JPH1098098A - Method of manufacturing semiconductor device and semiconductor device - Google Patents

Method of manufacturing semiconductor device and semiconductor device

Info

Publication number
JPH1098098A
JPH1098098A JP25005096A JP25005096A JPH1098098A JP H1098098 A JPH1098098 A JP H1098098A JP 25005096 A JP25005096 A JP 25005096A JP 25005096 A JP25005096 A JP 25005096A JP H1098098 A JPH1098098 A JP H1098098A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
trench
oxide film
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25005096A
Other languages
Japanese (ja)
Inventor
Seigo Abe
征吾 安部
Koji Kimura
幸治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25005096A priority Critical patent/JPH1098098A/en
Publication of JPH1098098A publication Critical patent/JPH1098098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid as much as possible the occurrence of crystal defects caused by thermal stress strain near the interface between a substrate and a CVD oxide film, when in order to form an element isolation region of trench structure in a semiconductor substrate, performing of thermal process after the CVD oxide film is buried in the inside of trench of the substrate. SOLUTION: When forming an element isolation region in a semiconductor device, including at least one element on a main surface of a semiconductor substrate 10, a trench 15 of a specified depth for element isolation is formed on the main surface of the semiconductor substrate, and on a side wall surface and a bottom surface of the trench 15, impurity ions of element having a lattice constant smaller than substrate configuration element are implanted, for forming an impurity ion implantation layer 16. Then a CVD oxide film 17 is buried inside the trench. Then, a thermal process is performed such that the impurity ion implantation layer inside the trench is combined with the configuration element of the substrate, so as to form a combination layer. Thus thermal stress of the substrate and the CVD oxide film is relaxed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法およびそれにより製造された半導体装置に係り、特
にトレンチ構造の素子分離領域の形成方法およびそれに
より形成されたトレンチ構造の素子分離領域の構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device and a semiconductor device manufactured thereby, and more particularly to a method of forming an element isolation region having a trench structure and a method of forming an element isolation region having a trench structure formed thereby. Regarding the structure.

【0002】[0002]

【従来の技術】半導体装置における素子分離は、素子の
動作時に個々の素子が完全に独立に制御されるように素
子間の電気的な干渉を防止するために存在し、素子が二
次元平面に並べられている限り、素子のサイズが小さく
なるほど相対的に素子分離領域の面積は大きくなる。
2. Description of the Related Art Element isolation in a semiconductor device exists to prevent electrical interference between elements so that individual elements can be controlled completely independently during operation of the elements. As long as they are arranged, the area of the element isolation region relatively increases as the size of the element decreases.

【0003】従来、素子分離領域の形成方法としては、
LOCOS(Local Oxidation of Silicon)法によりフ
ィールド熱酸化膜を形成する方法とか、STI(Shallo
w Trench Isolation)法によりトレンチ(溝)構造の素
子分離領域を形成する方法が知られている。
Conventionally, as a method for forming an element isolation region,
For example, a method of forming a field thermal oxide film by a LOCOS (Local Oxidation of Silicon) method or an STI (Shallo
2. Description of the Related Art There is known a method of forming an element isolation region having a trench (groove) structure by a Trench Isolation method.

【0004】バイポーラ集積回路においては、素子分離
技術として、分離領域の縮小、寄生容量の減少が可能な
トレンチアイソレーションを採用している。このトレン
チアイソレーションは、半導体基板内に溝を形成し、こ
の溝内に絶縁膜を介して多結晶シリコン層を埋め込むこ
とにより素子分離を行うものであり、例えば特開昭63
−25947号公報に開示されている。
In a bipolar integrated circuit, trench isolation which can reduce an isolation region and a parasitic capacitance is adopted as an element isolation technique. In the trench isolation, a device is isolated by forming a groove in a semiconductor substrate and burying a polycrystalline silicon layer in the groove via an insulating film.
No. 25947.

【0005】これに対して、CMOS集積回路における
素子分離は、トレンチのような深い分離を必要としない
ので、通常は、選択酸化法の改良によるフィールド酸化
膜が主流であるが、トレンチアイソレーションを採用す
る傾向がある。
On the other hand, since element isolation in a CMOS integrated circuit does not require a deep isolation like a trench, a field oxide film obtained by improving a selective oxidation method is usually used. Tend to adopt.

【0006】特に、デザインルールがサブミクロンレベ
ルの半導体デバイスの素子分離を考慮した場合、フィー
ルド熱酸化膜はバーズビークと呼ばれる横方向の酸化が
生じ、露光パターンに対するパターン変換差が無視でき
なくなるので、トレンチ構造の素子分離領域の採用が検
討されている。
In particular, when the element design of a semiconductor device of a submicron level is considered in the design rule, the field thermal oxide film is oxidized in a lateral direction called a bird's beak, and a pattern conversion difference with respect to an exposure pattern cannot be ignored. The adoption of a device isolation region having a structure is being studied.

【0007】図3(a)乃至(d)は、CMOS集積回
路あるいはBiCMOS集積回路において、従来のトレ
ンチアイソレーションを採用した場合における素子分離
領域の形成方法の主要な工程での基板(半導体ウェハ)
の断面構造を示している。
FIGS. 3A to 3D show a substrate (semiconductor wafer) in a main step of a method for forming an element isolation region when a conventional trench isolation is employed in a CMOS integrated circuit or a BiCMOS integrated circuit.
2 shows the cross-sectional structure of the device.

【0008】まず、図3(a)に示すように、P型シリ
コン基板50の主表面を熱酸化して熱酸化膜51を形成
した後、LP−CVD(減圧気相成長)法により多結晶
シリコン膜52およびCVD酸化膜53を順次形成す
る。このCVD酸化膜53は、後の工程で基板をエッチ
ングする際のマスク材となる。
First, as shown in FIG. 3A, a main surface of a P-type silicon substrate 50 is thermally oxidized to form a thermal oxide film 51, and then polycrystalline by LP-CVD (low pressure vapor phase epitaxy). A silicon film 52 and a CVD oxide film 53 are sequentially formed. This CVD oxide film 53 becomes a mask material when etching the substrate in a later step.

【0009】次いで、上記CVD酸化膜53上にレジス
トを塗布し、露光・現像を行ってレジストパターン54
を形成し、このレジストパターンをマスクとしてRIE
(反応性イオンエッチング)を用いた異方性エッチング
により前記CVD酸化膜53、多結晶シリコン膜52、
熱酸化膜51を順次エッチングすることにより、溝を形
成すべき位置を開口して開口部54aを形成する。
Next, a resist is coated on the CVD oxide film 53, and is exposed and developed to form a resist pattern 54.
Is formed, and RIE is performed using this resist pattern as a mask.
The above-mentioned CVD oxide film 53, polycrystalline silicon film 52, anisotropic etching using (reactive ion etching).
By sequentially etching the thermal oxide film 51, an opening 54a is formed by opening a position where a groove is to be formed.

【0010】次に、前記レジストパターン54をアッシ
ングにより除去した後、図3(b)に示すように、前記
CVD酸化膜53をエッチングマスクとして、RIEを
用いた異方性エッチングにより半導体基板50の主表面
に所定の深さの素子分離用のトレンチ55を形成する。
Next, after the resist pattern 54 is removed by ashing, as shown in FIG. 3B, the semiconductor substrate 50 is anisotropically etched by RIE using the CVD oxide film 53 as an etching mask. A trench 55 for element isolation having a predetermined depth is formed on the main surface.

【0011】次に、図3(c)に示すように、前記トレ
ンチ55の内部に絶縁膜を埋め込むために、LP−CV
D法により前記トレンチ内部およびCVD酸化膜53上
全面にCVD酸化膜56を1.0μm堆積する。
Next, as shown in FIG. 3C, in order to bury an insulating film in the trench 55, an LP-CV
By a method D, a 1.0 μm CVD oxide film 56 is deposited on the inside of the trench and on the entire surface of the CVD oxide film 53.

【0012】なお、CVD酸化膜56は後工程での加熱
により体積の収縮を起こすので、予めこの時点で約90
0℃以上の温度で1時間程度の熱処理を施しておく。こ
の後、前記多結晶シリコン膜52の表面が露出するまで
CVD酸化膜56およびCVD酸化膜53を除去し、前
記多結晶シリコン膜52、熱酸化膜51および基板50
のトレンチ55の内部にCVD酸化膜56を残す(埋め
込む)ことにより、素子分離領域が形成される。
Since the volume of the CVD oxide film 56 shrinks due to heating in a later step, the CVD oxide film 56 is about 90% in advance at this time.
Heat treatment is performed at a temperature of 0 ° C. or more for about 1 hour. Thereafter, the CVD oxide film 56 and the CVD oxide film 53 are removed until the surface of the polycrystalline silicon film 52 is exposed, and the polycrystalline silicon film 52, the thermal oxide film 51 and the substrate 50 are removed.
The element isolation region is formed by leaving (embedding) the CVD oxide film 56 inside the trench 55 of FIG.

【0013】さらに、素子分離領域以外の基板表層部
(素子領域)に素子(例えばMOSトランジスタ)の不
純物領域(図示せず)を形成した後、素子を完成させ
る。しかし、前記したようにCVD酸化膜56を堆積し
た時点で熱処理を施す際、基板50とCVD酸化膜56
との熱応力の違いにより、両者の界面付近(特に基板5
0のトレンチ底面コーナー部の近傍)で熱ストレス歪み
による結晶欠陥58が発生し易くなり、素子分離領域の
耐圧が低下し、製造歩留りが低下する。
Further, after forming an impurity region (not shown) of a device (for example, a MOS transistor) in a surface layer portion (device region) other than the device isolation region, the device is completed. However, as described above, when heat treatment is performed at the time when the CVD oxide film 56 is deposited,
Due to the difference in thermal stress between the two, near the interface between them (especially substrate 5)
In the vicinity of the bottom corner of the trench (0), crystal defects 58 are likely to occur due to thermal stress distortion, the breakdown voltage of the element isolation region is reduced, and the manufacturing yield is reduced.

【0014】[0014]

【発明が解決しようとする課題】上記したように従来の
素子分離領域の形成方法は、半導体基板のトレンチ内部
にCVD酸化膜を埋め込んだ後に熱処理を施す際、基板
とCVD酸化膜との界面付近で熱ストレス歪みによる結
晶欠陥が発生し易くなるという問題があった。
As described above, the conventional method for forming an element isolation region involves a process of embedding a CVD oxide film in a trench of a semiconductor substrate and then performing a heat treatment in the vicinity of the interface between the substrate and the CVD oxide film. Therefore, there is a problem that crystal defects due to thermal stress distortion are easily generated.

【0015】本発明は上記の問題点を解決すべくなされ
たもので、半導体基板にトレンチ構造の素子分離領域を
形成するために基板のトレンチ内部にCVD酸化膜を埋
め込んだ後に熱処理を施す際、基板とCVD酸化膜との
界面付近での熱ストレス歪みによる結晶欠陥が発生し難
くなり、素子分離領域の耐圧低下を防止し、高精度の素
子分離領域を高い歩留りで製造し得る半導体装置の製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and when performing a heat treatment after embedding a CVD oxide film in a trench of a substrate to form a trench structure element isolation region in a semiconductor substrate, Manufacturing of a semiconductor device which makes it difficult to generate crystal defects due to thermal stress distortion near an interface between a substrate and a CVD oxide film, prevents a decrease in breakdown voltage of an element isolation region, and can produce a highly accurate element isolation region at a high yield. The aim is to provide a method.

【0016】[0016]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板の主表面上に少なくとも1つ以上
の素子を含む半導体装置における素子分離領域を形成す
る際、半導体基板の主表面に所定の深さの素子分離用の
トレンチを形成する工程と、前記トレンチの側壁面およ
び底面に前記半導体基板の構成元素の格子定数より小さ
い格子定数を有する元素の不純物イオンを注入する工程
と、前記トレンチの内部にCVD酸化膜を埋め込む工程
と、この後、熱処理を施して前記トレンチ内面の不純物
イオンを注入層を半導体基板の構成元素と結合させて結
合層を形成し、前記半導体基板と前記CVD酸化膜との
熱ストレスを緩和させる工程とを具備することを特徴と
する。
According to the method of manufacturing a semiconductor device of the present invention, when forming an element isolation region in a semiconductor device including at least one or more elements on a main surface of a semiconductor substrate, the method comprises the steps of: Forming a trench for element isolation having a predetermined depth, and implanting impurity ions of an element having a lattice constant smaller than the lattice constant of a constituent element of the semiconductor substrate into sidewalls and a bottom surface of the trench, A step of burying a CVD oxide film inside the trench, and thereafter, performing a heat treatment to combine the implanted layer with the impurity element on the inner surface of the trench and a constituent element of the semiconductor substrate to form a bonding layer; And a step of reducing thermal stress with the CVD oxide film.

【0017】また、本発明の半導体装置は、半導体基板
の主表面上に少なくとも1つ以上の素子を含む半導体装
置における素子分離領域であって、半導体基板の主表面
に所定の深さで形成された素子分離用のトレンチと、前
記トレンチの側壁面および底面に形成され、前記半導体
基板の構成元素の格子定数より小さい格子定数を有する
元素の不純物イオンと前記半導体基板の構成元素とが結
合されてなる結合層と、前記トレンチの内部に埋め込ま
れ、熱処理されたCVD酸化膜とを具備し、前記結合層
は前記半導体基板と前記CVD酸化膜との熱ストレスを
緩和させる熱ストレス緩和層であることを特徴とする。
Further, the semiconductor device of the present invention is an element isolation region in a semiconductor device including at least one element on a main surface of a semiconductor substrate, and is formed at a predetermined depth on the main surface of the semiconductor substrate. A trench for element isolation, formed on sidewalls and a bottom surface of the trench, and an impurity ion of an element having a lattice constant smaller than a lattice constant of a constituent element of the semiconductor substrate and a constituent element of the semiconductor substrate are combined. And a CVD oxide film embedded in the trench and subjected to a heat treatment, wherein the bonding layer is a thermal stress relieving layer for relieving thermal stress between the semiconductor substrate and the CVD oxide film. It is characterized by.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1(a)乃至(d)およ
び図2(a)乃至(c)は、本発明の半導体装置の製造
方法の第1の実施の形態に係る素子分離領域の形成方法
の主要な工程での半導体基板の断面構造を示している。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIGS. 1A to 1D and FIGS. 2A to 2C illustrate main steps of a method for forming an element isolation region according to a first embodiment of a method for manufacturing a semiconductor device of the present invention. 2 shows a cross-sectional structure of a semiconductor substrate.

【0019】まず、図1(a)に示すように、半導体基
板10上に第1の絶縁膜11、多結晶半導体膜12、L
P−CVD法による第2の絶縁膜13を順次形成する。
この場合、第1の絶縁膜11は例えば厚さが50nmの
熱酸化膜であり、多結晶半導体膜12は例えばLP−C
VD法により形成された厚さが400nmの多結晶シリ
コン膜であり、第2の絶縁膜13は例えばLP−CVD
法により形成された厚さが400nmのCVD酸化膜で
ある。
First, as shown in FIG. 1A, a first insulating film 11, a polycrystalline semiconductor film 12,
A second insulating film 13 is sequentially formed by a P-CVD method.
In this case, the first insulating film 11 is, for example, a thermal oxide film having a thickness of 50 nm, and the polycrystalline semiconductor film 12 is, for example, LP-C
The second insulating film 13 is a polycrystalline silicon film having a thickness of 400 nm formed by the VD method, for example, LP-CVD.
This is a CVD oxide film having a thickness of 400 nm formed by the method.

【0020】この後、上記CVD酸化膜13上に例えば
厚さが1.5μmのレジスト膜を塗布し、所望部分の露
光、現像を行ってパターニングし、レジストパターン1
4を形成する。
Thereafter, a resist film having a thickness of, for example, 1.5 μm is applied on the CVD oxide film 13, and a desired portion is exposed and developed to be patterned.
4 is formed.

【0021】次に、図1(b)に示すように、前記レジ
ストパターン14をマスクとしてRIEを用いた異方性
エッチングにより前記CVD酸化膜13、多結晶シリコ
ン膜12および熱酸化膜11を順次エッチングすること
により、開口部14aを形成する。
Next, as shown in FIG. 1B, the CVD oxide film 13, the polycrystalline silicon film 12, and the thermal oxide film 11 are sequentially formed by anisotropic etching using RIE using the resist pattern 14 as a mask. The opening 14a is formed by etching.

【0022】次に、前記レジストパターン14をアッシ
ングにより除去した後、図1(c)に示すように、前記
CVD酸化膜13をエッチングマスクとして、RIEを
用いた異方性エッチングにより半導体基板10の主表面
に所定の深さ(本例では、700nm)の素子分離用の
トレンチ15を形成する。
Next, after the resist pattern 14 is removed by ashing, as shown in FIG. 1C, the semiconductor substrate 10 is anisotropically etched by RIE using the CVD oxide film 13 as an etching mask. A trench 15 for element isolation having a predetermined depth (700 nm in this example) is formed on the main surface.

【0023】次に、図1(d)に示すように、前記トレ
ンチ15の内面に半導体基板10の構成元素の格子定数
より小さい格子定数を有する元素の不純物イオンを所定
の深さまで注入してドーピング層16を形成する。
Next, as shown in FIG. 1D, impurity ions of an element having a lattice constant smaller than the lattice constant of the constituent elements of the semiconductor substrate 10 are implanted into the inner surface of the trench 15 to a predetermined depth to dope. A layer 16 is formed.

【0024】本例では、半導体基板10としてシリコン
(Si)基板を用いており、不純物イオンとして炭素
(C)イオン、ボロン(B)イオンのいずれかを用いる
ことにより、Siと結合した場合にSi結晶の格子定数
よりも小さくなる。
In this embodiment, a silicon (Si) substrate is used as the semiconductor substrate 10, and either carbon (C) ion or boron (B) ion is used as the impurity ion, so that when it is bonded to Si, It becomes smaller than the lattice constant of the crystal.

【0025】また、上記イオン注入は、二次欠陥が生じ
ない条件で行う必要があり、炭素イオンを注入する場合
には、加速電圧を30Kev、ドーズ量を10×1014
/cm2 とする。
The above-described ion implantation must be performed under conditions that do not cause secondary defects. When carbon ions are implanted, the acceleration voltage is set to 30 Kev and the dose is set to 10 × 10 14.
/ Cm 2 .

【0026】また、上記イオン注入に際して、半導体基
板10を水平面内で回転させながら半導体基板10の主
表面に対して所定の傾斜角を持つ方向から不純物イオン
を注入することにより、トレンチ15の側壁面および底
面にほぼ均等にイオンを注入することができる。
At the time of the above-described ion implantation, impurity ions are implanted from a direction having a predetermined inclination angle with respect to the main surface of the semiconductor substrate 10 while rotating the semiconductor substrate 10 in a horizontal plane. In addition, ions can be almost uniformly implanted into the bottom surface.

【0027】次に、図2(a)に示すように、前記トレ
ンチ15の内部に絶縁膜を埋め込むために、LP−CV
D法により前記トレンチ内部を含むCVD酸化膜13上
全面にCVD酸化膜17を1.0μm堆積する。
Next, as shown in FIG. 2A, in order to bury an insulating film in the trench 15, an LP-CV
A 1.0 μm CVD oxide film 17 is deposited on the entire surface of the CVD oxide film 13 including the inside of the trench by the method D.

【0028】次に、熱処理を施して前記トレンチ内面の
ドーピング層16(本例では、炭素注入層)の不純物イ
オンをCVD酸化膜17の内部に拡散させ、基板10と
CVD酸化膜17との結晶歪みを緩和させる。
Next, a heat treatment is performed to diffuse the impurity ions of the doping layer 16 (in this example, the carbon implanted layer) on the inner surface of the trench into the inside of the CVD oxide film 17, and the crystal of the substrate 10 and the CVD oxide film 17 is formed. Relieve distortion.

【0029】これと同時に、図2(b)に示すように、
前記基板10とCVD酸化膜17との界面において不純
物イオンが基板の構成元素(本例ではシリコン)と結合
して結合層(本例では、Si−C結合を有するSi−C
結合層)16aが形成される。
At the same time, as shown in FIG.
At the interface between the substrate 10 and the CVD oxide film 17, the impurity ions are combined with the constituent elements of the substrate (in this example, silicon) to form a bonding layer (in this example, Si—C having a Si—C bond).
A bonding layer 16a is formed.

【0030】上記Si−C結合層16aの格子定数は、
Si結晶の格子定数より小さいので、基板10とCVD
酸化膜17との熱ストレス差を緩和させる効果を持つ熱
ストレス緩和層として作用する。
The lattice constant of the Si—C bonding layer 16a is as follows:
Since it is smaller than the lattice constant of the Si crystal,
It functions as a thermal stress relieving layer having an effect of relieving a thermal stress difference from oxide film 17.

【0031】なお、前記CVD酸化膜17は後工程での
加熱により体積収縮を起こすので、予め約900℃以上
の温度で1時間程度の熱処理を施して体積を収縮させる
ことが望ましい。この場合、CVD酸化膜17の体積収
縮のための熱処理と前記熱ストレス緩和のための熱処理
とを同時に行ってもよい。
Since the CVD oxide film 17 undergoes volume shrinkage due to heating in a later step, it is preferable to previously perform a heat treatment at a temperature of about 900 ° C. or more for about 1 hour to shrink the volume. In this case, the heat treatment for shrinking the volume of the CVD oxide film 17 and the heat treatment for relaxing the thermal stress may be performed simultaneously.

【0032】また、前記Si−C結合層16aは、後工
程でのRIE時に不純物を吸収する効果を持つので、ゲ
ッタリング層としても作用する。この後、図2(c)に
示すように、CMP(Chemical Mechanical Polising;
化学機械的研磨)などにより、前記多結晶シリコン膜1
2の表面が露出するまでCVD酸化膜17およびCVD
酸化膜13を除去し、前記多結晶シリコン膜12、熱酸
化膜11および基板10のトレンチ内部にCVD酸化膜
17を残す(埋め込む)ことにより、基板10に素子分
離領域が形成される。
Further, the Si—C bonding layer 16a has an effect of absorbing impurities at the time of RIE in a later step, and thus also functions as a gettering layer. Thereafter, as shown in FIG. 2C, CMP (Chemical Mechanical Polising;
The polycrystalline silicon film 1 by chemical mechanical polishing or the like.
Oxide film 17 and CVD until the surface of
By removing the oxide film 13 and leaving (burying) the CVD oxide film 17 inside the trenches of the polycrystalline silicon film 12, the thermal oxide film 11, and the substrate 10, an element isolation region is formed in the substrate 10.

【0033】さらに、素子分離領域以外の基板表層部
(素子領域)に素子(例えばMOSトランジスタ)の不
純物領域(図示せず)を形成した後、素子を完成させ
る。上記したように製造された半導体装置は、半導体基
板の主表面上に少なくとも1つ以上の素子を含む半導体
装置における素子分離領域として、半導体基板の主表面
に所定の深さで形成された素子分離用のトレンチと、前
記トレンチの側壁面および底面に形成され、前記半導体
基板の構成元素の格子定数より小さい格子定数を有する
元素(本例では、炭素)の不純物イオンと前記半導体基
板の構成元素とが結合されてなる結合層(本例では、S
i−C結合層)と、前記トレンチの内部に埋め込まれ、
熱処理されたCVD酸化膜とを具備し、前記結合層は前
記半導体基板と前記CVD酸化膜との熱ストレスを緩和
させる熱ストレス緩和層として作用する。
Further, after forming an impurity region (not shown) of a device (for example, a MOS transistor) in a surface layer portion (device region) other than the device isolation region, the device is completed. The semiconductor device manufactured as described above has an element isolation region formed at a predetermined depth on the main surface of the semiconductor substrate as an element isolation region in the semiconductor device including at least one element on the main surface of the semiconductor substrate. And impurity ions of an element (in this example, carbon) having a lattice constant smaller than the lattice constant of a constituent element of the semiconductor substrate, formed on sidewalls and a bottom surface of the trench, and a constituent element of the semiconductor substrate. Are bonded to each other (in this example, S
an iC bonding layer) and embedded in the trench,
A thermally treated CVD oxide film, wherein the bonding layer acts as a thermal stress relieving layer for relieving thermal stress between the semiconductor substrate and the CVD oxide film.

【0034】なお、不純物イオンとしてはボロンイオン
を用いた場合には、前記結合層16aはSi−B結合層
になる。上記したようなトレンチ構造の素子分離領域の
製造方法によれば、基板のトレンチ内部にCVD酸化膜
を埋め込んだ後に熱処理を施す際、トレンチ内部の基板
10とCVD酸化膜17との熱応力の違いに起因する両
者の界面付近(特に基板のトレンチ底面コーナー部の近
傍)での熱ストレス歪みによる結晶欠陥が発生し難くな
るので、素子分離領域の耐圧低下を防止してリーク電流
を低減でき、高精度の素子分離領域を高い歩留りで製造
することができる。
When boron ions are used as impurity ions, the bonding layer 16a becomes a Si-B bonding layer. According to the method for manufacturing the element isolation region having the trench structure as described above, when heat treatment is performed after the CVD oxide film is embedded in the trench of the substrate, the difference in thermal stress between the substrate 10 and the CVD oxide film 17 in the trench. Crystal defects due to thermal stress distortion in the vicinity of the interface between the two (particularly in the vicinity of the bottom corner of the trench of the substrate) due to the above-mentioned problems are less likely to occur. An element isolation region with high accuracy can be manufactured with a high yield.

【0035】なお、前記したように基板10の主表面に
素子分離用のトレンチ15を形成する際、テーパRIE
を用いることによりテーパ状の側壁面を有するトレンチ
を形成してもよい。
When forming the trench 15 for element isolation on the main surface of the substrate 10 as described above,
May be used to form a trench having a tapered side wall surface.

【0036】[0036]

【発明の効果】上述したように本発明の半導体装置の製
造方法によれば、半導体基板にトレンチ構造の素子分離
領域を形成するために基板のトレンチ内部にCVD酸化
膜を埋め込んだ後に熱処理を施す際、基板とCVD酸化
膜との界面付近での熱ストレス歪みによる結晶欠陥が発
生し難くなり、素子分離領域の耐圧低下を防止し、高精
度の素子分離領域を高い歩留りで製造することができ
る。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a heat treatment is performed after a CVD oxide film is buried in a trench of a substrate in order to form an element isolation region having a trench structure in a semiconductor substrate. In this case, crystal defects due to thermal stress distortion near the interface between the substrate and the CVD oxide film are less likely to occur, preventing a decrease in breakdown voltage of the element isolation region, and manufacturing a highly accurate element isolation region at a high yield. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法の第1の実施の
形態に係る素子分離領域の形成方法の主要な工程での半
導体基板の構造を示す断面図。
FIG. 1 is a sectional view showing a structure of a semiconductor substrate in a main step of a method for forming an element isolation region according to a first embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】図1の工程に続く工程における半導体基板の構
造を示す断面図。
FIG. 2 is a sectional view showing the structure of the semiconductor substrate in a step following the step of FIG. 1;

【図3】従来の半導体装置の素子分離領域の形成方法の
主要な工程における半導体基板の構造を示す断面図。
FIG. 3 is a cross-sectional view showing a structure of a semiconductor substrate in a main step of a conventional method for forming an element isolation region of a semiconductor device.

【符号の説明】[Explanation of symbols]

10…シリコン基板、 11…第1の絶縁膜(熱酸化膜)、 12…多結晶シリコン膜、 13…CVD酸化膜、 14…レジスト、 15…トレンチ、 16…ドーピング層、 16a…Si−C結合層、 17…CVD酸化膜。 Reference Signs List 10 silicon substrate, 11 first insulating film (thermal oxide film), 12 polycrystalline silicon film, 13 CVD oxide film, 14 resist, 15 trench, 16 doping layer, 16a Si-C bond Layer 17: CVD oxide film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の主表面上に少なくとも1つ
以上の素子を含む半導体装置における素子分離領域を形
成する際、 半導体基板の主表面に所定の深さの素子分離用のトレン
チを形成する工程と、 前記トレンチの側壁面および底面に前記半導体基板の構
成元素の格子定数より小さい格子定数を有する元素の不
純物イオンを注入する工程と、 前記トレンチの内部にCVD酸化膜を埋め込む工程と、 この後、熱処理を施して前記トレンチ内面の不純物イオ
ン注入層を半導体基板の構成元素と結合させて結合層を
形成し、前記半導体基板と前記CVD酸化膜との熱スト
レスを緩和させる工程とを具備することを特徴とする半
導体装置の製造方法。
When forming an element isolation region in a semiconductor device including at least one or more elements on a main surface of a semiconductor substrate, a trench for element isolation having a predetermined depth is formed in the main surface of the semiconductor substrate. Implanting an impurity ion of an element having a lattice constant smaller than a lattice constant of a constituent element of the semiconductor substrate into a side wall surface and a bottom surface of the trench; and embedding a CVD oxide film inside the trench. Thereafter, a heat treatment is performed to combine the impurity ion-implanted layer on the inner surface of the trench with a constituent element of the semiconductor substrate to form a bonding layer, thereby reducing a thermal stress between the semiconductor substrate and the CVD oxide film. A method for manufacturing a semiconductor device, comprising:
【請求項2】 前記トレンチを形成する工程は、 前記半導体基板上に第1の絶縁膜、多結晶シリコン膜、
CVD法による第2の絶縁膜を順次形成する工程と、上
記各膜の所望部分を開口する工程と、前記第2の絶縁膜
をエッチングマスクとして前記半導体基板に対して異方
性エッチングを行う工程とを具備することを特徴とする
請求項1記載の半導体装置の製造方法。
2. The step of forming the trench includes: forming a first insulating film, a polycrystalline silicon film on the semiconductor substrate,
A step of sequentially forming a second insulating film by a CVD method, a step of opening a desired portion of each of the films, and a step of performing anisotropic etching on the semiconductor substrate using the second insulating film as an etching mask 2. The method for manufacturing a semiconductor device according to claim 1, comprising:
【請求項3】 前記半導体基板はシリコン基板であり、
前記不純物イオンは、炭素イオン、ボロンイオンのいず
れかであることを特徴とする請求項1または2記載の半
導体装置の製造方法。
3. The semiconductor substrate is a silicon substrate,
3. The method according to claim 1, wherein the impurity ions are one of carbon ions and boron ions.
【請求項4】 前記不純物イオンを注入する工程は、前
記半導体基板を水平面内で回転させながら前記半導体基
板の主表面に対して所定の傾斜角を持つ方向から不純物
イオンを注入することを特徴とする請求項1乃至3のい
ずれか1つに記載の半導体装置の製造方法。
4. The step of implanting impurity ions, wherein the impurity ions are implanted from a direction having a predetermined inclination angle with respect to a main surface of the semiconductor substrate while rotating the semiconductor substrate in a horizontal plane. The method of manufacturing a semiconductor device according to claim 1.
【請求項5】 前記熱処理を施して結合層を形成する工
程は、前記トレンチの内部に埋め込まれたCVD酸化膜
の体積を収縮する工程を兼ねていることを特徴とする請
求項1乃至4のいずれか1つに記載の半導体装置の製造
方法。
5. The method according to claim 1, wherein the step of forming the bonding layer by performing the heat treatment also serves to reduce the volume of the CVD oxide film embedded in the trench. A method for manufacturing the semiconductor device according to any one of the above.
【請求項6】 半導体基板の主表面上に少なくとも1つ
以上の素子を含む半導体装置における素子分離領域であ
って、 半導体基板の主表面に所定の深さで形成された素子分離
用のトレンチと、 前記トレンチの側壁面および底面に形成され、前記半導
体基板の構成元素の格子定数より小さい格子定数を有す
る元素の不純物イオンと前記半導体基板の構成元素とが
結合されてなる結合層と、 前記トレンチの内部に埋め込まれ、熱処理されたCVD
酸化膜とを具備し、 前記結合層は前記半導体基板と前記CVD酸化膜との熱
ストレスを緩和させる熱ストレス緩和層であることを特
徴とする半導体装置。
6. An element isolation region in a semiconductor device including at least one or more elements on a main surface of a semiconductor substrate, comprising: an element isolation trench formed at a predetermined depth on the main surface of the semiconductor substrate; A coupling layer formed on a side wall surface and a bottom surface of the trench, wherein an impurity ion of an element having a lattice constant smaller than a lattice constant of a constituent element of the semiconductor substrate is combined with a constituent element of the semiconductor substrate; Embedded and heat treated CVD
A semiconductor device, comprising: an oxide film; wherein the bonding layer is a thermal stress relieving layer that relieves thermal stress between the semiconductor substrate and the CVD oxide film.
【請求項7】 前記半導体基板はシリコン(Si)基板
であり、前記不純物イオンは炭素(C)イオン、ボロン
(B)イオンのいずれかであり、前記結合層はSi−C
結合層、Si−B結合層のいずれかであることを特徴と
する請求項6記載の半導体装置。
7. The semiconductor substrate is a silicon (Si) substrate, the impurity ions are one of carbon (C) ions and boron (B) ions, and the bonding layer is Si—C
7. The semiconductor device according to claim 6, wherein the semiconductor device is one of a bonding layer and a Si-B bonding layer.
JP25005096A 1996-09-20 1996-09-20 Method of manufacturing semiconductor device and semiconductor device Pending JPH1098098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25005096A JPH1098098A (en) 1996-09-20 1996-09-20 Method of manufacturing semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25005096A JPH1098098A (en) 1996-09-20 1996-09-20 Method of manufacturing semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
JPH1098098A true JPH1098098A (en) 1998-04-14

Family

ID=17202068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25005096A Pending JPH1098098A (en) 1996-09-20 1996-09-20 Method of manufacturing semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JPH1098098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294776B1 (en) * 1998-03-24 2001-07-12 마찌다 가쯔히꼬 Method of forming a device isolation region
KR100308198B1 (en) * 1999-09-14 2001-11-07 윤종용 Method of device isolation for soi integrated circuits
KR100548512B1 (en) * 2002-10-30 2006-02-02 매그나칩 반도체 유한회사 Method for fabricating semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294776B1 (en) * 1998-03-24 2001-07-12 마찌다 가쯔히꼬 Method of forming a device isolation region
KR100308198B1 (en) * 1999-09-14 2001-11-07 윤종용 Method of device isolation for soi integrated circuits
KR100548512B1 (en) * 2002-10-30 2006-02-02 매그나칩 반도체 유한회사 Method for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
JPH0513566A (en) Manufacture of semiconductor device
EP0782185B1 (en) Process of fabricating semiconductor device having isolating oxide rising out of groove
US5106777A (en) Trench isolation process with reduced topography
JPH10321716A (en) Semiconductor device and manufacture therefor
US5208181A (en) Locos isolation scheme for small geometry or high voltage circuit
EP0540262A2 (en) Trench isolation region
JPH06232253A (en) Element-isolation method of semiconductor device
US20060038261A1 (en) Shallow trench isolation and fabricating method thereof
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPH07106412A (en) Semiconductor device and fabrication thereof
JPS59208851A (en) Semiconductor device and manufacture thereof
JP3611226B2 (en) Semiconductor device and manufacturing method thereof
US5739575A (en) Dielectrically isolated substrate and method for manufacturing the same
JPH1098098A (en) Method of manufacturing semiconductor device and semiconductor device
US6211002B1 (en) CMOS process for forming planarized twin wells
US5763316A (en) Substrate isolation process to minimize junction leakage
JPH07161728A (en) Semiconductor device and its manufacture
JPS60241261A (en) Semiconductor device and manufacture thereof
JP3360970B2 (en) Method for manufacturing semiconductor device
US20080160707A1 (en) Method for fabricating sesmiconductor device
JPH04279045A (en) Field oxide film formation
JPH0448647A (en) Manufacture of semiconductor device
JP2783200B2 (en) Method for manufacturing semiconductor device
JP3711697B2 (en) Manufacturing method of semiconductor device
JP2500427B2 (en) Method for manufacturing bipolar semiconductor device