16分であった。樹脂
の硬化後、成形板を切断して、断面を観察したところ、
真空状態で樹脂含浸していることもあって完全に樹脂が
含浸していた。
Next, after the inside covered with the bag film was evacuated to 755 Torr by a vacuum pump, the valve was opened and a room temperature-curable vinyl ester resin having a resin viscosity of 3 poise was injected. The resin immediately diffused into the resin diffusion medium over the entire surface of the laminated base material. Then the carbon fiber woven fabric A 1, also passes through the gap between the carbon fiber thread of carbon fiber fabric A 1, is resin in the thickness direction of the laminated base material into chopped strand mat layer resin flows between the fibers The time required for the impregnation and the resin impregnation of the laminated base material was 16 minutes. After the resin was cured, the molded plate was cut and the cross section was observed.
The resin was completely impregnated because the resin was impregnated in a vacuum state.

【0077】(比較例1)比較のために、フイラメント
数が12,000本、繊度が7,200デニールのマル
チフイラメントの炭素繊維糸条をたて糸とし、608デ
ニールのガラス繊維からなる補助糸をよこ糸し、たて糸
密度が6.20本/cm、よこ糸密度が2本/cmの、
一方向に炭素繊維が配列した平組織の、炭素繊維目付が
496g/m2 の炭素繊維織物Bを作製した。得られた
織物の炭素繊維糸条間には隙間はほとんど無く、0mm
であった。
Comparative Example 1 For comparison, a multifilament carbon fiber yarn having a filament count of 12,000 and a fineness of 7,200 denier was used as a warp yarn, and an auxiliary yarn made of 608 denier glass fiber was used as a weft yarn. The warp yarn density is 6.20 yarns / cm and the weft yarn density is 2 yarns / cm.
A carbon fiber fabric B having a flat structure in which carbon fibers were arranged in one direction and having a carbon fiber weight of 496 g / m 2 was produced. There is almost no gap between the carbon fiber yarns of the obtained woven fabric, and 0 mm
Met.

【0078】炭素繊維織物のみを織物Aを織物Bに変
え、その他は実施例と同じにして(従って、織物B1
織物A1に、織物B2は織物A2に、それぞれ対応する)
成形を行った。樹脂の拡散媒体に樹脂が積層基材の全面
に直ちに拡散したが積層基材の上部にある織物B2 に、
織物の炭素繊維目付が大きく、かつ炭素繊維糸条間の隙
間もほとんど無いからチョップドストランドマット層へ
なかなか樹脂が流れず、下部に積層した織物B1 にまで
は十分に樹脂が流れず、樹脂注入を開始して50分後に
樹脂のゲル化が始まり、成形は失敗に終わった。
[0078] changing only the carbon fiber woven fabric A in the fabric B, others were the same as in Example (Thus, the fabric B 1 represents the fabric A 1, the fabric B 2 is the fabric A 2, corresponding respectively)
Molding was performed. Although the resin was immediately diffused into the entire surface of the laminated base material in the resin diffusion medium, the fabric B 2 at the top of the laminated base material
Carbon fiber basis weight is large fabric, and the gap between the carbon fiber thread also does not flow easily the resin to hardly because chopped strand mat layer, sufficiently without resin flows to the fabric B 1 laminated on the lower resin injection After 50 minutes from the start, gelling of the resin started, and molding failed.

【0079】[0079]

【発明の効果】以上説明したように、本発明の炭素繊維
織物は、トウ状の太い炭素繊維糸条からなり、1枚あた
りの繊維目付が大きいにも拘らず、この織物の炭素繊維
糸条間に隙間がある、また、本発明の成形方法によれ
ば、樹脂の流れやすい繊維基材積層体の面方向に全面に
樹脂が拡がり、繊維基材積層体の厚さ方向に樹脂含浸が
進むから、積層の手間が少なくなるのみならず、樹脂の
含浸が完全に行われ、また樹脂の注入時間も少なくな
り、作業性が向上する。
As described above, the carbon fiber woven fabric of the present invention is composed of a tow-like thick carbon fiber yarn, and despite the large fiber weight per sheet, the carbon fiber yarn of this woven fabric is large. According to the molding method of the present invention, there is a gap between the resin and the resin spreads over the entire surface of the fiber base laminate in which the resin easily flows, and the resin impregnation proceeds in the thickness direction of the fiber base laminate. Therefore, not only the labor of lamination is reduced, but also the impregnation of the resin is completely performed, and the time for injecting the resin is reduced, so that the workability is improved.

【0080】また、本発明の繊維強化プラスチックはト
ウ状の太い炭素繊維糸条からなるが、樹脂含浸が容易に
なされるから、安価で機械的特性に優れてFRPが得ら
れる。
The fiber-reinforced plastic of the present invention is made of a tow-like thick carbon fiber thread, but can be easily impregnated with a resin, so that FRP can be obtained at low cost and excellent in mechanical properties.

【0081】また、本発明のFRPの成形方法によれ
ば、嵩高な炭素繊維織物を使用し、真空バッグ成形にお
いて、媒体を介して樹脂を全面に拡散させるから、また
は、成形材に設けた溝で樹脂を全面に拡散させるから、
樹脂の含浸性が良く、かつ樹脂含浸時間を少なくするこ
とが出来るから、FRP成形品を安価に製造することが
出来る。
According to the FRP molding method of the present invention, a bulky carbon fiber fabric is used, and in vacuum bag molding, the resin is diffused over the entire surface via a medium. To spread the resin over the entire surface,
Since the resin impregnation property is good and the resin impregnation time can be reduced, an FRP molded product can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施態様に係わる一方向性炭素繊
維織物を示す。
FIG. 1 shows a unidirectional carbon fiber fabric according to an embodiment of the present invention.

【図2】 たて方向補助糸を有する本発明の一方向性補
強織物の実施態様例を示す。
FIG. 2 shows an exemplary embodiment of the unidirectional reinforced fabric of the present invention having warp assist yarns.

【図3】 本発明のFRPの成形法を説明する1実施例
の断面図である。
FIG. 3 is a cross-sectional view of one embodiment for explaining a method of forming an FRP of the present invention.

【図4】 樹脂拡散媒体の斜視図である。FIG. 4 is a perspective view of a resin diffusion medium.

【図5】 フックドロップ値の測定装置の斜視図であ
る。
FIG. 5 is a perspective view of an apparatus for measuring a hook drop value.

【図6】 フックドロップ値の測定装置の拡大部分正面
図である。
FIG. 6 is an enlarged partial front view of the hook drop value measuring device.

【図7】 フックドロップ値の測定装置の部分斜視図で
ある。
FIG. 7 is a partial perspective view of a device for measuring a hook drop value.

【図8】本発明のFRPの成形法を説明する他の実施例
の断面図である。
FIG. 8 is a cross-sectional view of another embodiment illustrating a method of forming an FRP of the present invention.

【図9】成形材を説明する概略斜視図である。FIG. 9 is a schematic perspective view illustrating a molding material.

【符号の説明】[Explanation of symbols]

1:炭素繊維糸条の断面 2:炭素繊維糸条 3:補助糸 4:たて方向補助糸 5:目どめ剤 6:型 7:炭素繊維織物 8:ピールプライ 9:媒体 10:吸入口 11:エッジ・ブリーザ 12:バッグ・フイルム 13:シール材 14:吐出口 15:バルブ 16:A群のバー 17:B群のバー 18:成形材 19:成形材に炭素繊維織物を巻き付けたブロック 20:溝 101:炭素繊維糸条 102:金属フック 103:重り 104:上部クランプ 105:下部クランプ 106:綿糸 1: Cross section of carbon fiber yarn 2: Carbon fiber yarn 3: Auxiliary yarn 4: Warp direction auxiliary yarn 5: Membrane 6: Mold 7: Carbon fiber fabric 8: Peel ply 9: Medium 10: Suction port 11 : Edge breather 12: Bag film 13: Seal material 14: Discharge port 15: Valve 16: Bar of group A 17: Bar of group B 18: Molding material 19: Block obtained by winding a carbon fiber fabric around molding material 20: Groove 101: Carbon fiber thread 102: Metal hook 103: Weight 104: Upper clamp 105: Lower clamp 106: Cotton thread

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 トウ状の炭素繊維糸条からなり、炭素繊
維糸条のフイラメント数が40,000〜400,00
0本であり、該炭素繊維糸条がたて方向に配列し、か
つ、補助糸がよこ方向に配列していて、該炭素繊維糸条
間に隙間があることを特徴とする一方向性炭素繊維織
物。
1. A tow-like carbon fiber yarn having a filament number of 40,000 to 400,000.
0, wherein the carbon fiber yarns are arranged in the warp direction, and the auxiliary yarns are arranged in the weft direction, and there is a gap between the carbon fiber yarns. Textile fabric.
【請求項2】 トウ状の炭素繊維糸条からなり、炭素繊
維糸条繊度が25,000〜350,000デニールで
あり、該炭素繊維糸条がたて方向に配列し、かつ、補助
糸がよこ方向に配列していて、該炭素繊維糸条間に隙間
があることを特徴とする一方向性炭素繊維織物。
2. A carbon fiber yarn having a tow-like carbon fiber yarn fineness of 25,000 to 350,000 denier, wherein the carbon fiber yarns are arranged in the warp direction, and the auxiliary yarns are A unidirectional carbon fiber woven fabric which is arranged in a horizontal direction and has a gap between the carbon fiber yarns.
【請求項3】 トウ状の炭素繊維糸条からなり、該炭素
繊維糸条がたて方向に配列し、かつ、補助糸がよこ方向
に配列していて、該炭素繊維糸条間に隙間があり、炭素
繊維の目付が450〜1,500g/m2 であることを
特徴とする一方向性炭素繊維織物。
3. A tow-like carbon fiber yarn, wherein the carbon fiber yarns are arranged in a warp direction, and auxiliary yarns are arranged in a weft direction, and a gap is formed between the carbon fiber yarns. A unidirectional carbon fiber woven fabric, wherein the basis weight of the carbon fiber is 450 to 1,500 g / m 2 .
【請求項4】 該炭素繊維糸条のフイラメント数が4
0,000〜100,000本、糸条繊度が30,00
0〜70,000デニールであり、炭素繊維の目付が4
00〜700g/m2 であることを特徴とする請求項1
乃至は3のいずれかに記載の一方向炭素繊維織物。
4. The filament number of the carbon fiber yarn is 4
0000 to 100,000 yarns, yarn fineness of 30,00
0-70,000 denier and carbon fiber basis weight of 4
2. The amount is from 100 to 700 g / m < 2 >.
4. The unidirectional carbon fiber fabric according to any one of 3. to 3.
【請求項5】 該炭素繊維糸条が実質的に屈曲せずに糸
条群を構成し、該糸条群の両面側に該炭素繊維糸条群と
交差するよこ方向補助糸群が位置し、それらよこ方向補
助糸群と、該炭素繊維糸条群に並行するたて方向補助糸
群とが織組織をなして該炭素繊維糸条群を一体に保持し
ていることを特徴とする請求項1乃至は4のいずれかに
記載の一方向性炭素繊維織物。
5. A weft direction auxiliary yarn group that intersects with the carbon fiber yarn group on both sides of the yarn group, wherein the carbon fiber yarn forms a yarn group without substantially bending. The weft direction auxiliary yarn group and the warp direction auxiliary yarn group parallel to the carbon fiber yarn group form a woven structure and integrally hold the carbon fiber yarn group. Is the unidirectional carbon fiber woven fabric according to any one of 4.
【請求項6】 該炭素繊維糸条間の隙間が0.2〜2m
mであることを特徴とする請求項1乃至は5のいずれか
に記載の一方向性炭素繊維織物。
6. The gap between the carbon fiber yarns is 0.2 to 2 m.
The unidirectional carbon fiber fabric according to any one of claims 1 to 5, wherein m is m.
【請求項7】 該炭素繊維糸条および/またはたて方向
補助糸と、よこ方向補助糸が、その交点において互いに
接着されていることを特徴とする請求項1乃至は6のい
ずれかに記載の炭素繊維織物。
7. The carbon fiber yarn and / or the warp direction auxiliary yarn and the weft direction auxiliary yarn are adhered to each other at the intersection thereof. Carbon fiber fabric.
【請求項8】 積層された繊維基材を樹脂で強化してな
る繊維強化プラスチックであって、前記繊維基材の少な
くとも1層が請求項1乃至7のいずれかに記載の炭素繊
維織物であることを特徴とする繊維強化プラスチック。
8. A fiber reinforced plastic obtained by reinforcing a laminated fiber base material with a resin, wherein at least one layer of the fiber base material is the carbon fiber fabric according to claim 1. A fiber-reinforced plastic characterized by the following.
【請求項9】 請求項1乃至7のいずれかに記載の炭素
繊維織物を含む繊維強化プラスチックと前記繊維強化プ
ラスチック以外の成形材からなり、繊維強化プラスチッ
クと成形材が繊維強化プラスチックを構成するマトリッ
クス樹脂で一体化し、かつ繊維強化プラスチック側の成
形材に設けた溝にも前記マトリックス樹脂が充填されて
いることを特徴とする繊維強化プラスチック構造体。
9. A matrix comprising a fiber-reinforced plastic containing the carbon fiber fabric according to claim 1 and a molding material other than the fiber-reinforced plastic, wherein the fiber-reinforced plastic and the molding material constitute a fiber-reinforced plastic. A fiber-reinforced plastic structure, wherein the matrix resin is filled in a groove formed in a molding material on the fiber-reinforced plastic side, which is integrated with a resin.
【請求項10】 請求項1乃至は7のいずれかに記載の
炭素繊維織物を、繊維基材として少なくとも1層以上型
に積層し、その上に樹脂を面方向に拡散するための媒体
を置いたのち、全体をバッグフイルムで覆い、つぎにバ
ッグフイルムで覆われた内部を真空状態にし、積層され
た繊維基材の表面に常温硬化型樹脂を拡散させ、繊維基
材に該樹脂を含浸することを特徴とする繊維強化プラス
チックの成形方法。
10. A carbon fiber woven fabric according to any one of claims 1 to 7, wherein at least one or more layers are laminated as a fiber base material, and a medium for diffusing the resin in the surface direction is placed thereon. After that, the whole is covered with the bag film, and then the inside covered with the bag film is evacuated, the room temperature-curable resin is diffused on the surface of the laminated fiber base material, and the fiber base material is impregnated with the resin. A method of molding a fiber-reinforced plastic.
【請求項11】 請求項1乃至7のいずれかに記載の炭
素繊維織物を繊維基材として用い、面方向に拡散するた
めの媒体を置いた型に該繊維基材を少なくも1層以上積
層し、その上にさらに媒体を置いたのち、全体をバッグ
フイルムで覆い、つぎにバッグフイルムで覆われた内部
を真空状態にし、積層された繊維基材の表面に常温硬化
型樹脂を拡散させ、繊維基材に該樹脂を含浸することを
特徴とする繊維強化プラスチックの成形方法。
11. A carbon fiber woven fabric according to any one of claims 1 to 7 as a fiber base material, and at least one layer of the fiber base material laminated on a mold in which a medium for diffusing in the plane direction is placed. Then, after further placing a medium thereon, the whole is covered with a bag film, and then the inside covered with the bag film is evacuated, and the room temperature curable resin is diffused on the surface of the laminated fiber base material, A method for molding a fiber-reinforced plastic, comprising impregnating a fiber base material with the resin.
【請求項12】 請求項1乃至7のいずれかに記載の炭
素繊維織物を繊維基材として用い、表面に樹脂の流路と
なる溝を有する成形材の上に、溝と接するように該繊維
基材を少なくとも1層以上積層し、さらに、全体をバッ
クフィルムで覆い、次にバックフィルムで覆われた内部
を真空状態にし、繊維基材と接している成形材の溝から
樹脂を拡散させ、積層された繊維基材に常温硬化型熱硬
化性樹脂を含浸させながら繊維基材と成形材とを一体化
させることを特徴とする繊維強化プラスチックの製造方
法。
12. The carbon fiber woven fabric according to claim 1, which is used as a fiber base material, and is formed on a molding material having a groove serving as a resin flow path on the surface thereof so that the fiber is in contact with the groove. Laminate at least one layer of the base material, further cover the whole with a back film, then make the inside covered with the back film a vacuum state, diffuse resin from the groove of the molding material in contact with the fiber base material, A method for producing a fiber-reinforced plastic, comprising: integrating a fiber base material and a molding material while impregnating a laminated fiber base material with a room-temperature-curable thermosetting resin.
【請求項13】 前記成形材が発泡体であることを特徴
とする請求項9または12に記載の繊維強化プラスチッ
クの製造方法。
13. The method for producing a fiber-reinforced plastic according to claim 9, wherein the molding material is a foam.
JP10645998A 1997-08-04 1998-04-16 Fiber reinforced plastic and method for molding fiber reinforced plastic Expired - Fee Related JP3991440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10645998A JP3991440B2 (en) 1997-08-04 1998-04-16 Fiber reinforced plastic and method for molding fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-209214 1997-08-04
JP20921497 1997-08-04
JP10645998A JP3991440B2 (en) 1997-08-04 1998-04-16 Fiber reinforced plastic and method for molding fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPH11107107A true JPH11107107A (en) 1999-04-20
JP3991440B2 JP3991440B2 (en) 2007-10-17

Family

ID=26446567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10645998A Expired - Fee Related JP3991440B2 (en) 1997-08-04 1998-04-16 Fiber reinforced plastic and method for molding fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP3991440B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106548A (en) * 2002-09-13 2004-04-08 Northrop Grumman Corp Manufacture method for vacuum-assisted transfer molding of cosetting resin
JP2004114586A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Reinforcing fiber base-material, preform, fiber-reinforced plastic molding formed therefrom, and production method for the plastic molding
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2004531411A (en) * 2001-05-03 2004-10-14 バーデー、 インコーポレイテッド Pseudo one-way fabric for bulletproof applications
JP2008179808A (en) * 2006-12-27 2008-08-07 Japan Aerospace Exploration Agency Method for producing resin prepreg, fiber sheet for resin prepreg, resin prepreg, and composite material comprising the same
JP2011246827A (en) * 2010-05-24 2011-12-08 Mitsubishi Rayon Co Ltd Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material
WO2014109021A1 (en) * 2013-01-09 2014-07-17 三菱電機株式会社 Fiber-reinforced composite material, method for producing same, and elevator constituent member and elevator car each manufactured using same
JP2015148030A (en) * 2014-02-07 2015-08-20 三菱レイヨン株式会社 Reinforced fiber woven fabric and manufacturing method thereof
JP2015157371A (en) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 Fiber-reinforced composite material and fiber-reinforced composite material producing method
JPWO2018181983A1 (en) * 2017-03-31 2019-04-04 三菱ケミカル株式会社 Prepreg sheet, manufacturing method thereof, unit layer with skin material, manufacturing method of fiber reinforced composite material molded product, and fiber reinforced composite material molded product
CN115023338A (en) * 2020-03-19 2022-09-06 日立安斯泰莫株式会社 Pipe intermediate and pipe manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531411A (en) * 2001-05-03 2004-10-14 バーデー、 インコーポレイテッド Pseudo one-way fabric for bulletproof applications
JP2004106548A (en) * 2002-09-13 2004-04-08 Northrop Grumman Corp Manufacture method for vacuum-assisted transfer molding of cosetting resin
JP2004114586A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Reinforcing fiber base-material, preform, fiber-reinforced plastic molding formed therefrom, and production method for the plastic molding
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2008179808A (en) * 2006-12-27 2008-08-07 Japan Aerospace Exploration Agency Method for producing resin prepreg, fiber sheet for resin prepreg, resin prepreg, and composite material comprising the same
JP2011246827A (en) * 2010-05-24 2011-12-08 Mitsubishi Rayon Co Ltd Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material
WO2014109021A1 (en) * 2013-01-09 2014-07-17 三菱電機株式会社 Fiber-reinforced composite material, method for producing same, and elevator constituent member and elevator car each manufactured using same
JP2015148030A (en) * 2014-02-07 2015-08-20 三菱レイヨン株式会社 Reinforced fiber woven fabric and manufacturing method thereof
JP2015157371A (en) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 Fiber-reinforced composite material and fiber-reinforced composite material producing method
US9890483B2 (en) 2014-02-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Fiber-reinforced composite material and method for manufacturing the same
JPWO2018181983A1 (en) * 2017-03-31 2019-04-04 三菱ケミカル株式会社 Prepreg sheet, manufacturing method thereof, unit layer with skin material, manufacturing method of fiber reinforced composite material molded product, and fiber reinforced composite material molded product
US11421089B2 (en) 2017-03-31 2022-08-23 Mitsubishi Chemical Corporation Prepreg sheet, method for manufacturing same, unit layer with a covering material, method for manufacturing fiber-reinforced composite, and fiber-reinforced composite
CN115023338A (en) * 2020-03-19 2022-09-06 日立安斯泰莫株式会社 Pipe intermediate and pipe manufacturing method
CN115023338B (en) * 2020-03-19 2024-03-08 日立安斯泰莫株式会社 Pipe intermediate and method for manufacturing pipe

Also Published As

Publication number Publication date
JP3991440B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
CA2333151C (en) Complex fiber reinforced material, preform, and method of producing fiber reinforced plastic
US4892780A (en) Fiber reinforcement for resin composites
US4581275A (en) Base cloth for reinforcement
US20080295950A1 (en) Open Grid Fabric Resin Infusion Media and Reinforcing Composite Lamina
US6828016B2 (en) Preform for composite material and composite material
JP4094231B2 (en) Preforms for composite materials and composite materials
JP4106826B2 (en) Fiber-reinforced resin structure and method for producing the same
JPH11107107A (en) Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
EP3180467B1 (en) Hybrid woven textile for composite reinforcement
JPH0330917A (en) Light composite material having thermo- setting matrix
EP3536840B1 (en) Composite material reinforcement substrate, composite material, and production method for composite material reinforcement substrate
JP2007518608A (en) Stabilizable preform precursor and stabilized preform for composite materials, and method for stabilizing and reducing bulk of a preform
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JPH0135101B2 (en)
WO2013025115A1 (en) Three- dimensional (3d) knitted reinforced composite structure production method thereof
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JPH0617027B2 (en) Method for producing composite
JPH07266440A (en) Manufacture of fiber reinforced resin molded body and production equipment therefor
JP2003071958A (en) Composite molding and its manufacturing method
JPH07308927A (en) Fiber-reinforced resin foam molded body and its manufacture
JPH01278336A (en) Fiber reinforced laminated cloth for molded product
JPH0564846A (en) Composite sheet for reinforcing reaction draw molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees