JP2557099B2 - Method for separating dimethyl carbonate - Google Patents

Method for separating dimethyl carbonate

Info

Publication number
JP2557099B2
JP2557099B2 JP1033445A JP3344589A JP2557099B2 JP 2557099 B2 JP2557099 B2 JP 2557099B2 JP 1033445 A JP1033445 A JP 1033445A JP 3344589 A JP3344589 A JP 3344589A JP 2557099 B2 JP2557099 B2 JP 2557099B2
Authority
JP
Japan
Prior art keywords
dimethyl carbonate
methanol
column
pressure
azeotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1033445A
Other languages
Japanese (ja)
Other versions
JPH02212456A (en
Inventor
国夫 古賀
浩之 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1033445A priority Critical patent/JP2557099B2/en
Publication of JPH02212456A publication Critical patent/JPH02212456A/en
Application granted granted Critical
Publication of JP2557099B2 publication Critical patent/JP2557099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機カーボネートの分離方法に関し、更に
詳しくはメタノールとジメチルカーボネートの混合物か
らメタノールとジメチルカーボネートを効率的に分離す
る方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for separating organic carbonate, and more particularly to a method for efficiently separating methanol and dimethyl carbonate from a mixture of methanol and dimethyl carbonate.

〔従来の技術〕[Conventional technology]

ジメチルカーボネートの製法としては、メタノールを
適当な触媒、例えば銅塩(特公昭45−11129、USP436047
7、USP4604242、特公昭58−33857、特公昭60−58739、
特公昭52−45693、特公昭52−46927)や白金属−銅塩
(USP3114762、特公昭61−8816、特公昭61−43338、USP
4361519、特公昭55−185542)等の存在下に、一酸化炭
素及び酸素と反応させる方法や、二酸化炭素をエチレン
オキサイドやプロピレンオキサイド等と反応させてカー
ボネートをつくり、これとメタノールとのエステル交換
により製造する方法(EP0119840、特公昭61−4381)、
或いは尿素もしくはウレタンと反応させる方法(USP283
4799、USP4327035)などがある。
As a method for producing dimethyl carbonate, methanol is used as a suitable catalyst, for example, copper salt (Japanese Patent Publication No. 45-11129, USP436047).
7, USP4604242, JP 58-33857, JP 60-58739,
JP-B-52-45693, JP-B-52-46927) and white metal-copper salt (USP3114762, JP-B-61-8816, JP-B-61-43338, USP)
4361519, Japanese Examined Patent Publication No. 55-185542) and the like, a method of reacting with carbon monoxide and oxygen, or a method of reacting carbon dioxide with ethylene oxide, propylene oxide, etc. to form a carbonate, and transesterifying it with methanol. Manufacturing method (EP0119840, Japanese Patent Publication No. 61-4381),
Alternatively, a method of reacting with urea or urethane (USP283
4799, USP4327035) etc.

これらの方法に於いては、共通してメタノールが過剰
に用いられるため、反応液はジメチルカーボネート並び
に副生する水のメタノール溶液として得られる。工業的
にジメチルカーボネートの製造を行う場合にはこの混合
物よりジメチルカーボネートを単離し精製すると同時に
未反応メタノールを反応器にリサイクルしなければなら
ないが、周知のごとくこの3成分系は2つの共沸関係を
含んでいるため単に沸点差を利用しただけでは分離でき
ない。その2つの共沸関係は、メタノールとジメチルカ
ーボネートの2成分系(常圧下でメタノール70重量%、
ジメチルカーボネート30重量%で共沸)と、ジメチルカ
ーボネートと水の2成分系に存在する。
In these methods, methanol is commonly used in excess, so that the reaction solution is obtained as a methanol solution of dimethyl carbonate and by-produced water. In the case of industrially producing dimethyl carbonate, it is necessary to isolate and purify dimethyl carbonate from this mixture and at the same time to recycle unreacted methanol to the reactor. As is well known, this three-component system has two azeotropic relationships. Since it contains, it cannot be separated simply by using the boiling point difference. The two azeotropic relationships are the two-component system of methanol and dimethyl carbonate (70% by weight of methanol under normal pressure,
It exists in a binary system of dimethyl carbonate and water).

従って、反応液を蒸留分離する場合には、塔頂よりメ
タノールとジメチルカーボネートの共沸混合物を分離
し、塔底よりジメチルカーボネートと水を回収する。こ
こで得られた塔底液は周知の如く適当な温度下で分液
し、上層液、下層液をそれぞれ蒸留すればジメチルカー
ボネートと水を単離することができる。ところが塔頂の
共沸物は均一相を成すため、以下に紹介するような特殊
な処理をしない限りはそのまま反応器へ戻さざるを得な
い。その場合大量のジメチルカーボネートが反応器を循
環することになりそれだけ生産効率が低下する。従っ
て、これまでにもメタノールとジメチルカーボネートの
共沸を崩す様々な方法が考えられている。
Therefore, when the reaction liquid is separated by distillation, an azeotropic mixture of methanol and dimethyl carbonate is separated from the top of the column, and dimethyl carbonate and water are collected from the bottom of the column. As is well known, the column bottom liquid obtained here is separated at an appropriate temperature, and the upper layer liquid and the lower layer liquid are respectively distilled, whereby dimethyl carbonate and water can be isolated. However, since the azeotrope at the top of the column forms a homogeneous phase, it must be returned to the reactor as it is, unless special treatment as described below is performed. In that case, a large amount of dimethyl carbonate is circulated in the reactor, which lowers the production efficiency. Therefore, various methods for breaking the azeotropic distillation of methanol and dimethyl carbonate have been considered so far.

まず、メタノールとジメチルカーボネートの分離操作
として蒸留を用いる場合には、常圧下でメタノールと混
和しないエントレーナーと一緒に蒸留することでジメチ
ルカーボネートを単離する方法(特開昭54−41820)
や、水を溶媒として抽出蒸留を行う方法(特公昭56−17
333)があり、この両者とも最終的にはメタノールを単
離することが可能であるが、前者はメタノールとエント
レーナーの分離、後者は水とメタノールの分離に大きな
エネルギーを必要とするため実用的でない。他の方法と
して、10気圧、塔底温度150℃、塔頂温度142℃で蒸留す
る方法(特公昭59−3463)がある。この方法に於いて
は、塔頂共沸組成がメタノールで95%(モル濃度と思わ
れる)になることが記載されているがメタノールを単離
することはできない。
First, when distillation is used as an operation for separating methanol and dimethyl carbonate, a method for isolating dimethyl carbonate by distilling under normal pressure with an entrainer immiscible with methanol (JP-A-54-41820).
Alternatively, a method of performing extractive distillation using water as a solvent (Japanese Patent Publication No. 56-17).
333), both of which can finally isolate methanol, but the former requires a large amount of energy to separate methanol from the entrainer, and the latter requires large energy to separate water from methanol. Not. As another method, there is a method of distilling at a pressure of 10 atm, a bottom temperature of 150 ° C, and a top temperature of 142 ° C (Japanese Patent Publication No. 59-3463). In this method, it is described that the overhead azeotropic composition is 95% in methanol (probably a molar concentration), but methanol cannot be isolated.

蒸留以外の操作でメタノールとジメチルカーボネート
を分離する方法としては、疎水性ゼオライトを用いてジ
アルキルカーボネートのアルコール溶液からカーボネー
トを選択吸着して濃縮する方法(特開昭60−106505)、
メタノールとジメチルカーボネートの混合物を氷点下数
十度まで冷却して固液分離する方法(USP3803201)があ
るが、前者は低い吸着濃度と脱着方法に問題があり、後
者は冷却上の問題があり現状での実用化は困難であると
思われる。
As a method of separating methanol and dimethyl carbonate by an operation other than distillation, a method of selectively adsorbing and concentrating a carbonate from an alcohol solution of a dialkyl carbonate using a hydrophobic zeolite (JP-A-60-106505),
There is a method (USP3803201) of solid-liquid separation by cooling a mixture of methanol and dimethyl carbonate to several tens of degrees below freezing, but the former has problems with low adsorption concentration and desorption method, and the latter has problems with cooling. It seems to be difficult to put into practical use.

従って、現状では蒸留法により共沸組成の混合物を反
応系にリサイクルせざるを得ない状況にある。
Therefore, at present, there is no choice but to recycle the mixture having an azeotropic composition into the reaction system by the distillation method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

然るに工業化しようとすれば、当然設計者はコストを
最小化すべく回収系を組み立てようとするが、既知の分
離方向を用いる限り先に述べたような問題点によりメタ
ノールとジメチルカーボネートの共沸混合物を反応系に
リサイクルせざるを得ない。そのため、メタノールを単
離してリサイクルする場合に比して反応液中のジメチル
カーボネート濃度が上昇する。
However, if it is industrialized, the designer naturally tries to assemble a recovery system in order to minimize the cost, but as long as the known separation direction is used, the azeotropic mixture of methanol and dimethyl carbonate will be generated due to the problems as described above. There is no choice but to recycle it into the reaction system. Therefore, the concentration of dimethyl carbonate in the reaction solution is higher than that in the case where methanol is isolated and recycled.

ジメチルカーボネートは一般に安定な化合物である
が、触媒の存在下に於いて水と一緒に加熱されると一部
が加水分解するため、反応器内のジメチルカーボネート
濃度が高いほど単位容積あたりのジメチルカーボネート
の収率を低下させるばかりではなく、メタノールを一酸
化炭素及び酸素と反応させる場合には一酸化炭素のジメ
チルカーボネートへの選択率が低下して、一酸化炭素使
用率の増大を招く。
Although dimethyl carbonate is generally a stable compound, part of it hydrolyzes when heated with water in the presence of a catalyst, so the higher the concentration of dimethyl carbonate in the reactor, the more dimethyl carbonate per unit volume. In addition to lowering the yield of carbon monoxide, when methanol is reacted with carbon monoxide and oxygen, the selectivity of carbon monoxide to dimethyl carbonate decreases, leading to an increase in the carbon monoxide usage rate.

このように、反応面からは反応液中のジメチルカーボ
ネートの濃度が高いことは望ましくないので、未反応メ
タノールをジメチルカーボネートから単離して反応系に
リサイクルすることが望まれている。
As described above, since it is not desirable that the concentration of dimethyl carbonate in the reaction solution is high from the viewpoint of the reaction, it is desired to isolate unreacted methanol from dimethyl carbonate and recycle it to the reaction system.

又、反応で精製したジメチルカーボネートの一部を反
応系にリサイクルすることは、それだけ余分のエネルギ
ーや空間を必要とするだけでなく、製品の品質にも少な
からず影響を与えるものであり好ましくない。
In addition, recycling a part of the dimethyl carbonate purified by the reaction to the reaction system is not preferable because it not only requires extra energy and space but also affects the quality of the product to some extent.

繰り返し述べれば、高い反応成績(活性、選択性)を
達成するためには、未反応メタノールをジメチルカーボ
ネートを含まない状態で反応系へリサイクルすることが
望ましいが、現状ではメタノールとジメチルカーボネー
トの経済的な分離方法が無く共沸混合物としてリサイク
ルせざるを得ない。
To reiterate, in order to achieve high reaction results (activity and selectivity), it is desirable to recycle unreacted methanol to the reaction system without containing dimethyl carbonate, but at present, it is economical to use methanol and dimethyl carbonate. There is no separate method and it has to be recycled as an azeotropic mixture.

〔課題を解決するための手段〕[Means for solving the problem]

共沸組成が圧力の変化により移動する現象は周知の所
であるが、メタノールとジメチルカーボネートの共沸関
係は、本発明者らの測定によれば、常圧に於いて70/30
重量比(共沸温度64℃)であるのに対し、圧力が増加す
るにつれてかなり急激にメタノールの濃度が増してい
き、4気圧下では79/21重量比(共沸温度104℃)にな
る。更に圧力が上がるにつれてその増加は緩やかになる
が、10気圧に至れば88/12重量比(共沸温度138℃)にな
り、15気圧では93/7重量比(共沸温度155℃)になる
(その他の圧力については下記の参考実験参照)。
It is well known that the azeotropic composition moves due to changes in pressure, but the azeotropic relationship between methanol and dimethyl carbonate is 70/30 at normal pressure according to the measurement by the inventors.
The weight ratio (azeotropic temperature 64 ° C.), while the concentration of methanol increases sharply as the pressure increases, reaching 79/21 weight ratio (azeotropic temperature 104 ° C.) under 4 atmospheres. As the pressure further increases, the increase slows down, but when it reaches 10 atm, it becomes 88/12 weight ratio (azeotropic temperature 138 ° C) and at 15 atm 93/7 weight ratio (azeotropic temperature 155 ° C). (For other pressures, see the reference experiment below).

この様に圧力を上げていくことで、よりメタノールに
富みジメチルカーボネートの少ない共沸組成が得られる
が、高い圧力になる程メタノールとジメチルカーボネー
トの揮発度が近づき、特に共沸点近傍に於ける気液の組
成の差は減少し、分離は困難になる。従って、蒸留塔の
操作圧を高めることでジメチルカーボネート含量の少な
いメタノールを得ようとしても、ある上限値が存在する
ことに注意する必要がある。
By increasing the pressure in this way, an azeotropic composition richer in methanol and less in dimethyl carbonate can be obtained.However, the higher the pressure, the closer the volatility of methanol and dimethyl carbonate becomes, especially in the vicinity of the azeotropic point. Differences in liquid composition are reduced and separation becomes difficult. Therefore, it should be noted that there is a certain upper limit even when trying to obtain methanol having a low dimethyl carbonate content by increasing the operating pressure of the distillation column.

ところが本発明者らは、若干の加圧下で蒸留を行って
得られる塔頂共沸混合物を常圧蒸留することで、容易に
塔底から純粋なメタノールが得られることを見い出し
た。メタノールとジメチルカーボネートの比揮発度がほ
とんど1に近いために塔頂から塔底まで有意な温度差が
生じないが、適当な流量比を保てば安定して純粋なメタ
ノールが得られることが確認された。
However, the present inventors have found that pure methanol can be easily obtained from the bottom of the column by atmospheric distillation of an overhead azeotropic mixture obtained by performing distillation under a slight pressure. Since the relative volatility of methanol and dimethyl carbonate is close to 1, there is no significant temperature difference from the top to the bottom of the column, but it was confirmed that pure methanol can be stably obtained by maintaining an appropriate flow ratio. Was done.

本発明者らはこれらの結果を基に鋭意検討した結果、
本発明を完成するに到った。
As a result of diligent studies based on these results, the present inventors have shown that
The present invention has been completed.

即ち本発明は、メタノールとジメチルカーボネートを
含む液からメタノールとジメチルカーボネートを分離す
る方法に於いて、二つの蒸留塔を組み合わせて用い、第
1塔を第2塔より高い圧力で操作することを特徴とする
分離方法を提供するものである。
That is, the present invention is a method for separating methanol and dimethyl carbonate from a liquid containing methanol and dimethyl carbonate, wherein two distillation columns are used in combination and the first column is operated at a higher pressure than the second column. The separation method is provided.

以下、図面に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の方法によるメタノールとジメチルカー
ボネートの分離プロセスの好ましい実施態様を示す工程
図であり、当プロセスへの供給液が反応して得られる粗
反応液の場合、粗反応液中には生成物であるジメチルカ
ーボネートや水、微量の反応副生成物と未反応のメタノ
ールが含まれる。通常は、そのまま第1塔目の蒸留塔に
仕込むが、場合によっては低沸の不純物を予め除去して
おいたり、水分を吸着その他の方法により除去しておい
ても良い。ここでは、メタノール、ジメチルカーボネー
ト、水の混合物を対象にしてプロセスを説明するが、水
を含まない場合や微量不純物を含む場合にも同様な処理
が可能である。
FIG. 1 is a process diagram showing a preferred embodiment of a process for separating methanol and dimethyl carbonate according to the method of the present invention. In the case of a crude reaction liquid obtained by reacting a feed liquid to the process, the crude reaction liquid contains It contains dimethyl carbonate, which is a product, water, a trace amount of reaction by-products, and unreacted methanol. Usually, it is charged as it is into the first distillation column, but in some cases, low boiling impurities may be removed in advance, or water may be removed by adsorption or other methods. Here, the process will be described for a mixture of methanol, dimethyl carbonate, and water, but the same treatment can be performed when water is not contained or when trace impurities are contained.

即ち、メタノール、ジメチルカーボネート、水を含む
粗反応液をライン1から第1塔目の蒸留塔の中段付近に
供給する。この第1塔は第2塔より高い圧力で操作され
る。第1塔の塔頂から水をほとんど含まないメタノール
とジメチルカーボネートの当該操作圧力下の共沸混合物
を得、塔底3からジメチルカーボネートと水の混合物
(メタノールはほとんど含まれない)を得る。塔底液
は、次の精製工程へ送られ製品となるジメチルカーボネ
ートと水が周知の方法で分離される。第1塔の塔頂留出
液は、続いて第1塔より低い圧力で操作される第2塔目
の蒸留塔にライン2で供給され、塔頂から当該圧力下の
共沸混合物を得、塔底5よりほぼ純粋なメタノールを得
る。塔頂の共沸混合物はライン4を通り、第1塔目の蒸
留塔の組成の近い段にリサイクルする。
That is, the crude reaction liquid containing methanol, dimethyl carbonate, and water is supplied from the line 1 to the vicinity of the middle stage of the first distillation column. This first column operates at a higher pressure than the second column. An azeotropic mixture of methanol and dimethyl carbonate containing almost no water under the operating pressure is obtained from the top of the first column, and a mixture of dimethyl carbonate and water (containing almost no methanol) is obtained from the column bottom 3. The bottom liquid is sent to the next purification step and dimethyl carbonate as a product and water are separated by a known method. The top distillate of the first column is subsequently fed to the second distillation column operated at a lower pressure than the first column by line 2, and an azeotropic mixture under the pressure is obtained from the top of the column. Almost pure methanol is obtained from the bottom 5 of the column. The azeotrope at the top of the column passes through line 4 and is recycled to the stage close to the composition of the first distillation column.

ここで第1塔と第2塔のそれぞれの操作圧力は、圧力
差が付いていればどのようなものであっても理論上は操
作可能であるが、工業的に実施する場合には好ましい条
件が存在する。
Here, the operating pressure of each of the first and second columns can theoretically be operated as long as there is a pressure difference. Exists.

まず2つの蒸留塔の操作圧力差であるが、差が小さす
ぎると2塔間のリサイクル流量が大きくなりすぎ経済性
を失うし、操作の安定性にも問題を生ずる。工業的には
共沸組成の有意な差は1気圧以上の圧力差で生ずるが、
より好ましくは3気圧以上の圧力差で操作するのが良
い。
First, regarding the operating pressure difference between the two distillation columns, if the difference is too small, the recycle flow rate between the two columns will be too large, resulting in a loss of economic efficiency and a problem in operation stability. Industrially, a significant difference in azeotropic composition occurs with a pressure difference of 1 atm or more,
It is more preferable to operate with a pressure difference of 3 atm or more.

次にそれぞれの操作圧であるが、これは用いる熱源や
冷媒の条件に従い場合場合に最適な設定が存在するが、
基本的には第1塔を2気圧以上、第2塔を常圧で行うの
が好ましい。この場合、第1塔の塔頂蒸気温度が80℃を
越え第2塔の塔底温度が70℃以下であるから第2塔の加
熱源を第1塔の塔頂蒸気でまかなうことが可能である。
更により好ましくは第1塔を4気圧以上、第2塔を常圧
で行えば良い。この場合、第1塔の塔頂蒸気温度が100
℃を越え第2塔の塔底温度が70℃以下であるから第2塔
の加熱源を第1塔の塔頂蒸気でまかなうことが容易であ
る。
Next, regarding each operating pressure, this is the optimum setting when there is a condition according to the heat source and refrigerant used,
Basically, it is preferable to carry out the first tower at 2 atm or more and the second tower at normal pressure. In this case, since the top vapor temperature of the first tower exceeds 80 ° C and the bottom temperature of the second tower is 70 ° C or less, it is possible to cover the heating source of the second tower with the top vapor of the first tower. is there.
Even more preferably, the first tower may be operated at 4 atm or higher and the second tower at normal pressure. In this case, the top vapor temperature of the first tower is 100
Since the bottom temperature of the second column is above 70 ° C and exceeds 70 ° C, it is easy to cover the heating source of the second column with the top vapor of the first column.

〔発明の効果〕〔The invention's effect〕

本発明の方法により、共沸混合物を形成するメタノー
ル/ジメチルカーボネートを含む液から、多大なエネル
ギー負荷をかける事なくメタノールとジメチルカーボネ
ートを分離することが可能になった。そのため、反応系
へリサイクルされる未反応メタノールに同伴するジメチ
ルカーボネートが無くなり、反応の収率、選択性を向上
させることが可能になった。
The method of the present invention has made it possible to separate methanol and dimethyl carbonate from a liquid containing methanol / dimethyl carbonate forming an azeotrope without applying a large energy load. Therefore, dimethyl carbonate that accompanies unreacted methanol recycled to the reaction system is eliminated, and it has become possible to improve the reaction yield and selectivity.

その他、本発明はジメチルカーボネートを原料とする
各種エステル交換反応後の未反応メタノールとジメチル
カーボネートの混合物からメタノールとジメチルカーボ
ネートを分離するような場合にも利用できる。
In addition, the present invention can also be used in the case of separating methanol and dimethyl carbonate from a mixture of unreacted methanol and dimethyl carbonate after various transesterification reactions using dimethyl carbonate as a raw material.

〔実施例〕〔Example〕

本発明を利用しようとする人の理解を助けるために以
下に本発明の実施例の一部を示すが、これによって本発
明が限定されることはない。
Some of the embodiments of the present invention are shown below to aid understanding of the person who uses the present invention, but the present invention is not limited thereto.

参考実験 (共沸データの測定) 1) 内径28mm、段数20段のステンレス製多孔板塔の塔
底にメタノールとジメチルカーボネート(DMC)をそれ
ぞれ250gずつ張り込み、塔頂圧力を変えて全還流運転を
塔の上部10段が同温度になるまで行い、かつ定期的にサ
ンプリングを行い塔頂組成が一定になるのを確かめた上
で、その組成をその圧力下の共沸組成とした。
Reference experiment (Measurement of azeotropic data) 1) 250 g each of methanol and dimethyl carbonate (DMC) were placed at the bottom of a stainless steel perforated plate column with an inner diameter of 28 mm and 20 plates, and total reflux operation was performed by changing the column top pressure. The upper 10 stages of the column were heated to the same temperature and periodically sampled to confirm that the top composition was constant, and then the composition was taken as the azeotropic composition under that pressure.

測定結果を表1(記号*1)に示す。 The measurement results are shown in Table 1 (symbol * 1).

2) 恒温槽内に設置された容積1の耐圧オートクレ
ーブを脱気した後、メタノールとジメチルカーボネート
(DMC)の混合液を張り込み、攪拌しながら所定圧力に
なるまで昇温した。安定した後、気相と液相をサンプリ
ングし気液平衡を測定した。
2) The pressure-resistant autoclave with a volume of 1 installed in the thermostat was degassed, then a mixed solution of methanol and dimethyl carbonate (DMC) was charged therein, and the temperature was raised to a predetermined pressure while stirring. After stabilizing, the gas phase and the liquid phase were sampled and the gas-liquid equilibrium was measured.

その結果、得られた共沸組成を表1(記号*2)に示
す。
The azeotropic composition obtained as a result is shown in Table 1 (symbol * 2).

実施例1 塔頂圧力6気圧、還流比5で操作される内径28mm、段
数40段のステンレス製多孔板塔の上から20段目にメタノ
ール70重量%、ジメチルカーボネート30重量%からなる
常圧共沸混合液を毎時300gの流量で仕込み、塔底から10
段目の温度が155℃になるように定常化した。この時、
塔頂留出液としてメタノール82.5重量%、ジメチルカー
ボネート17.5重量%の共沸混合物を毎時254.5gで得、塔
底よりメタノールを含まないジメチルカーボネートを毎
時45.5g得た。この時の塔頂温度は118℃、塔底温度は16
7℃であった。
Example 1 An atmospheric pressure mixture consisting of 70% by weight of methanol and 30% by weight of dimethyl carbonate at the 20th level from the top of a stainless perforated plate column having an inner diameter of 28 mm and a plate number of 40, operated at a top pressure of 6 atm and a reflux ratio of 5. Charge the boiling mixture at a flow rate of 300 g / h and
It was stabilized so that the temperature of the stage was 155 ° C. This time,
As an overhead distillate, an azeotropic mixture of 82.5% by weight of methanol and 17.5% by weight of dimethyl carbonate was obtained at 254.5 g / hr, and 45.5 g of dimethyl carbonate containing no methanol was obtained at the bottom of the column. At this time, the top temperature was 118 ° C and the bottom temperature was 16 ° C.
It was 7 ° C.

この塔頂留出液を、中間タンクを経由して、内径40m
m、段数40段のガラス製オールダーショウ蒸留塔へ連続
的に仕込み、常圧下、還流比5で定流量管理し定常化し
た。この時、塔底からジメチルカーボネートを含まない
純粋なメタノールが毎時106g得られ、塔頂よりメタノー
ル70重量%、ジメチルカーボネート30重量%の共沸物を
毎時148.5g得た。この時の塔頂温度は64℃、塔底温度は
66℃であった。
The overhead distillate was passed through an intermediate tank to an inner diameter of 40 m
A glass Oldershaw distillation column with m and 40 plates was continuously charged, and the flow rate was controlled at a reflux ratio of 5 under normal pressure to make it steady. At this time, 106 g of pure methanol containing no dimethyl carbonate per hour was obtained from the bottom of the column, and 148.5 g of azeotrope containing 70% by weight of methanol and 30% by weight of dimethyl carbonate per hour was obtained from the top of the column. At this time, the top temperature was 64 ° C and the bottom temperature was
It was 66 ° C.

実施例2 実施例1のステンレス製多孔板塔の塔頂から20段目に
メタノール58重量%、ジメチルカーボネート35重量%、
水7重量%からなる混合液を毎時150gの流量で仕込み、
塔頂から10段目にメタノール70重量%、ジメチルカーボ
ネート30重量%からなる混合液を毎時120gの流量で仕込
みながら連続運転を行い塔底から10段目の温度が130℃
になるように定常化した。この時、塔頂留出液としてメ
タノール82.5重量%、ジメチルカーボネート17.5重量%
の水を含まない共沸混合物を毎時207gで得、塔底よりメ
タノールを含まないジメチルカーボネート83重量%、水
17重量%の液を毎時63g得た。この時の塔頂温度は118
℃、塔底温度は140℃であった。
Example 2 58% by weight of methanol, 35% by weight of dimethyl carbonate, 20% from the top of the stainless steel perforated plate column of Example 1,
A mixture consisting of 7% by weight of water was charged at a flow rate of 150 g / h,
Continuous operation was performed while charging a mixed liquid consisting of 70% by weight of methanol and 30% by weight of dimethyl carbonate at a flow rate of 120 g / hr from the top of the tower to a temperature of 130 ° C at the 10th from the bottom.
It became steady so that. At this time, as the overhead distillate, methanol 82.5% by weight, dimethyl carbonate 17.5% by weight
The water-free azeotropic mixture was obtained at 207 g / h, and 83% by weight of methanol-free dimethyl carbonate, water
63 g of a 17% by weight liquid was obtained every hour. The top temperature at this time is 118
℃, the bottom temperature was 140 ℃.

この塔頂留出液を、中間タンクを経由して、実施例1
のガラス製オールダーショウ蒸留塔の上から20段目へ連
続的に仕込み、常圧下、還流比5で定流量管理し定常化
した。この時、塔底からジメチルカーボネートを含まな
い純粋なメタノールを毎時87gで得、塔頂よりメタノー
ル70重量%、ジメチルカーボネート30重量%の共沸物を
毎時120g得た。この時の塔頂温度は64℃、塔底温度は、
66℃であった。
This overhead distillate was passed through an intermediate tank to obtain Example 1
Was continuously charged to the 20th stage from the top of the Aldershaw distillation column made of glass, and the flow rate was controlled at a reflux ratio of 5 under normal pressure to make it steady. At this time, 87 g of pure methanol containing no dimethyl carbonate per hour was obtained from the bottom of the column, and 120 g of azeotrope containing 70% by weight of methanol and 30% by weight of dimethyl carbonate per hour was obtained from the top of the column. At this time, the tower top temperature was 64 ° C and the tower bottom temperature was
It was 66 ° C.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明の方法によるメタノールとジメチルカーボ
ネートの分離プロセスの好ましい実施態様を示す工程図
である。 1:粗反応液供給ライン 2:第1塔塔頂留出液供給ライン 3:第1塔の塔底 4:第2塔塔頂留出液供給ライン 5:第2塔の塔底
FIG. 1 is a process diagram showing a preferred embodiment of a process for separating methanol and dimethyl carbonate according to the method of the present invention. 1: Crude reaction liquid supply line 2: First tower top distillate supply line 3: First tower bottom 4: Second tower top distillate supply line 5: Second tower bottom

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】メタノールとジメチルカーボネートを含む
液からメタノールとジメチルカーボネートを分離する方
法に於いて、二つの蒸留塔を組み合わせて用い、第1塔
を第2塔より高い圧力で操作することを特徴とする分離
方法。
1. A method for separating methanol and dimethyl carbonate from a liquid containing methanol and dimethyl carbonate, wherein two distillation columns are used in combination and the first column is operated at a higher pressure than the second column. And the separation method.
JP1033445A 1989-02-13 1989-02-13 Method for separating dimethyl carbonate Expired - Fee Related JP2557099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033445A JP2557099B2 (en) 1989-02-13 1989-02-13 Method for separating dimethyl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033445A JP2557099B2 (en) 1989-02-13 1989-02-13 Method for separating dimethyl carbonate

Publications (2)

Publication Number Publication Date
JPH02212456A JPH02212456A (en) 1990-08-23
JP2557099B2 true JP2557099B2 (en) 1996-11-27

Family

ID=12386734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033445A Expired - Fee Related JP2557099B2 (en) 1989-02-13 1989-02-13 Method for separating dimethyl carbonate

Country Status (1)

Country Link
JP (1) JP2557099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772946B2 (en) 2005-07-20 2010-08-10 Halla Climate Control Corp. Electric power connection part of electromagnetic clutch field coil assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342713A1 (en) 1993-12-15 1995-06-22 Bayer Ag Process for the separation of methanol from a mixture of dimethyl carbonate and methanol
JP3881386B2 (en) * 1994-10-21 2007-02-14 多摩化学工業株式会社 Process for producing dialkyl carbonate
DE10312917A1 (en) * 2003-03-22 2004-09-30 Oxeno Olefinchemie Gmbh Process for removing 2-butanol from tert-butanol / water mixtures
TWI378087B (en) 2006-02-22 2012-12-01 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
TW200740731A (en) 2006-02-22 2007-11-01 Shell Int Research Process for the preparation of alkanediol
TWI383976B (en) 2006-02-22 2013-02-01 Shell Int Research Process for the production of dialkyl carbonate and alkanediol
TWI382979B (en) 2006-02-22 2013-01-21 Shell Int Research Process for the production of alkylene carbonate and use of alkylene carbonate thus produced in the manufacture of an alkane diol and a dialkyl carbonate
CN105399629A (en) * 2015-11-27 2016-03-16 铜陵金泰化工股份有限公司 Refining method and device for high-purity DMC (dimethyl carbonate)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108019A (en) * 1975-02-21 1976-09-25 Anic Spa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108019A (en) * 1975-02-21 1976-09-25 Anic Spa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772946B2 (en) 2005-07-20 2010-08-10 Halla Climate Control Corp. Electric power connection part of electromagnetic clutch field coil assembly

Also Published As

Publication number Publication date
JPH02212456A (en) 1990-08-23

Similar Documents

Publication Publication Date Title
EP1125915B1 (en) Process for simultaneous production of ethylene glycol and carbonate ester
EP0601571B1 (en) Method for purifying 1,4-butanediol, by hydrogenation and distillation
JPS59206002A (en) Method and apparatus for distillative separation of product mixture into many fractions simultaneously of chemical reaction by using distillation tower
EP0031205B1 (en) Carbonylation of ethylene or propylene
US4744869A (en) Process for purifying methanol
WO1995023781A1 (en) Process for the production of cyclohexyladipates and adipic acid
EP0665210B1 (en) Process for producing acetic anhydride alone or both of acetic anhydride and acetic acid
KR20080105088A (en) Process for the preparation of an alkanediol and a dialkyl carbonate
JP2557099B2 (en) Method for separating dimethyl carbonate
US5543546A (en) Process for preparing carbonate esters
KR20080104145A (en) Process for the preparation of an alkanediol and a dialkyl carbonate
UA54592C2 (en) A process for producing acetic acid
EP0501374B1 (en) Process for purifying dimethyl carbonate
EP1199299B1 (en) Process for producing benzyl alcohol
JP2854279B2 (en) Reactive distillation apparatus and reactive distillation method
US4644078A (en) Process for the coproduction of dialkyl carbonate and tertiary butanol
JP2003342236A (en) Method for producing dimethyl carbonate
JPH0572371B2 (en)
JPH07304713A (en) Production of aromatic carbonic acid ester
US4283579A (en) Process for producing diol
JP3744097B2 (en) Method for producing 1,4-butanediol
JP2557099C (en)
JP2733035B2 (en) Method for producing carbonate ester
JPS6115851A (en) Manufacture of 1,4-butandiol
US4251460A (en) Process for production of dimethylformamide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees