JPH11106359A - Production of butane diol - Google Patents

Production of butane diol

Info

Publication number
JPH11106359A
JPH11106359A JP9266032A JP26603297A JPH11106359A JP H11106359 A JPH11106359 A JP H11106359A JP 9266032 A JP9266032 A JP 9266032A JP 26603297 A JP26603297 A JP 26603297A JP H11106359 A JPH11106359 A JP H11106359A
Authority
JP
Japan
Prior art keywords
water
acetic acid
hydrolysis
reaction
butanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266032A
Other languages
Japanese (ja)
Other versions
JP3956442B2 (en
Inventor
Takeshi Inami
武司 稲見
Kazuyuki Okubo
和行 大久保
Nobuyuki Murai
信行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP26603297A priority Critical patent/JP3956442B2/en
Publication of JPH11106359A publication Critical patent/JPH11106359A/en
Application granted granted Critical
Publication of JP3956442B2 publication Critical patent/JP3956442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing butane diol by reducing a using amount of vapor for separating water and acetic acid derived from hydrolysis in the production of butane diol by hydrolysis of diacetoxybutane. SOLUTION: This method for producing highly purified butane diol is performed by bringing diacetoxybutane into contact with water in the presence of a solid acid catalyst to hydrolyze, separating water and acetic acid from crude butane diol and purifying the crude butane diol. In the method, at least two combinations of a hydrolysis reaction process and subsequent separating process of water and acetic acid from the crude butane diol are repeated and a part of the water and acetic acid recovered from a hydrolysis reacted solution after the second stage process is extracted from the reaction system, then is used as a raw material water of a hydrolysis reaction in a pre-stage of the second hydrolysis reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブタンジオールの
製造方法に関する。詳しくは、ジアセトキシブタンの加
水分解によるブタンジオールの製造方法の改良に関す
る。1,4−ブタンジオールはPBT樹脂、γ−ブチロ
ラクトンの原料や、有機溶剤、ポリテトラメチレンエー
テルグリコール(PTMG)の原料として用いられるテ
トラヒドロフランの原料として有用な物質である。
TECHNICAL FIELD The present invention relates to a method for producing butanediol. More specifically, the present invention relates to an improvement in a method for producing butanediol by hydrolysis of diacetoxybutane. 1,4-Butanediol is a substance useful as a raw material of PBT resin and γ-butyrolactone, a raw material of an organic solvent, and tetrahydrofuran used as a raw material of polytetramethylene ether glycol (PTMG).

【0002】[0002]

【従来の技術】ジアセトキシブタンを加水分解すること
によってブタンジオールを製造する方法は、例えば特開
昭52−7909号公報等により開示されている。この
方法は、ブタンジオール及び/又はヒドロキシ酢酸エス
テルを原料ジ酢酸エステルに混合し、一段の加水分解で
ブタンジオールを製造する方法を提供している。加水分
解反応は、平衡反応であるから、一段で加水分解をさせ
ようとすると、大量の水を使用しなければならず、その
ため生成物を分離するのに大量のエネルギーが必要とな
り、経済的に有利ではない。
2. Description of the Related Art A method for producing butanediol by hydrolyzing diacetoxybutane is disclosed in, for example, JP-A-52-7909. This method provides a method for producing butanediol by mixing butanediol and / or hydroxyacetate with a raw material diacetate and performing one-stage hydrolysis. Since the hydrolysis reaction is an equilibrium reaction, a large amount of water must be used to perform the hydrolysis in a single step, and therefore a large amount of energy is required to separate the product, which is economical. Not advantageous.

【0003】これに対し、効率的に加水分解する方法と
して、向流二段反応が開示されている(特開昭52−6
5208号公報)。この方法によれば、前記公報記載の
一段法に比べ、少ない原料水量で、効率的に加水分解反
応が実施できるとされている。また、この方法では、第
2反応器から回収された水に酢酸が含まれており、第1
反応器の入口が均一組成になり、未反応物回収工程で回
収された未反応原料及びモノエステル等を、後段の反応
器へ戻すことにより反応が有利に進行するので、更に好
ましいと記載されている。
On the other hand, a countercurrent two-stage reaction has been disclosed as an efficient hydrolysis method (Japanese Patent Laid-Open No. 52-6 / 1982).
No. 5208). According to this method, the hydrolysis reaction can be carried out more efficiently with a smaller amount of raw water than the one-stage method described in the above publication. In this method, acetic acid is contained in the water recovered from the second reactor,
The inlet of the reactor has a uniform composition, and the unreacted raw materials and monoesters and the like recovered in the unreacted material recovery step are returned to the subsequent reactor, so that the reaction proceeds advantageously. I have.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法においても、水、酢酸を分離するためのエネルギーが
多量に必要であり、更なる改良が望まれていた。本発明
は、ジアセトキシブタンの加水分解で水、酢酸の分離の
ための蒸気を少なくし、有利にジアセトキシブタンの加
水分解反応を行う方法を提供することを目的とする。
However, this method also requires a large amount of energy for separating water and acetic acid, and further improvement has been desired. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for performing a hydrolysis reaction of diacetoxybutane by reducing steam for separating water and acetic acid by hydrolysis of diacetoxybutane.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記事情
に鑑み鋭意検討した結果、ジアセトキシブタンの加水分
解を、固体酸触媒を有する複数の反応器を使用して実施
するに当り、加水分解反応液から蒸留分離される水、酢
酸の混合物を前段の加水分解の原料として用いる際に、
その一部を酢酸回収工程に供給し、残部を前段の加水分
解反応の原料水として使用することにより、その目的が
達成されることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies in view of the above circumstances, the present inventors have found that, when carrying out hydrolysis of diacetoxybutane using a plurality of reactors having a solid acid catalyst, When a mixture of water and acetic acid distilled and separated from the hydrolysis reaction solution is used as a raw material for the hydrolysis in the preceding step,
The present inventors have found that the object is achieved by supplying a part of the water to the acetic acid recovery step and using the remaining water as the raw material water for the hydrolysis reaction in the preceding step, thereby completing the present invention.

【0006】即ち、本発明の要旨は、ジアセトキシブタ
ンを固体酸触媒の存在下、水と接触させて加水分解させ
た後、水、酢酸と粗ブタンジオールとを分離し、次いで
粗ブタンジオールを精製して高純度のブタンジオールを
製造する方法において、加水分解反応工程及びそれに引
き続く水、酢酸と粗ブタンジオールとの分離工程の組み
合わせを少なくとも二ケ有し、且つ第2段目以降の加水
分解反応液より回収された水、酢酸については、その一
部を系外に抜き出した後、前記加水分解反応より前段の
加水分解反応の原料水として使用することを特徴とする
ブタンジオールの製造方法、にある。以下、本発明を詳
細に説明する。
That is, the gist of the present invention is that diacetoxybutane is brought into contact with water in the presence of a solid acid catalyst to hydrolyze, then water, acetic acid and crude butanediol are separated, and then crude butanediol is separated. A method for producing high-purity butanediol by purification, comprising at least two combinations of a hydrolysis reaction step and a subsequent separation step of water, acetic acid and crude butanediol, and the second and subsequent hydrolysis steps Water recovered from the reaction solution, a method for producing butanediol, characterized in that after extracting a part of the acetic acid out of the system, it is used as raw water for the hydrolysis reaction preceding the hydrolysis reaction. It is in. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】ブタジエンを原料とし、アセトキ
シ化反応、それに引き続く水素化、加水分解工程を経
て、1,4−ブタンジオールを製造する方法は、従来か
ら知られている。アセトキシ化反応は、パラジウム系触
媒の存在下、ブタジエン、酢酸及び分子状酸素を反応さ
せる公知の方法により行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing 1,4-butanediol from butadiene as a raw material through an acetoxylation reaction, followed by hydrogenation and hydrolysis steps has been conventionally known. The acetoxylation reaction is performed by a known method of reacting butadiene, acetic acid, and molecular oxygen in the presence of a palladium-based catalyst.

【0008】パラジウム系触媒としては、パラジウム金
属又はその塩を単独で、或いは助触媒としてビスマス、
セレン、アンチモン、テルル、銅等の金属又はその塩と
組み合わせて用いられる。触媒は、シリカ、アルミナ、
活性炭等の担体に担持させて用いることが好ましい。ア
セトキシ化反応は、通常、40〜180℃の温度範囲
で、常圧以上の圧力下で実施される。酢酸の使用量は溶
媒を兼ねて大過剰に用いることが望ましく、通常、共役
ジエン1モルに対して、5〜60モル、好ましくは10
〜40モルである。
As the palladium-based catalyst, palladium metal or a salt thereof is used alone, or bismuth,
It is used in combination with a metal such as selenium, antimony, tellurium, copper or a salt thereof. The catalyst is silica, alumina,
It is preferable to use the carrier supported on a carrier such as activated carbon. The acetoxylation reaction is usually performed in a temperature range of 40 to 180 ° C. under a pressure equal to or higher than normal pressure. The amount of acetic acid used is desirably used in a large excess also as a solvent, and is usually 5 to 60 mol, preferably 10 to 1 mol per conjugated diene.
4040 mol.

【0009】なお、アセトキシ化反応は公知の固定床方
式、流動床方式、触媒懸濁方式等任意の方法で実施され
る。反応生成物より、ジアセトキシブテンと水、酢酸及
びモノアセトキシブテンを含むその他の軽沸物とは蒸留
によって分離される。モノアセトキシブテンを含む水、
酢酸を主成分とする留出物は、酢酸精製工程に送られ
る。
The acetoxylation reaction is carried out by any known method such as a fixed bed system, a fluidized bed system, and a catalyst suspension system. From the reaction product, diacetoxybutene and other light boilers including water, acetic acid and monoacetoxybutene are separated by distillation. Water containing monoacetoxybutene,
The distillate containing acetic acid as a main component is sent to an acetic acid purification step.

【0010】ジアセトキシブテンは、高沸物を分離した
後、水素添加されジアセトキシブタンとなる。水素化反
応は、パラジウム、ルテニウム等の貴金属触媒の存在下
に、ジアセトキシブテンを水素と接触させ、通常40〜
180℃の温度範囲で、常圧以上の反応圧力で反応させ
ることによって実施される。なお、水素化反応は、公知
の固定床方式、流動床方式、触媒懸濁方式等の任意の方
式で実施される。
[0010] Diacetoxybutene is separated from high boiling substances and then hydrogenated to give diacetoxybutane. The hydrogenation reaction is carried out by bringing diacetoxybutene into contact with hydrogen in the presence of a noble metal catalyst such as palladium or ruthenium, usually at 40 to
The reaction is carried out in a temperature range of 180 ° C. at a reaction pressure of normal pressure or higher. The hydrogenation reaction is carried out by any known method such as a fixed bed system, a fluidized bed system, and a catalyst suspension system.

【0011】生成したジアセトキシブタンは、固体酸触
媒の存在下、水と接触させて加水分解されてブタンジオ
ールが得られる。本発明に用いられる原料のジアセトキ
シブタンとしては1,4−ジアセトキシブタンを主体と
するものの外、その製造及び精製処理工程によっては、
1,4−ジアセトキシブタンと1,2−ジアセトキシブ
タン、1,3−ジアセトキシブタン等との異性体混合物
も含まれる。
The produced diacetoxybutane is contacted with water in the presence of a solid acid catalyst and hydrolyzed to obtain butanediol. As the raw material diacetoxybutane used in the present invention, in addition to those mainly containing 1,4-diacetoxybutane, depending on the production and purification treatment steps,
Also included are isomer mixtures of 1,4-diacetoxybutane, 1,2-diacetoxybutane, 1,3-diacetoxybutane, and the like.

【0012】また、ある場合には、加水分解反応をある
程度進行させた後、水及び酢酸を除いた1,4−ジアセ
トキシブタン、1,4−モノヒドロキシアセトキシブタ
ン及び1,4−ブタンジオールの混合物も利用できる。
本発明に用いられる固体酸触媒としては、シリカ−アル
ミナ、活性土、シリカ、陽イオン交換樹脂等が挙げられ
るが、陽イオン交換樹脂が加水分解速度が大きく、しか
もテトラヒドロフラン等の副生物が少ないので好まし
い。陽イオン交換樹脂としては、スチレンとジビニルベ
ンゼンとの共重合体を母体とするスルホン酸型強酸性イ
オン交換樹脂が好適であり、ゲル型樹脂でもポーラス型
樹脂でもよい。その具体例としては、例えば三菱化学
(株)製SK1B、SK104、SK108、PK20
8、PK216、PK228等が挙げられる。
In some cases, the hydrolysis reaction is allowed to proceed to some extent, and then water and acetic acid are removed from 1,4-diacetoxybutane, 1,4-monohydroxyacetoxybutane and 1,4-butanediol. Mixtures are also available.
Examples of the solid acid catalyst used in the present invention include silica-alumina, activated earth, silica, and a cation exchange resin. However, since the cation exchange resin has a high hydrolysis rate and has few by-products such as tetrahydrofuran. preferable. As the cation exchange resin, a sulfonic acid type strongly acidic ion exchange resin having a copolymer of styrene and divinylbenzene as a base is suitable, and may be a gel type resin or a porous type resin. Specific examples thereof include SK1B, SK104, SK108, and PK20 manufactured by Mitsubishi Chemical Corporation.
8, PK216, PK228, and the like.

【0013】加水分解反応は、通常、30〜120℃、
好ましくは40〜100℃で実施される。温度が低過ぎ
ると反応速度が著しく遅く、多量の触媒を必要とし、他
方、温度が余り高過ぎると、テトラヒドロフラン、ジヒ
ドロフラン等への副反応が増加する。反応圧力について
は、特に限定はされないが、反応中沸騰状態を生起した
り或いは溶存ガス等による著しい気泡の発生が生じたり
するのを阻止する程度の圧力が用いられ、通常は常圧〜
10kg/cm2 Gの範囲である。
The hydrolysis reaction is usually carried out at 30 to 120 ° C.
It is preferably carried out at 40 to 100 ° C. If the temperature is too low, the reaction rate will be extremely slow, requiring a large amount of catalyst, while if the temperature is too high, side reactions to tetrahydrofuran, dihydrofuran, etc. will increase. The reaction pressure is not particularly limited, but a pressure that prevents a boiling state during the reaction or generation of remarkable bubbles due to a dissolved gas or the like is used.
It is in the range of 10 kg / cm 2 G.

【0014】ジアセトキシブタンと水との比率は、水が
反応原料であると同時に溶媒でもあるので、化学量論量
以上用いられる。加水分解反応を円滑に進めるためには
均一液相で実施するのが望ましい。アセトキシブタンは
大量の水には溶解して均一液相を形成し、水の量が多け
れば反応の転換率は上昇するが、多量の水の回収にコス
トがかかり経済的でない。但し、水の使用量が余り少な
過ぎると反応の転換率が低下する。従って、ジアセトキ
シブタンと水とのモル比は、通常2〜100、好ましく
は4〜50の範囲で用いられる。
The ratio of diacetoxybutane to water is more than the stoichiometric amount, since water is a raw material and a solvent at the same time. In order to smoothly carry out the hydrolysis reaction, it is desirable to carry out the reaction in a homogeneous liquid phase. Acetoxybutane dissolves in a large amount of water to form a homogeneous liquid phase, and the larger the amount of water, the higher the conversion of the reaction. However, the cost of recovering a large amount of water is expensive and not economical. However, if the amount of water used is too small, the conversion of the reaction decreases. Therefore, the molar ratio of diacetoxybutane to water is usually in the range of 2 to 100, preferably 4 to 50.

【0015】加水分解反応は、回分式、連続式等の任意
の方法で実施される。イオン交換樹脂を用いる場合、懸
濁状態で反応させる方式でも、イオン交換樹脂の充填層
に反応原料を通過させる方式でもよく、工業的には固定
床連続法が有利である。加水分解反応は、平衡反応であ
るので、多段の反応系式を採用するのが効率的であり好
ましい。
[0015] The hydrolysis reaction is carried out by any method such as a batch system or a continuous system. When an ion exchange resin is used, a method in which the reaction is carried out in a suspended state or a method in which the reaction raw material is passed through a packed bed of the ion exchange resin may be used, and the fixed bed continuous method is industrially advantageous. Since the hydrolysis reaction is an equilibrium reaction, it is efficient and preferable to employ a multistage reaction system.

【0016】向流多段加水分解反応においては、原料の
ジアセトキシブタンは1段目の反応器に供給され、原料
水は最後の反応器に供給される。例えば、図1に示す三
段の加水分解反応では、第1加水分解反応器にジアセト
キシブタンを供給し、原料水は、第3加水分解反応器に
供給される。各反応器から流出した反応液は各反応器に
引き続く水、酢酸分離塔で常圧又は減圧下に蒸留され、
塔頂より水、酢酸を留出させ、塔底より加水分解生成物
を得る。第1水酢酸分離塔で分離された水、酢酸(水:
20〜70重量%/酢酸:80〜30重量%)は酢酸回
収工程に送られ酢酸が回収される。第2水酢酸分離塔で
分離された水、酢酸(水:30〜90重量%/酢酸:7
0〜10重量%)及び第3水酢酸分離塔で分離された
水、酢酸((水:50〜95重量%/酢酸:50〜5重
量%)は前段の加水分解の原料水として利用される。第
1、第2水酢酸分離塔の塔底から得られた加水分解生成
物は次の加水分解反応器に送られ更に加水分解される。
第3水酢酸分離塔の塔底より得られた生成物は、未反応
物回収塔に送られ、未反応物と、1,4−ブタンジオー
ルを分離した後、未反応物は加水分解工程にリサイクル
されるか或いは一部をTHFの原料としてTHF化工程
に供給される。
In the countercurrent multistage hydrolysis reaction, diacetoxybutane as a raw material is supplied to the first reactor, and raw water is supplied to the last reactor. For example, in the three-stage hydrolysis reaction shown in FIG. 1, diacetoxybutane is supplied to a first hydrolysis reactor, and raw water is supplied to a third hydrolysis reactor. The reaction liquid flowing out of each reactor is distilled at normal pressure or reduced pressure in a water, acetic acid separation tower following each reactor,
Water and acetic acid are distilled from the top of the column, and a hydrolysis product is obtained from the bottom of the column. Water, acetic acid (water:
(20 to 70% by weight / acetic acid: 80 to 30% by weight) is sent to an acetic acid recovery step to recover acetic acid. Water and acetic acid (water: 30 to 90% by weight / acetic acid: 7) separated in the second aqueous acetic acid separation tower
0 to 10% by weight) and water and acetic acid ((water: 50 to 95% by weight / acetic acid: 50 to 5% by weight)) separated in the third water acetic acid separation tower are used as raw water for the hydrolysis in the first stage. The hydrolysis products obtained from the bottoms of the first and second aqueous acetic acid separation towers are sent to the next hydrolysis reactor for further hydrolysis.
The product obtained from the bottom of the third water acetic acid separation tower is sent to the unreacted material recovery tower, and after separating the unreacted material and 1,4-butanediol, the unreacted material is subjected to the hydrolysis step. It is recycled or partly supplied to the THF conversion step as a raw material for THF.

【0017】なお、第1水酢酸分離塔は、通常理論段数
3〜15段、塔頂圧力50Torr〜常圧(6.67〜
101.3kPa)、塔底温度100〜250℃、還流
比0.01〜5.0で操作され、第2水酢酸分離塔は、
通常、理論段数3〜15段、塔頂圧力50Torr〜常
圧(6.67〜101.3kPa)、塔底温度100〜
250℃、還流比0.01〜5.0で操作され、第3水
酢酸分離塔は、通常、理論段数3〜15段、塔頂圧力5
0Torr〜常圧(6.67〜101.3kPa)、塔
底温度100〜250℃、還流比0.01〜5.0で操
作される。
The first aqueous acetic acid separation column usually has 3 to 15 theoretical plates and a top pressure of 50 Torr to a normal pressure (6.67 to
101.3 kPa), operating at a bottom temperature of 100 to 250 ° C. and a reflux ratio of 0.01 to 5.0, the second water acetic acid separation column is
Usually, the number of theoretical plates is 3 to 15, the top pressure is 50 Torr to normal pressure (6.67 to 101.3 kPa), the bottom temperature is 100 to
Operating at 250 ° C. and a reflux ratio of 0.01 to 5.0, the third aqueous acetic acid separation column usually has 3 to 15 theoretical plates and a top pressure of 5
The operation is performed at 0 Torr to normal pressure (6.67 to 101.3 kPa), a bottom temperature of 100 to 250 ° C., and a reflux ratio of 0.01 to 5.0.

【0018】向流多段加水分解においても、1,4−ブ
タンジオールの生成量を増加しようとすると供給する原
料水量を増加させる必要がある。このようなときには、
未反応の水を各蒸留塔で蒸留しなければならず、使用す
る蒸気の量が増加することになる。加水分解反応にあま
り影響を与えずに蒸気量を低下させるために、向流多段
加水分解を解析した結果、加水分解反応の成績を支配す
るのは最後の加水分解反応であり、第1段、及び第2段
の加水分解反応は、供給水量をある程度減らしてもあま
り影響を受けないことが判明した。これは、加水分解反
応が平衡であり、且つ第1段及び第2段加水分解反応に
供給される原料水中に酢酸が含まれているため、原料水
が減少しても、平衡位置がそれほど影響を受けないこと
による。また、第1段、第2段の反応で減少させた水に
相当する量の新たな水を第3段の加水分解反応に追加供
給すれば更に有利に加水分解反応が進行する。
[0018] Also in the countercurrent multistage hydrolysis, it is necessary to increase the amount of raw water to be supplied in order to increase the production amount of 1,4-butanediol. In such a case,
Unreacted water must be distilled in each distillation column, which increases the amount of steam used. In order to reduce the amount of steam without significantly affecting the hydrolysis reaction, analysis of the countercurrent multi-stage hydrolysis revealed that the final hydrolysis reaction governed the hydrolysis reaction results. It was also found that the hydrolysis reaction in the second stage was not significantly affected even if the amount of supplied water was reduced to some extent. This is because the hydrolysis reaction is equilibrium, and acetic acid is contained in the raw material water supplied to the first and second stage hydrolysis reactions. By not receiving it. The hydrolysis reaction proceeds more advantageously if an amount of new water corresponding to the water reduced in the first and second stage reactions is additionally supplied to the third stage hydrolysis reaction.

【0019】第2水酢酸分離塔から酢酸回収工程に抜き
出す水、酢酸混合物の量は、あまり多量を抜き出すと加
水分解反応に影響を与えるので好ましくなく、第2水酢
酸分離塔から留出した混合物の20〜60重量%が好ま
しく、また第3水酢酸分離塔から抜き出す水、酢酸混合
物の量は、第3水酢酸分離塔から留出した混合物の40
重量%以下が好ましい。
The amount of the water and acetic acid mixture extracted from the second water acetic acid separation column to the acetic acid recovery step is not preferable because an excessively large amount will affect the hydrolysis reaction. The amount of the water and acetic acid mixture extracted from the third water acetic acid separation column is preferably 40 to 60% by weight of the mixture distilled from the third water acetic acid separation column.
% By weight or less is preferred.

【0020】第1加水分解反応器に供給する第2水酢酸
分離塔の留出水中の酢酸濃度は、第3水酢酸分離塔の留
出水中の酢酸濃度より高いので、第1加水分解反応器に
供給する原料水として第3水酢酸分離塔から酢酸回収工
程に送る留出水を使用し、第2水酢酸分離塔から酢酸回
収工程に送る留出水を増加させると更に有利に加水分解
が実施できる。
The concentration of acetic acid in the distillate of the second water acetic acid separation tower supplied to the first hydrolysis reactor is higher than the concentration of acetic acid in the distillate of the third water acetic acid separation tower. If the distillate sent from the third water acetic acid separation tower to the acetic acid recovery step is used as the raw water to be supplied to the acetic acid recovery step, and the distillate water sent from the second water acetic acid separation tower to the acetic acid recovery step is increased, the hydrolysis will more advantageously Can be implemented.

【0021】かくして得られた、第3水酢酸分離塔の缶
出から得られた粗ブタンジオールは、未反応物回収塔に
送られ、蒸留される。粗ブタンジオールは、1,2−ジ
アセトキシブタン(1,2DAB)、1−ヒドロキシ−
2−アセトキシブタン(1,2HAB)、2−ヒドロキ
シ−1−アセトキシブタン(2,1HAB)、1,2−
ブタンジオール(1,2BG)、1,4−ジアセトキシ
ブタン(1,4DAB)、1−ヒドロキシ−4−アセト
キシブタン(1,4HAB)、1,4−ブタンジオール
(1,4BG)、及び構造が不明な高沸物と若干の軽沸
物を含んでいる。粗ブタンジオールは、蒸留により、軽
沸物、1,2DAB、1,2HAB、2,1HAB及び
1,2BGを主体とする留分(留分)と、1,4DA
B、1,4HABを主体とする留分(留分)と、1,
4BG及び高沸を含む缶出液とに分けられる。
The crude butanediol thus obtained and obtained from the bottom of the third water acetic acid separation column is sent to the unreacted material recovery column and distilled. Crude butanediol is 1,2-diacetoxybutane (1,2 DAB), 1-hydroxy-
2-acetoxybutane (1,2HAB), 2-hydroxy-1-acetoxybutane (2,1HAB), 1,2-
Butanediol (1,2BG), 1,4-diacetoxybutane (1,4DAB), 1-hydroxy-4-acetoxybutane (1,4HAB), 1,4-butanediol (1,4BG), and the structure Contains unknown high boilers and some light boilers. The crude butanediol is distilled to obtain a fraction mainly composed of a light boiler, 1,2 DAB, 1,2 HAB, 2,1 HAB and 1,2BG, and 1,4 DA
B, a fraction mainly composed of 1,4HAB (fraction),
4BG and bottoms containing high boiling point.

【0022】なお、未反応物回収塔は、通常、理論段数
80〜110段、塔頂圧力50〜400Torr(6.
67〜53.3kPa)、塔底温度150〜250℃で
操作される。留分は、必要に応じて更に精製し、高純
度の1,2BGとすることが出来る。留分は加水分解
反応に返送され未反応物を加水分解し、1,4BGを製
造する。このようにして、向流多段加水分解において、
加水分解反応液から分離される水、酢酸の混合物を前段
の加水分解反応に使用する際に、一部を酢酸回収工程に
抜き出すことによって、効率的な加水分解が実施でき
る。
Incidentally, the unreacted material recovery column usually has 80 to 110 theoretical plates and a top pressure of 50 to 400 Torr (6.
(67-53.3 kPa), operating at a bottom temperature of 150-250 ° C. The fraction can be further purified, if necessary, to give high-purity 1,2BG. The fraction is returned to the hydrolysis reaction to hydrolyze unreacted substances to produce 1,4BG. Thus, in countercurrent multistage hydrolysis,
When a mixture of water and acetic acid separated from the hydrolysis reaction liquid is used for the hydrolysis reaction in the preceding stage, a part of the mixture is extracted in the acetic acid recovery step, whereby efficient hydrolysis can be performed.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、本発明は、その要旨を超えない限り、実施例
に限定されるものではない。なお、以下の「%」は「重
量%」を表わす。 実施例1 添付図面に従って反応を実施した。1,2DAB 8.
2%、1,2HAB 4.2%、1,4DAB 81.
2%、1,4HAB 2.6%を含むジアセトキシブタ
ン含有液15930kg/hrを、第2水酢酸分離塔の
塔頂より留出した水、酢酸の混合物5420kg/h
r、第3水酢酸分離塔の塔頂より留出した水、酢酸の混
合物5110kg/hrと共に第1加水分解反応器に連
続的に供給し、加水分解反応を行った。この時、反応器
の出口より得られる加水分解反応液5000kg/hr
を反応器入口に循環した。第1加水分解反応器は、イオ
ン交換樹脂(三菱化学(株)製、SK−1BH)60m
3 を充填した反応器で、圧力0.2MPa、温度50℃
で運転した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. The following “%” represents “% by weight”. Example 1 The reaction was carried out according to the attached drawings. 1, 2 DAB
2%, 1,2HAB 4.2%, 1,4DAB
15930 kg / hr of a diacetoxybutane-containing liquid containing 2% and 2.6% of 1,4HAB was mixed with 5420 kg / h of a mixture of water and acetic acid distilled from the top of the second water acetic acid separation column.
r, a mixture of 5110 kg / hr of water and acetic acid distilled from the top of the third water acetic acid separation tower was continuously supplied to the first hydrolysis reactor together with 5110 kg / hr to perform a hydrolysis reaction. At this time, 5000 kg / hr of the hydrolysis reaction liquid obtained from the outlet of the reactor
Was circulated to the reactor inlet. The first hydrolysis reactor is an ion exchange resin (manufactured by Mitsubishi Chemical Corporation, SK-1BH) 60 m
In a reactor filled with 3 , pressure 0.2MPa, temperature 50 ℃
Driven by

【0024】第1反応器底部から流出する加水分解反応
液は第1水酢酸分離塔に供給し水、酢酸を分離した。酢
酸分離塔は、理論段5段の蒸留塔で、減圧下(0.04
MPa)で運転し、缶出液中の酢酸濃度は0.5%以下
になるように運転した。得られた塔底液12080kg
/hrは、第3酢酸分離塔の塔頂より流出した水、酢酸
の混合物11900kg/hrと共に第2加水分解反応
器に供給し、加水分解反応を行った。第1水酢酸分離塔
より留出した水、酢酸の混合物14390kg/hr
は、酢酸回収工程に供給し酢酸を回収した。
The hydrolysis reaction solution flowing out from the bottom of the first reactor was supplied to a first water acetic acid separation column to separate water and acetic acid. The acetic acid separation column is a distillation column having five theoretical stages, and is subjected to reduced pressure (0.04
(MPa), and the acetic acid concentration in the bottom liquid was adjusted to 0.5% or less. 12080 kg of the obtained bottom liquid
/ Hr was supplied to the second hydrolysis reactor together with a mixture of water and acetic acid (11900 kg / hr) which had flowed out from the top of the third acetic acid separation tower to perform a hydrolysis reaction. Mixture of water and acetic acid distilled from the first water acetic acid separation tower 14390 kg / hr
Was supplied to an acetic acid recovery step to recover acetic acid.

【0025】第2加水分解反応器は、イオン交換樹脂
(三菱化学(株)製、SK−1BH)を60m3 充填し
た反応器で、第1加水分解反応器と同じ条件で運転し
た。第2加水分解反応器から流出した反応液は、第2酢
酸分離塔に供給し、水、酢酸を分離した。第2酢酸分離
塔は、理論段5段の蒸留塔で、減圧下(0.04MP
a)で運転し、缶出液中の酢酸濃度は0.5%以下にな
るように運転した。流出した水、酢酸の混合物1358
0kg/hrの内、5420kg/hrを第1加水分解
反応器に供給し、残部は、酢酸回収工程に供給し酢酸を
回収した。缶出より得られた生成物は、新たに供給され
る水15480kg/hr及び未反応物回収塔で回収さ
れた、1,4−ジアセトキシブタンを含む中部側流30
00kg/hrと共に、第3加水分解反応器に供給し、
加水分解反応を行った。第3加水分解反応器は、イオン
交換樹脂(三菱化学(株)製、SK−1BH)を80m
3 充填してあり、第1加水分解反応器と同じ条件で運転
した。第3加水分解反応器から流出した反応液は、第3
酢酸分離塔に供給し、水、酢酸を分離した。第3酢酸分
離塔は、理論段5段の蒸留塔で、減圧下(0.04MP
a)で運転し、缶出液中の酢酸濃度は0.5%以下にな
るように運転した。流出した水、酢酸の混合物1704
0kg/hrの内、11930kg/hrは第2加水分
解反応器に供給し、残部は第1加水分解反応器に供給し
た。缶出からは、表−1の組成の生成物が得られ、未反
応物回収塔に供給し、未反応物と、1,4−ブタンジオ
ールを分離した。ここで留出させた水、酢酸の混合物
は、合計で44980kg/hrであり、蒸留に使用し
た蒸気は酢酸回収工程を含め64000kg/hrであ
った。(0.4MPa蒸気換算)
The second hydrolysis reactor was a reactor filled with 60 m 3 of an ion exchange resin (manufactured by Mitsubishi Chemical Corporation, SK-1BH) and operated under the same conditions as the first hydrolysis reactor. The reaction solution flowing out of the second hydrolysis reactor was supplied to a second acetic acid separation tower to separate water and acetic acid. The second acetic acid separation tower is a distillation column having five theoretical stages, and under reduced pressure (0.04MP
The operation was carried out in a) so that the acetic acid concentration in the bottom liquid was 0.5% or less. Mixture of effluent water, acetic acid 1358
Of the 0 kg / hr, 5420 kg / hr was supplied to the first hydrolysis reactor, and the remainder was supplied to the acetic acid recovery step to recover acetic acid. The product obtained from the bottom is supplied to a middle side stream 30 containing freshly supplied water of 15480 kg / hr and 1,4-diacetoxybutane recovered in the unreacted material recovery tower.
Together with 00 kg / hr to a third hydrolysis reactor,
A hydrolysis reaction was performed. The third hydrolysis reactor is an ion exchange resin (manufactured by Mitsubishi Chemical Corporation, SK-1BH) of 80 m.
It was packed with 3 and operated under the same conditions as the first hydrolysis reactor. The reaction liquid flowing out of the third hydrolysis reactor is the third liquid.
The mixture was supplied to an acetic acid separation tower to separate water and acetic acid. The third acetic acid separation column is a distillation column having five theoretical stages, and is under reduced pressure (0.04MP
The operation was carried out in a) so that the acetic acid concentration in the bottom liquid was 0.5% or less. Mixture of effluent water, acetic acid 1704
Of the 0 kg / hr, 11930 kg / hr was supplied to the second hydrolysis reactor, and the remainder was supplied to the first hydrolysis reactor. From the bottom, a product having the composition shown in Table 1 was obtained, supplied to the unreacted material recovery tower, and the unreacted material and 1,4-butanediol were separated. The mixture of water and acetic acid distilled here was 44980 kg / hr in total, and the steam used for distillation was 64000 kg / hr including the acetic acid recovery step. (0.4MPa steam conversion)

【0026】[0026]

【表1】 表−1 1,2HAB 1.2% 1,2BG 12.4% 1,4DAB 1.4% 1,4BG 63.3%[Table 1] Table-1 1,2HAB 1.2% 1,2BG 12.4% 1,4DAB 1.4% 1,4BG 63.3%

【0027】未反応物回収塔は、理論段96段の充填物
を有する蒸留塔で、塔頂圧力0.01MPa、還流比8
0で操作し、塔頂より1,2−ブタンジオールを主成分
とする留分1040kg/hrを留去し、塔頂から25
段目に相当する部分より1,4−ジアセトキシブタン1
2.9%、1−ヒドロキシ−4−アセトキシブタン6
4.9%、1,4−ブタンジオール19.1%を含有す
る側流留分5160kg/hrを留去し、塔底からは
1,4ブタンジオール(純度99.5%)を5370k
g/hrを抜き出した。側流の内、3000kg/hr
はTHFの原料として、THF化工程に供給し、残部は
第3加水分解反応器に供給した。
The unreacted material recovery column is a distillation column having a packing of 96 theoretical plates, and has a top pressure of 0.01 MPa and a reflux ratio of 8
0, and distillate 1040 kg / hr of a fraction containing 1,2-butanediol as the main component from the top of the column,
1,4-diacetoxybutane 1
2.9%, 1-hydroxy-4-acetoxybutane 6
5160 kg / hr of a side stream containing 4.9% and 19.1% of 1,4-butanediol was distilled off, and 1,4-butanediol (purity: 99.5%) was removed from the bottom of the column at 5370k.
g / hr was extracted. 3000 kg / hr of side flow
Was supplied to the THF conversion step as a raw material for THF, and the remainder was supplied to the third hydrolysis reactor.

【0028】比較例1 実施例1と同じ原料を使用し、第3水酢酸分離塔の缶出
液の組成が実施例1と同じになるように加水分解反応に
新たに供給する原料水の量を調整して加水分解反応を行
った。この間、第2、及び第3水酢酸分離塔で留出する
水、酢酸の混合物の全量を前段の加水分解反応器に供給
し、実施例1と同じ温度、圧力で加水分解反応を行っ
た。第3加水分解反応器に供給する原料水の量は、13
100kg/hrであり、第1、第2、第3水酢酸分離
塔から留出する水、酢酸の混合物は、それぞれ2007
0kg/hr、16000kg/hr、14400kg
/hrであり、合計で50470kg/hrとなった。
蒸留に使用した蒸気量は酢酸回収工程を含め合計で66
000kg/hrであった。(0.4MPa蒸気換算)
Comparative Example 1 Using the same raw materials as in Example 1, the amount of raw water newly supplied to the hydrolysis reaction so that the composition of the bottoms of the third water acetic acid separation column is the same as in Example 1. Was adjusted to perform a hydrolysis reaction. During this period, the entire amount of the mixture of water and acetic acid distilled off in the second and third water acetic acid separation towers was supplied to the hydrolysis reactor at the preceding stage, and the hydrolysis reaction was performed at the same temperature and pressure as in Example 1. The amount of raw water supplied to the third hydrolysis reactor is 13
The mixture of water and acetic acid distilled from the first, second, and third water acetic acid separation columns at a rate of 100 kg / hr was 2007, respectively.
0 kg / hr, 16000 kg / hr, 14400 kg
/ Hr, which is 50470 kg / hr in total.
The total amount of steam used for distillation was 66
000 kg / hr. (0.4MPa steam conversion)

【0029】[0029]

【発明の効果】本発明によれば、ジアセトキシブタンの
加水分解によるブタンジオールの製造において、加水分
解により得られる水、酢酸の分離のための蒸気の使用量
を削減し、工業的に有利にブタンジオールを製造するこ
とができる。
According to the present invention, in the production of butanediol by hydrolysis of diacetoxybutane, the amount of steam used for separating water and acetic acid obtained by hydrolysis is reduced, which is industrially advantageous. Butanediol can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のフローシート。FIG. 1 is a flow sheet of Example 1.

【符号の説明】[Explanation of symbols]

I 第1加水分解反応器 I′ 第1水酢酸分離塔 II 第2加水分解反応器 II′ 第2水酢酸分離塔 III 第3加水分解反応器 III ′ 第3水酢酸分離塔 IV 未反応物回収塔 I First hydrolysis reactor I 'First water acetic acid separation tower II Second hydrolysis reactor II' Second water acetic acid separation tower III Third hydrolysis reactor III 'Third water acetic acid separation tower IV Unreacted material recovery Tower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジアセトキシブタンを固体酸触媒の存在
下、水と接触させて加水分解させた後、水、酢酸と粗ブ
タンジオールとを分離し、次いで粗ブタンジオールを精
製して高純度のブタンジオールを製造する方法におい
て、加水分解反応工程及びそれに引き続く水、酢酸と粗
ブタンジオールとの分離工程の組み合わせを少なくとも
二ケ有し、且つ第2段目以降の加水分解反応液より回収
された水、酢酸については、その一部を系外に抜き出し
た後、前記加水分解反応より前段の加水分解反応の原料
水として使用することを特徴とするブタンジオールの製
造方法。
Claims 1. A diacetoxybutane is hydrolyzed by contacting it with water in the presence of a solid acid catalyst, separating water, acetic acid and crude butanediol, and then purifying the crude butanediol to obtain a high-purity crude butanediol. In the method for producing butanediol, the method has at least two combinations of a hydrolysis reaction step and a subsequent separation step of water, acetic acid and crude butanediol, and is recovered from the hydrolysis reaction liquid of the second and subsequent stages. A method for producing butanediol, comprising extracting a part of water and acetic acid out of the system, and then using it as a raw material water for a hydrolysis reaction preceding the hydrolysis reaction.
【請求項2】 加水分解反応工程及びそれに引き続く
水、酢酸と粗ブタンジオールとの分離工程の組み合わせ
を少なくとも三ケ有することを特徴とする請求項1に記
載の方法。
2. The method according to claim 1, wherein the method comprises at least three combinations of a hydrolysis reaction step and a subsequent separation step of water, acetic acid and crude butanediol.
【請求項3】 第2水酢酸分離塔から留出した水、酢酸
混合物の40〜80重量%を第1加水分解反応器に循環
し、第3水酢酸分離塔から留出した水、酢酸混合物の6
0重量%以上を第2加水分解反応器に循環することを特
徴とする請求項1又は2に記載の方法。
3. The water and acetic acid mixture circulated from the second water acetic acid separation column by circulating 40 to 80% by weight of the water and acetic acid mixture from the second water acetic acid separation column to the first hydrolysis reactor. 6 of
The method according to claim 1 or 2, wherein 0% by weight or more is circulated to the second hydrolysis reactor.
JP26603297A 1997-09-30 1997-09-30 Method for producing butanediol Expired - Fee Related JP3956442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26603297A JP3956442B2 (en) 1997-09-30 1997-09-30 Method for producing butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26603297A JP3956442B2 (en) 1997-09-30 1997-09-30 Method for producing butanediol

Publications (2)

Publication Number Publication Date
JPH11106359A true JPH11106359A (en) 1999-04-20
JP3956442B2 JP3956442B2 (en) 2007-08-08

Family

ID=17425448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26603297A Expired - Fee Related JP3956442B2 (en) 1997-09-30 1997-09-30 Method for producing butanediol

Country Status (1)

Country Link
JP (1) JP3956442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555720B1 (en) 2000-04-28 2003-04-29 Mitsubishi Chemical Corporation Method and system for producing 1,4-butanediol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555720B1 (en) 2000-04-28 2003-04-29 Mitsubishi Chemical Corporation Method and system for producing 1,4-butanediol

Also Published As

Publication number Publication date
JP3956442B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
EP1129085B1 (en) Process to afford gamma butyrolactone and tetrahydrofuran
JP2557099B2 (en) Method for separating dimethyl carbonate
KR101659171B1 (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
JP3991513B2 (en) Method for producing butanediol
JPH0629280B2 (en) Purification method of crude tetrahydrofuran
JP3956442B2 (en) Method for producing butanediol
KR20160056211A (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
JPS61238745A (en) Production of allyl alcohol
JP3956444B2 (en) Method for producing butanediol
US4465853A (en) Method for isomerizing diacetoxybutenes
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP2000143652A (en) Purification of crude tetrahydrofuran
JP3744097B2 (en) Method for producing 1,4-butanediol
JP3336644B2 (en) Method for hydrogenating diacetoxybutene
JPH10237057A (en) Purification of crude tetrahydrofuran
US4105679A (en) Process for producing a cylic ether from an acetic ester of a 1,4-glycol
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
JP3959793B2 (en) Method for producing butanediol
JP4483156B2 (en) Method for purifying gamma-butyrolactone
JP3463326B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JP2003089694A (en) Method for purifying tetrahydrofuran
GB1560694A (en) Process for producing butanediol or butenediol
JPH0140816B2 (en)
KR100707831B1 (en) Method for producing normal butylacetate and the manufacturing device thereof
CN117466719A (en) Production method of acrolein and product obtained by production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees