JPH0135101B2 - - Google Patents

Info

Publication number
JPH0135101B2
JPH0135101B2 JP58137334A JP13733483A JPH0135101B2 JP H0135101 B2 JPH0135101 B2 JP H0135101B2 JP 58137334 A JP58137334 A JP 58137334A JP 13733483 A JP13733483 A JP 13733483A JP H0135101 B2 JPH0135101 B2 JP H0135101B2
Authority
JP
Japan
Prior art keywords
carbon fiber
peek
multifilament
cfrtp
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58137334A
Other languages
Japanese (ja)
Other versions
JPS6028543A (en
Inventor
Akira Nishimura
Toshio Muraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58137334A priority Critical patent/JPS6028543A/en
Publication of JPS6028543A publication Critical patent/JPS6028543A/en
Publication of JPH0135101B2 publication Critical patent/JPH0135101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、航空機用構造部材等、高い耐熱特
性と力学的特性とが合わせて要求される部材を構
成するような場合に適した炭素繊維強化熱可塑性
樹脂(CFRTP)を成形するための材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to carbon fibers suitable for constructing members that require both high heat resistance and mechanical properties, such as structural members for aircraft. Concerning materials for molding reinforced thermoplastic resins (CFRTP).

(従来の技術) 繊維強化熱可塑性樹脂(FRTP)の成形用材料
としては、従来、たとえば、ナイロン繊維、ポリ
エステル繊維、ポリプロピレン繊維等の熱可塑性
繊維とガラス繊維等の補強繊維との交織織物が知
られている。このような成形用材料は、成形時の
加熱によつて熱可塑性繊維のみが溶融し、ナイロ
ン、ポリエステル、ポリプロピレン等のマトリク
スを形成する。しかしながら、かかる従来の成形
用材料には、以下において説明するような問題が
ある。
(Prior art) As molding materials for fiber-reinforced thermoplastic resins (FRTP), for example, interwoven fabrics of thermoplastic fibers such as nylon fibers, polyester fibers, and polypropylene fibers and reinforcing fibers such as glass fibers have been known. It is being In such a molding material, only the thermoplastic fibers are melted by heating during molding to form a matrix of nylon, polyester, polypropylene, or the like. However, such conventional molding materials have problems as explained below.

すなわち、ナイロン、ポリエステル、ポリプロ
ピレン等は、伸度が大きいので、耐衝撃性に優れ
たFRTPが得られる反面、これらの樹脂はガラス
転移点が高々80℃程度であるために得られる
FRTPは耐熱特性が低く、一般の構造部材はとも
かく、航空機用構造部材等、高い耐熱特性が要求
される用途への適用には無理がある。
In other words, nylon, polyester, polypropylene, etc. have high elongation, so FRTP with excellent impact resistance can be obtained, but on the other hand, these resins have a glass transition point of about 80°C at most.
FRTP has low heat resistance properties, so it is difficult to apply it to applications that require high heat resistance properties, such as structural members for aircraft, as well as general structural members.

また、従来の成形用材料は、上述したように交
織織物からなつているが、交織織物は、成形時に
熱可塑性繊維が溶融すると補強繊維の交錯が解か
れ、織組織が解かれてしまうので、熱可塑性繊維
の溶融に伴つて補強繊維が流されて移動したり、
大きく曲げられたりして、力学的特性に優れた
FRTPを得るのが難しい。
Furthermore, as mentioned above, conventional molding materials are composed of interwoven fabrics, but when the thermoplastic fibers in interwoven fabrics melt during molding, the reinforcing fibers are uninterlaced and the woven structure is unraveled. As the thermoplastic fibers melt, the reinforcing fibers may be washed away and moved.
It can be bent greatly and has excellent mechanical properties.
Difficult to obtain FRTP.

一方、近年、耐熱特性に優れたポリエーテルエ
ーテルケトン(PEEK)を使用した成形用材料も
検討されている。
On the other hand, in recent years, molding materials using polyetheretherketone (PEEK), which has excellent heat resistance properties, are also being considered.

この、PEEKを使用した成形用材料は、補強繊
維を互いに並行するように配列して溶融PEEKを
含浸し、凝固せしめてなるシートまたは板からな
つている。しかしながら、この成形用材料は、
PEEKが凝固して補強繊維と一体になつたシート
または板の形態をしているので、厚みにもよる
が、剛直であり、平板状のFRTPを成形する場合
は問題ないものの、曲面を有するような複雑な形
状のFRTPの成形には向かない。
This molding material using PEEK consists of a sheet or plate made by arranging reinforcing fibers parallel to each other, impregnating them with molten PEEK, and solidifying them. However, this molding material
Since PEEK is solidified and integrated with reinforcing fibers in the form of a sheet or plate, it is rigid and rigid, depending on the thickness, and although there is no problem when molding flat plate-shaped FRTP, it may have a curved surface. It is not suitable for molding FRTP with complex shapes.

(発明が解決しようとする課題) この発明の目的は、PEEKを使用した従来の成
形用材料の上述した問題点を解決し、ドレープ性
や可とう性に富み、複雑な曲面をもつCFRTPで
も容易に成形することができるばかりか、航空機
用構造部材等、熱可塑性と力学的特性とがともに
優れていることが要求される用途にも適用できる
CFRTPを成形することができる成形用材料を提
供するにある。
(Problems to be Solved by the Invention) The purpose of this invention is to solve the above-mentioned problems of conventional molding materials using PEEK, and to have excellent drapability and flexibility, and to easily form CFRTP with complex curved surfaces. Not only can it be molded into shapes, but it can also be applied to applications that require excellent thermoplasticity and mechanical properties, such as structural components for aircraft.
The purpose of the present invention is to provide a molding material that can be used to mold CFRTP.

(課題を解決するための手段) 上記目的は、炭素繊維のマルチフイラメント
と、ポリエーテルエーテルケトンのモノフイラメ
ント、マルチフイラメントまたはスリツトヤーン
とを引き揃えて経糸および緯糸とした織物からな
り、かつ、炭素繊維の含有率が45〜70体積%であ
ることを特徴とする炭素繊維強化熱可塑性樹脂成
形用材料によつて達成される。
(Means for Solving the Problems) The above object is made of a woven fabric made of carbon fiber multifilaments and polyetheretherketone monofilaments, multifilaments, or slit yarns as warp and weft yarns, and This is achieved by a carbon fiber-reinforced thermoplastic resin molding material characterized by a content of 45 to 70% by volume.

この発明においては、いわゆる補強繊維とし
て、炭素繊維を使用する。炭素繊維は、力学的特
性はもちろん、耐熱特性が格段に優れているた
め、PEEKと併用したとき、CFRTPの、特に耐
熱特性を大きく向上させる。なお、炭素繊維はマ
ルチフイラメントの形態で使用する。単糸径は、
5〜100μm程度である。
In this invention, carbon fiber is used as the so-called reinforcing fiber. Carbon fiber has extremely superior heat resistance properties as well as mechanical properties, so when used in combination with PEEK, it greatly improves the heat resistance properties of CFRTP. Note that the carbon fiber is used in the form of a multifilament. Single yarn diameter is
It is about 5 to 100 μm.

成形用材料中における炭素繊維の含有率は、45
〜75体積%になるようにする。炭素繊維の体積含
有率は、得られるCFRTPの強度や弾性率等の力
学的特性を支配するから、要求特性等に応じ、上
記範囲内で決定するようにする。
The content of carbon fiber in the molding material is 45
Make it ~75% by volume. The volume content of carbon fibers governs the mechanical properties such as strength and elastic modulus of the obtained CFRTP, so it should be determined within the above range depending on the required properties.

一方、PEEKは、たとえば特開昭54―90296号
公報に記載された方法によつて製造される全芳香
族の結晶性高分子であり、次の構造式をもつもの
である。
On the other hand, PEEK is a wholly aromatic crystalline polymer produced, for example, by the method described in JP-A-54-90296, and has the following structural formula.

上記PEEKは、ガラス転移点が約150℃、溶融
温度が約340℃、熱分解温度が約400℃といつたよ
うに、優れた耐熱特性をもつている。また、引張
り強度は約9.7Kg/mm2、曲げ弾性率は約390Kg/mm2
と、力学的特性にも優れている。さらに、破断伸
度が約25%と、樹脂のなかでも格段に高く、靭性
が優れている。
The above PEEK has excellent heat resistance properties, with a glass transition point of about 150°C, a melting temperature of about 340°C, and a thermal decomposition temperature of about 400°C. In addition, the tensile strength is approximately 9.7Kg/mm 2 and the flexural modulus is approximately 390Kg/mm 2
It also has excellent mechanical properties. Furthermore, its elongation at break is approximately 25%, which is much higher than other resins, and it has excellent toughness.

この発明においては、上記PEEKを、通常の溶
融紡糸法によつて得られる繊維の形態で使用す
る。この場合、繊維はモノフイラメントであつて
もマルチフイラメントであつてもよい。単糸径は
5〜100μm程度であり、マルチフイラメントであ
る場合は、そのような単糸径をもつ単糸の5〜
10000本の束であるのが好ましい。
In this invention, the above-mentioned PEEK is used in the form of fibers obtained by a conventional melt spinning method. In this case, the fibers may be monofilament or multifilament. The single filament diameter is approximately 5 to 100 μm, and in the case of multifilament, the single filament diameter is approximately 5 to 100 μm.
Preferably, it is a bundle of 10,000 pieces.

PEEKはまた、通常の製膜法によつて得られ
る、厚み5〜300μm程度のフイルムを、0.35mm程
度の細幅にスリツトして得られるスリツトヤーン
の形態であつてもよい。なお、スリツトヤーンも
また、ただ1本で使用してもよいし、束にして使
用してもよいものである。
PEEK may also be in the form of a slit yarn obtained by slitting a film with a thickness of about 5 to 300 μm obtained by a normal film forming method into a narrow width of about 0.35 mm. Note that the slit yarn may also be used singly or in bundles.

さて、この発明の成形用材料は、上述した、炭
素繊維のマルチフイラメントと、PEEKのモノフ
イラメント、マルチフイラメントまたはスリツト
ヤーンとを引き揃えて経糸および緯糸とし、織成
して織物としてなる。そうして、PEEKのモノフ
イラメント、マルチフイラメントまたはスリツト
ヤーンは、成形時の加熱によつて溶融し、炭素繊
維のマルチフイラメントに含浸されてCFRTPの
マトリクスとなる。換言すれば、炭素繊維のマル
チフイラメントは溶融せず、そのままCFRTP中
に残存する。したがつて、炭素繊維でPEEKを強
化してなるCFRTPが得られる。
Now, the molding material of the present invention is made by arranging the above-mentioned carbon fiber multifilament and PEEK monofilament, multifilament, or slit yarn to form warp and weft yarns, and then weaving them into a fabric. The PEEK monofilament, multifilament or slit yarn is then melted by heating during molding and impregnated with the carbon fiber multifilament to form a CFRTP matrix. In other words, the carbon fiber multifilament does not melt and remains as it is in the CFRTP. Therefore, CFRTP made by reinforcing PEEK with carbon fiber can be obtained.

織組織は、通常、平組織であるが、綾組織や朱
子組織であつてもよいし、三軸織物や、経糸と緯
糸とが織物の長さ方向に対して斜めに配列されて
いるバイアス織物であつてもよい。そうして、こ
の発明の成形用材料は、炭素繊維のマルチフイラ
メントと、PEEKのモノフイラメント、マルチフ
イラメントまたはスリツトヤーンとを引き揃えて
経糸および緯糸としているから、上述した交織織
物とは異なり、成形時にPEEKのモノフイラメン
ト、マルチフイラメントまたはスリツトヤーンが
溶融しても、炭素繊維のマルチフイラメントの交
錯が解かれる、すなわち、炭素繊維のマルチフイ
ラメントの織組織が解かれてしまうことはない。
すなわち、炭素繊維のマルチフイラメントは、依
然として、形態保持性に優れた織物の形態で残
る。そのため、PEEKのモノフイラメント、マル
チフイラメントまたはスリツトヤーンの溶融に伴
つて炭素繊維のマルチフイラメントが流されて移
動したり、大きく曲げられたりするのを防止する
ことができる。
The weaving structure is usually a plain weave, but it may be a twill weave or a satin weave, or it may be a triaxial weave or a bias weave in which the warp and weft are arranged diagonally with respect to the length of the fabric. It may be. The molding material of the present invention has carbon fiber multifilaments and PEEK monofilaments, multifilaments, or slit yarns lined up to form the warp and weft, so unlike the above-mentioned mixed woven fabric, during molding. Melting of the PEEK monofilament, multifilament or slit yarn does not cause the carbon fiber multifilament to become uninterlaced, ie, the carbon fiber multifilament weave to be woven.
That is, the carbon fiber multifilament still remains in the form of a fabric with excellent shape retention. Therefore, it is possible to prevent the carbon fiber multifilament from being swept away and moved or being bent significantly as the PEEK monofilament, multifilament, or slit yarn melts.

この発明の成形用材料を使用したCFRTPの成
形は、たとえば次のようにして行う。
Molding of CFRTP using the molding material of the present invention is carried out, for example, as follows.

すなわち、まず、所望の形状をした金型に、こ
の発明の成形用材料を、所望の枚数、かつ、その
経糸または緯糸の向が所望の方向になるように積
層する。
That is, first, a desired number of pieces of the molding material of the present invention are laminated in a mold having a desired shape so that the warp or weft direction is in the desired direction.

次に、上記積層体を、PEEKよりも高い融点を
有し、かつ、多数の微細な孔を有するフイルム、
たとえば多孔性ポリイミドフイルムで覆い、その
上にブリーダクロスとしてガラスクロス等を置
き、さらにその上をPEEKよりも高い融点をも
つ、たとえばポリイミドフイルムで覆い、金型と
の間をシールする。
Next, the above laminate is transformed into a film having a melting point higher than that of PEEK and having a large number of fine pores.
For example, cover it with a porous polyimide film, place a glass cloth or the like as a bleeder cloth on top of it, cover it with a polyimide film with a higher melting point than PEEK, and seal between it and the mold.

次に、最外フイルム内を減圧状態にする。これ
によつて積層体が固定され、成形時のずれを防止
できる。
Next, the pressure inside the outermost film is reduced. This fixes the laminate and prevents it from shifting during molding.

次に、オートクレーブ中で加圧、加熱して
PEEKのモノフイラメント、マルチフイラメント
またはスリツトヤーンの溶融と炭素繊維への含浸
とを行う。このときの加圧力は7〜20Kg/cm2
度、また、加熱温度は370〜400℃程度である。
Next, pressurize and heat in an autoclave.
PEEK monofilament, multifilament or slit yarn is melted and impregnated into carbon fibers. The pressing force at this time is about 7 to 20 kg/cm 2 , and the heating temperature is about 370 to 400°C.

次に、40〜45℃/分程度の速度で室温まで冷却
し、CFRTPを得る。
Next, it is cooled to room temperature at a rate of about 40 to 45°C/min to obtain CFRTP.

上記において、成形用材料を積層する際に、積
層面間に、炭素繊維またはPEEK繊維の織物やマ
ツト等を介挿すると、CFRTP中における炭素繊
維やPEEKの体積含有率を制御することができる
ようになる。
In the above, when laminating the molding materials, inserting carbon fiber or PEEK fiber fabric or mat between the laminated surfaces makes it possible to control the volume content of carbon fiber or PEEK in CFRTP. become.

(実施態様) 図面において、成形用材料は、いずれもマルチ
フイラメントからなる、炭素繊維1と、PEEK繊
維2とを引き揃え、その引き揃えたものを経糸お
よび緯糸として平組織してなる。すなわち、この
成形用材料は平織物である。炭素繊維1は、45〜
70体積%を占めている。
(Embodiment) In the drawings, the molding material is made by aligning carbon fibers 1 and PEEK fibers 2, both of which are made of multifilaments, and forming a flat weave using the aligned fibers as warp and weft yarns. That is, this molding material is a plain weave. Carbon fiber 1 is 45~
It occupies 70% by volume.

(実施例) 東レ社製炭素繊維マルチフイラメント“トレ
カ”T300(平均単糸径:7μm、単糸数:3000本)
と、PEEKの、厚みが50μmで、幅が1mmのスリ
ツトヤーンを横断面積が0.15mm2になるように束ね
たものとを用意し、それらを1本づつ引き揃えて
経糸および緯糸とした。
(Example) Toray carbon fiber multifilament "Torayka" T300 (average single yarn diameter: 7 μm, number of single yarns: 3000)
and a bundle of PEEK slit yarns with a thickness of 50 μm and a width of 1 mm so as to have a cross-sectional area of 0.15 mm 2 were prepared, and they were pulled one by one to form the warp and weft.

次に、上記経糸と緯糸とを用い、経糸密度およ
び緯糸密度がともに3本/cmになるように平組織
し、平織物からなる成形用材料を得た。
Next, the warp and weft yarns were plainly woven so that both the warp density and the weft density were 3 threads/cm to obtain a forming material made of a plain woven fabric.

次に、上記成形用材料をその経糸方向に揃えて
15枚積層し、オートクレーブ成形法を用いて、厚
み2mmのCFRTP板を得た。この成形によつて、
PEEKのスリツトヤーンは完全に溶融したが、炭
素繊維のマルチフイラメントは、交錯状態、すな
わち織組織を維持したままで、曲がり等もほとん
ど認められなかつた。なお、成形時の加圧力は15
Kg/cm2、加熱温度は390℃とした。また、この
CFRTP板の炭素繊維体積含有率は約52%であつ
た。
Next, align the above molding material in the warp direction.
A CFRTP plate with a thickness of 2 mm was obtained by laminating 15 sheets and using an autoclave molding method. Through this molding,
Although the PEEK slit yarn was completely melted, the carbon fiber multifilament maintained its interlaced state, that is, its woven structure, and almost no bending was observed. In addition, the pressurizing force during molding is 15
Kg/cm 2 , and the heating temperature was 390°C. Also, this
The carbon fiber volume content of the CFRTP board was about 52%.

次に、上記CFRTP板から、経糸方向を長手方
向とする、長さ84mm、幅12.5mmの試験片を切り出
し、3点曲げ試験法によつて、スパン間隔を64mm
として曲げ特性を測定したところ、 曲げ強度:67Kg/mm2 曲げ弾性率:4.6×103Kg/mm2 であつた。
Next, a test piece with a length of 84 mm and a width of 12.5 mm, with the warp direction as the longitudinal direction, was cut out from the above CFRTP board, and the span interval was 64 mm using the 3-point bending test method.
The bending properties were measured as follows: Bending strength: 67 Kg/mm 2 Flexural modulus: 4.6×10 3 Kg/mm 2 .

(比較例) 実施例で使用した炭素繊維のマルチフイラメン
トとPEEKのスリツトヤーンの束とを用い、経糸
には、上記炭素繊維のマルチフイラメントと
PEEKのスリツトヤーンの束とを交互に、かつ、
それぞれ密度が3本/cmになるように使用し、一
方、緯糸にも、同様に上記炭素繊維のマルチフイ
ラメントとPEEKのスリツトヤーンの束とを、交
互に、かつ、それぞれ密度がやはり3本/cmにな
るように使用し、平織物からなる成形用材料を得
た。
(Comparative example) Using the carbon fiber multifilament used in the example and a bundle of PEEK slit yarn, the warp was made of the above carbon fiber multifilament and
Alternately with bundles of PEEK slit yarn, and
On the other hand, for the weft, the carbon fiber multifilament and the PEEK slit yarn bundle were alternately used, each having a density of 3 threads/cm. A molding material consisting of a plain weave was obtained.

次に、上記成形用材料をその経糸方向を揃えて
15枚積層し、実施例と同様にして、厚みが2mm
で、炭素繊維の含有率が52体積%のCFRTP板を
得た。このCFRTP板を観察したところ、PEEK
のスリツトヤーンが完全に溶融し、その溶融に伴
つて炭素繊維同士の交錯が解かれ、あたかも炭素
繊維のマルチフイラメントを一方向に引き揃えた
ものをその繊維軸の方向が互いに直交するように
交差積層したようになつており、また、炭素繊維
のマルチフイラメントは、PEEKのスリツトヤー
ンの溶融に伴つて流されて移動し、大きく曲がつ
て偏在していた。
Next, align the warp direction of the above molding material.
Laminated 15 sheets in the same manner as in the example, with a thickness of 2 mm.
A CFRTP board with a carbon fiber content of 52% by volume was obtained. When I observed this CFRTP board, I found that PEEK
The slit yarn is completely melted, and as it melts, the interlacing of the carbon fibers is released, and the carbon fiber multifilaments are aligned in one direction and are cross-laminated so that the fiber axes are perpendicular to each other. Furthermore, the carbon fiber multifilament was swept away and moved as the PEEK slit yarn melted, and was greatly bent and unevenly distributed.

次に、実施例と同様に3点曲げ試験をしたとこ
ろ、 曲げ強度:45Kg/mm2 曲げ弾性率:3.7×103Kg/mm2 であり、曲げ強度、曲げ弾性率ともに実施例のも
のにくらべて大変低かつた。
Next, a three-point bending test was conducted in the same manner as in the example, and the results were as follows: bending strength: 45 Kg/mm 2 flexural modulus: 3.7×10 3 Kg/mm 2 , and both the bending strength and flexural modulus were the same as those in the example. It was very low in comparison.

(発明の効果) この発明の成形用材料は、炭素繊維のマルチフ
イラメントと、ポリエーテルエーテルケトンのモ
ノフイラメント、マルチフイラメントまたはスリ
ツトヤーンとを引き揃えて経糸および緯糸とした
織物からなるものであるから、ドレープ性や可と
う性に優れており、複雑な曲面をもつCFRTPを
成形する場合でも型によく沿う。そのため、成形
が大変容易であるばかりか、均質なCFRTPを成
形することができるようになる。また、PEEK
は、熱的、力学的特性、とりわけ熱的特性に優れ
ているから、耐熱特性に優れたCFRTPを得るこ
とができるようになる。さらに、炭素繊維の含有
率を45〜70体積%にしているから、成形時に
PEEKのモノフイラメント、マルチフイラメント
またはスリツトヤーンが溶融して炭素繊維のマル
チフイラメントの交錯が解かれることに伴つて炭
素繊維のマルチフイラメントが流されて移動した
り、大きく曲げられたりするのを防止することが
できることと相まつて、強度や弾性率等の力学的
特性に優れたCFRTPを得ることができるように
なる。
(Effects of the Invention) The molding material of the present invention is made of a woven fabric in which carbon fiber multifilaments and polyetheretherketone monofilaments, multifilaments, or slit yarns are aligned to form warp and weft yarns. It has excellent drapability and flexibility, and conforms well to the mold even when molding CFRTP with complex curved surfaces. Therefore, not only is molding very easy, but also homogeneous CFRTP can be molded. Also, PEEK
has excellent thermal and mechanical properties, especially thermal properties, making it possible to obtain CFRTP with excellent heat resistance properties. Furthermore, since the carbon fiber content is 45 to 70% by volume, it
To prevent carbon fiber multifilaments from being washed away and moved or greatly bent as the PEEK monofilament, multifilament or slit yarn melts and the carbon fiber multifilaments are uninterlaced. Coupled with this ability, it becomes possible to obtain CFRTP with excellent mechanical properties such as strength and elastic modulus.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の一実施態様に係る成形用材
料を示す概略斜視図である。 1:炭素繊維(マルチフイラメント)、2:ポ
リエーテルエーテルケトン繊維(マルチフイラメ
ント)。
The drawing is a schematic perspective view showing a molding material according to one embodiment of the present invention. 1: Carbon fiber (multifilament), 2: Polyetheretherketone fiber (multifilament).

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維のマルチフイラメントと、ポリエー
テルエーテルケトンのモノフイラメント、マルチ
フイラメントまたはスリツトヤーンとを引き揃え
て経糸および緯糸とした織物からなり、かつ、炭
素繊維の含有率が45〜70体積%であることを特徴
とする炭素繊維強化熱可塑性樹脂成形用材料。
1 Consists of a woven fabric made of carbon fiber multifilaments and polyetheretherketone monofilaments, multifilaments, or slit yarns as warp and weft yarns, and the carbon fiber content is 45 to 70% by volume. A carbon fiber-reinforced thermoplastic resin molding material.
JP58137334A 1983-07-27 1983-07-27 Fiber reinforced thermoplastic resin molding material Granted JPS6028543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137334A JPS6028543A (en) 1983-07-27 1983-07-27 Fiber reinforced thermoplastic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137334A JPS6028543A (en) 1983-07-27 1983-07-27 Fiber reinforced thermoplastic resin molding material

Publications (2)

Publication Number Publication Date
JPS6028543A JPS6028543A (en) 1985-02-13
JPH0135101B2 true JPH0135101B2 (en) 1989-07-24

Family

ID=15196224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137334A Granted JPS6028543A (en) 1983-07-27 1983-07-27 Fiber reinforced thermoplastic resin molding material

Country Status (1)

Country Link
JP (1) JPS6028543A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045632A (en) * 1983-08-19 1985-03-12 帝人株式会社 Composite fiber structure for thermal molding
JPS61186983A (en) * 1985-02-15 1986-08-20 大松化学工業株式会社 Making of re-use prevention type label
JPS62281700A (en) * 1986-05-30 1987-12-07 Pioneer Electronic Corp Diaphragm with edge for speaker
JPH0617027B2 (en) * 1986-10-13 1994-03-09 徳山曹達株式会社 Method for producing composite
JPS63184510A (en) * 1987-01-28 1988-07-30 Mitsui Toatsu Chem Inc Plastic spike for tire
JPS63162880U (en) * 1987-04-10 1988-10-24
JPS63167198U (en) * 1987-04-15 1988-10-31
JPS6445841A (en) * 1987-08-13 1989-02-20 Nitto Boseki Co Ltd Fabric for fiber reinforced thermoplastic resin laminate material
JPH01127511A (en) * 1987-11-10 1989-05-19 Okura Ind Co Ltd Carrying belt made of polyether, ether, ketone resin
EP0409993B1 (en) * 1988-12-15 1995-08-23 Asahi Kasei Kogyo Kabushiki Kaisha Composite sheet for fiber-reinforced material
JPH0489581U (en) * 1991-10-30 1992-08-05
EP0661147B1 (en) * 1993-12-29 1999-09-15 Toho Rayon Co., Ltd. Process for producing a cylindrical product of fiber reinforcement-thermoplastic resin composite and an apparatus for producing the same
DE4437852A1 (en) * 1994-10-22 1996-05-02 Heckett Multiserv Plc Process for processing shredder residues
DE202006008868U1 (en) * 2006-06-06 2006-08-03 Sefar Ag Woven fabric made from polytetrafluoroethylene yarn and having at least twice as many warp threads as weft threads, used for textile structures and coverings, e.g. screens, awnings and tents
WO2009131149A1 (en) * 2008-04-24 2009-10-29 倉敷紡績株式会社 Composite yarn and intermediate for fiber-reinforced resin and molded fiber-reinforced resin obtained therefrom
JP2017017136A (en) * 2015-06-30 2017-01-19 住江織物株式会社 Cloth-like solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692952A (en) * 1979-12-14 1981-07-28 Ici Ltd Composition comprising aromatic polyether ketone and glass and*or carbon reinforcing material
JPS56144952A (en) * 1980-04-15 1981-11-11 Matsushita Electric Works Ltd Base material for multilayer printed wiring board
GB2093768A (en) * 1981-02-26 1982-09-08 Fothergill & Harvey Ltd Composite woven fabric laminate
JPS57191322A (en) * 1981-05-11 1982-11-25 Toray Ind Inc Aromatic polyether ketone fiber and its preparation
JPS5829653A (en) * 1981-08-13 1983-02-21 三菱レイヨン株式会社 Intermediate for molding
GB2105247A (en) * 1981-06-23 1983-03-23 Courtaulds Plc Process for making a fibre-reinforced moulding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692952A (en) * 1979-12-14 1981-07-28 Ici Ltd Composition comprising aromatic polyether ketone and glass and*or carbon reinforcing material
JPS56144952A (en) * 1980-04-15 1981-11-11 Matsushita Electric Works Ltd Base material for multilayer printed wiring board
GB2093768A (en) * 1981-02-26 1982-09-08 Fothergill & Harvey Ltd Composite woven fabric laminate
JPS57191322A (en) * 1981-05-11 1982-11-25 Toray Ind Inc Aromatic polyether ketone fiber and its preparation
GB2105247A (en) * 1981-06-23 1983-03-23 Courtaulds Plc Process for making a fibre-reinforced moulding
JPS5829653A (en) * 1981-08-13 1983-02-21 三菱レイヨン株式会社 Intermediate for molding

Also Published As

Publication number Publication date
JPS6028543A (en) 1985-02-13

Similar Documents

Publication Publication Date Title
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
US5168006A (en) Woven fabric for fiber-reinforced thermoplastic resin laminate
JPH0135101B2 (en)
US4581275A (en) Base cloth for reinforcement
EP0272083B1 (en) Preformed material for fiber reinforced plastics
CA1210683A (en) Non-woven reinforcement for composite
US4892780A (en) Fiber reinforcement for resin composites
US5014755A (en) Textile structure with binding weave for multiple layers of non-interlaced fit filaments
EP0402099B1 (en) Reinforcing woven fabric and preformed material, fiber reinforced composite material and beam using it
JPS6227184B2 (en)
EP0507108A1 (en) Dual layer composite fabric
GB2032476A (en) Fabric structure for composite material
EP0426158A2 (en) Unidirectionally fiber reinforced thermoplastic composites and method of manufacture
JP3991440B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
IE52329B1 (en) A method for the production of woven laminates
JP2876028B2 (en) Unidirectional preform sheet and method of manufacturing the same
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
US5180633A (en) Composite textile material capable of being employed for resin reinforcement
CA2010559C (en) Composite sheet for fibrous reinforcing material
JPH08269837A (en) Reinforcing woven fabric and its production
JP3061235B2 (en) Fiber reinforced thermoplastic resin stampable sheet
JPH0559630A (en) Unidirectional reinforcing substrate
KR930011632B1 (en) Composite sheet for fiber-rein forced material and manufacturing process therefor
JPS63791Y2 (en)
JPH0813520B2 (en) Carbon fiber reinforced carbon composite material