JPH1093147A - Thermo-element material and its manufacture - Google Patents

Thermo-element material and its manufacture

Info

Publication number
JPH1093147A
JPH1093147A JP8269459A JP26945996A JPH1093147A JP H1093147 A JPH1093147 A JP H1093147A JP 8269459 A JP8269459 A JP 8269459A JP 26945996 A JP26945996 A JP 26945996A JP H1093147 A JPH1093147 A JP H1093147A
Authority
JP
Japan
Prior art keywords
oxygen
metal
powder
atmosphere
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8269459A
Other languages
Japanese (ja)
Inventor
Hideki Satake
秀機 佐武
Isao Endo
功 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8269459A priority Critical patent/JPH1093147A/en
Publication of JPH1093147A publication Critical patent/JPH1093147A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable preliminary formation and pressure sintering of powder under air atmosphere by making oxygen in air which entered inside a preliminary molded item to react selectively with addition metal having large affinity with oxygen and forming oxide of addition metal in a formation process of a preliminary molded item. SOLUTION: Raw powder of a single metal, constituting a thermo-element material and powder of a metal whose affinity with oxygen is larger than any other raw metal are mixed in an oxygen-free atmosphere. Then, mixed powder is put in a die in the oxygen-free atmosphere or in air atmosphere. A die charged with mixed powder is set in a press machine, pressurized under air atmosphere of a room temperature, and mixed powder is formed into a preliminary molded item. Then, a preliminary molded item is sintered under air atmosphere, and a thermoelectric material molded item is formed. Oxygen entering inside a preliminary molded item reacts with the addition metal and is removed. Thereafter, an oxide film formed in a surface is removed by grinding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電素子材料及び
その製造方法に関する。
The present invention relates to a thermoelectric element material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】例えばBiとTeを含むBi−Te系熱
電素子は、室温から300℃の低温域ですぐれた特性を
有しており、電子部品冷却用、理化学機器恒温恒湿装
置、低温廃熱利用発電等の種々用途に使用されている。
2. Description of the Related Art Bi-Te-based thermoelectric elements containing Bi and Te, for example, have excellent characteristics in the low temperature range from room temperature to 300 ° C. It is used for various applications such as heat utilization power generation.

【0003】この熱電材料は、金属原料を混合溶解した
後徐冷し結晶化させたインゴットの状態では、結晶c軸
と直角方向に割れ易く、歩留りが悪い問題がある。この
ため、粉末冶金の手法を導入して、インゴットを一旦粉
砕して原料粉末とし、ホットプレス装置のプレス金型に
入れて昇温し、同時に加圧して焼結することにより、所
定強度を具備した熱電材料成形体に形成する方法が知ら
れている。
[0003] In the state of an ingot obtained by mixing and melting a metal raw material and then gradually cooling and crystallizing the thermoelectric material, the thermoelectric material is liable to crack in a direction perpendicular to the crystal c-axis and has a problem of poor yield. For this reason, the method of powder metallurgy is introduced, the ingot is once crushed into a raw material powder, put into a press die of a hot press device, heated, and simultaneously pressed and sintered to have a predetermined strength. A method for forming a thermoelectric material molded body is known.

【0004】[0004]

【発明が解決しようとする課題】しかし前記方法におい
て、予備成形体の形成を大気雰囲気中で行なうと、予備
成形体は、表面が酸化され、内部には酸素が侵入する。
予備成形体内部に侵入した酸素は極く微量であり、B
i、Te等の原料金属は酸素との親和力が弱いことか
ら、予備成形体内に封じ込められる。n型素子の場合、
酸素は、ドーパントとして機能するため、得られた熱電
素子材料のキャリア濃度が必要以上に高くなる結果、電
気抵抗が小さくなりすぎて半導体として不適当なものに
なってしまう。一方、p型素子においてはこの逆で、酸
素はキャリア濃度を低下させる原因となる。
However, in the above method, when the preformed body is formed in the atmosphere, the surface of the preformed body is oxidized, and oxygen enters the inside.
The amount of oxygen that has penetrated into the inside of the preform is extremely small.
Raw metals such as i and Te have a weak affinity for oxygen and are therefore enclosed in the preform. For an n-type element,
Oxygen functions as a dopant, so that the carrier concentration of the obtained thermoelectric element material becomes unnecessarily high. As a result, the electric resistance becomes too small, and the semiconductor becomes unsuitable. On the other hand, in a p-type device, the opposite is the case, and oxygen causes a decrease in carrier concentration.

【0005】粉末の予備成形体形成及びホットプレスに
よる予備成形体の加圧焼結を、真空中、希ガス又は窒素
ガス等の無酸素雰囲気中で実施すれば、酸素によるキャ
リア濃度上昇又は減少の問題は解消されるが、熱電素子
材料を量産する場合、プレス装置全体を無酸素雰囲気に
するために大掛かりな設備を必要とし、作業効率も悪
い。このため、安価に量産できる製造方法が望まれてい
る。
If the formation of the powder preform and the pressure sintering of the preform by hot pressing are performed in an oxygen-free atmosphere such as a rare gas or a nitrogen gas, the carrier concentration can be increased or decreased by oxygen. Although the problem can be solved, when mass-producing the thermoelectric element material, large-scale equipment is required to make the entire press apparatus an oxygen-free atmosphere, and the working efficiency is poor. Therefore, a manufacturing method that can be mass-produced at low cost is desired.

【0006】本発明の目的は、粉末の予備成形体形成と
予備成形体の加圧焼結を大気雰囲気下で行なっても、キ
ャリア濃度が最適な領域に調節された熱電素子材料及び
その製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoelectric element material in which the carrier concentration is adjusted to an optimum range even when the preforming of the powder and the pressure sintering of the preforming are performed in the atmosphere, and a method for producing the same. It is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる熱電素子材料の製造方法では、熱電
素子を構成する金属の原料粉末に、原料金属のどの金属
よりも酸素との親和力の大きい金属の粉末を添加し、こ
れら粉末を無酸素雰囲気下で混合し、混合された粉末を
大気雰囲気下で予備成形体に形成し、該予備成形体を大
気雰囲気下で加圧焼結して緻密な成形体とするものであ
って、予備成形体の形成工程で、予備成形体の内部に侵
入した大気中の酸素は、酸素との親和力の大きい添加金
属と選択的に反応し、前記添加金属の酸化物となるよう
にしたものである。
In order to achieve the above object, in the method for producing a thermoelectric element material according to the present invention, the raw material powder of the metal constituting the thermoelectric element is mixed with oxygen more than any of the raw metal. A powder of a metal having a high affinity is added, and these powders are mixed in an oxygen-free atmosphere. The mixed powder is formed into a preformed body in an air atmosphere, and the preformed body is pressure-sintered in an air atmosphere. In the step of forming a preformed body, oxygen in the air that has entered the inside of the preformed body selectively reacts with an additional metal having a high affinity for oxygen, This is to be an oxide of the additive metal.

【0008】また、本発明にかかる熱電素子材料は、熱
電素子を構成する金属の原料粉末に、原料金属のどの金
属よりも酸素との親和力の大きい金属粉末を添加して混
合し、得られた混合粉末を焼結して得られる熱電素子材
料であって、原料金属の組織中に、酸素との親和力の大
きい添加金属の酸化物を略均一に分散させたものであ
る。
Further, the thermoelectric element material according to the present invention is obtained by adding a metal powder having a higher affinity for oxygen than any metal of the raw metal to a raw material powder of a metal constituting the thermoelectric element and mixing the resultant. A thermoelectric element material obtained by sintering a mixed powder, in which an oxide of an additional metal having a high affinity for oxygen is substantially uniformly dispersed in a structure of a raw metal.

【0009】[0009]

【作用】予備成形体の形成前の段階で、空気中の酸素
は、原料金属と添加金属の混合粉末と接触し、粉体の間
にも侵入する。このため、予備成形体が形成されたと
き、その内部に微量の酸素が侵入しているが、この酸素
は、酸素と親和力の大きい添加金属と選択的に反応して
添加金属の酸化物を生成する。添加金属の含有量が適正
であれば、予備成形体内部に侵入した酸素は、略全部が
添加金属と反応して酸化物の形態に変化し、キャリア濃
度を上昇させる酸素をなくすことができる。また、予備
成形体は、表面に酸化被膜が形成され、この酸化被膜が
空気に対するバリヤとして作用するため、予備成形体の
形成後は大気中の酸素の予備成形体内部への侵入は防止
される。その後の加圧焼結工程において、原料金属は緻
密な成形体に形成されると共に、予備成形体内部の酸化
物は粒状化する。これにより、原料金属の組織中に粒状
酸化物が略均一に分散した熱電素子材料が得られる。な
お、粒状の酸化物は熱電性能に対して悪影響を及ぼすも
のでなく、また、成形体の最外表面に生じた酸化被膜は
軽微であるため、最終的に、機械加工により簡単に取り
除くことができる。
In the stage before the formation of the preform, oxygen in the air comes into contact with the mixed powder of the raw material metal and the added metal, and penetrates between the powders. For this reason, when the pre-formed body is formed, a small amount of oxygen has penetrated into the pre-formed body, and this oxygen selectively reacts with the added metal having a high affinity for oxygen to form an oxide of the added metal. I do. If the content of the additional metal is appropriate, almost all of the oxygen that has entered the inside of the preform reacts with the additional metal and changes into an oxide form, thereby eliminating the oxygen that increases the carrier concentration. In addition, since the oxide film is formed on the surface of the preform and the oxide film acts as a barrier against air, after the preform is formed, oxygen in the atmosphere is prevented from entering the inside of the preform. . In the subsequent pressure sintering step, the raw material metal is formed into a dense compact, and the oxide inside the preform is granulated. As a result, a thermoelectric element material in which the particulate oxide is substantially uniformly dispersed in the structure of the raw metal can be obtained. In addition, the particulate oxide does not adversely affect the thermoelectric performance, and the oxide film formed on the outermost surface of the molded product is slight, so that it can be finally easily removed by machining. it can.

【0010】[0010]

【発明の実施の形態】熱電素子材料を構成する単体金属
の原料粉末と、どの原料金属よりも酸素との親和力が大
きい金属の粉末を準備する。熱電素子材料として、例え
ば、Bi−Te、Bi−Te−Se等のBi−Te系熱
電素子材料を挙げることができる。熱電材料を構成する
一般的な金属よりも酸素との親和力の大きい元素とし
て、例えば、La、Ce、ミッシュメタル(La、Ce
などの混合物)、Pr、Nd、Al、Si、Mn等の親
和力の強い金属を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A raw material powder of a simple metal constituting a thermoelectric element material and a metal powder having a higher affinity for oxygen than any of the raw material metals are prepared. Examples of the thermoelectric element material include Bi-Te based thermoelectric element materials such as Bi-Te and Bi-Te-Se. As an element having a higher affinity for oxygen than a general metal constituting a thermoelectric material, for example, La, Ce, a misch metal (La, Ce)
And metals having a high affinity such as Pr, Nd, Al, Si, and Mn.

【0011】原料金属粉末をほぼ化学量論比通りに秤量
し、前記金属原料粉末に、原料金属のどの金属よりも酸
素との親和力の大きい金属の粉末を所定量添加し、これ
ら粉末を無酸素雰囲気中で混合する。ここで無酸素雰囲
気とは、真空中、希ガス(Arガス等)又は窒素ガスの如
き不活性雰囲気など、熱電素子材料の原料金属が酸化さ
れない雰囲気をいう。なお、その後の予備成形体の形成
工程において、粉末を空気中で取り扱った場合、粉末に
は約1000〜10000ppmの酸素が含まれることに
なるため、予め、試験を行なって粉末中に混入する酸素
量を把握した上で、これに反応させる添加金属の量を求
めておき、原料金属の粉末に添加するようにする。
The raw material metal powders are weighed substantially in stoichiometric ratio, and a predetermined amount of a metal powder having a higher affinity for oxygen than any of the raw material metals is added to the metal raw material powder. Mix in atmosphere. Here, the oxygen-free atmosphere refers to an atmosphere in which the raw material metal of the thermoelectric element material is not oxidized, such as a vacuum, an inert atmosphere such as a rare gas (Ar gas or the like) or a nitrogen gas. In the subsequent step of forming the preform, if the powder is handled in the air, the powder contains about 1000 to 10000 ppm of oxygen. After grasping the amount, the amount of the additional metal to be reacted with the amount is determined and added to the raw material metal powder.

【0012】原料金属の粉末の平均粒径が約100μm
以下のとき、不活性雰囲気中で単に混合すればよいが、
平均粒径が大きいときは、不活性雰囲気の高エネルギー
型ボールミル又は転動ボールミルの中で粉砕しながら混
合し、平均粒径約100μm以下の混合粉末を得る。
The average particle diameter of the raw metal powder is about 100 μm
In the following cases, it is sufficient to simply mix in an inert atmosphere,
When the average particle size is large, they are mixed while being pulverized in a high energy ball mill or a rolling ball mill in an inert atmosphere to obtain a mixed powder having an average particle size of about 100 μm or less.

【0013】次に、混合粉末を金型の中に装填する。こ
こでの装填は、必ずしも無酸素雰囲気中でなくとも、大
気雰囲気中で行なっても差し支えない。
Next, the mixed powder is loaded into a mold. The loading here need not necessarily be performed in an oxygen-free atmosphere, but may be performed in an air atmosphere.

【0014】次に、混合粉末が装填された金型をプレス
機にセットし、常温、圧力約1000kgf/cm2以上、時
間約2分以内の条件で大気雰囲気下にて、混合粉末を予
備成形体に形成する。成形温度は、常温に限らず、多少
は昇温してもよい。
Next, the mold loaded with the mixed powder is set in a press machine, and the mixed powder is preformed under an atmosphere at normal temperature, at a pressure of about 1000 kgf / cm 2 or more and for a time of about 2 minutes or less. Form on the body. The molding temperature is not limited to room temperature, and may be slightly increased.

【0015】金型から取り出した予備成形体は、300
〜550℃の範囲内の温度に維持された加熱装置の中で
適当時間(例えば、約1時間)保持した後、再び金型に入
れて、圧力約1000kgf/cm2以上、時間約2分以内の
条件で大気雰囲気下で焼結し、熱電材料成形体に形成す
る。予備成形体は、金型に入れたままで金型ごと加熱装
置の中で加熱して加圧成形してもよい。
The preform taken out of the mold is 300
After holding for an appropriate time (for example, about 1 hour) in a heating apparatus maintained at a temperature in the range of 5550 ° C., put it in a mold again, and apply a pressure of about 1000 kgf / cm 2 or more and a time of about 2 minutes or less Sintering in the atmosphere under the conditions described above to form a thermoelectric material molded body. The preformed body may be pressed and molded by heating the preformed body together with the mold in a heating device.

【0016】予備成形体の形成時、予備成形体の加熱
時、熱電材料成形体の形成時に、成形体の表面は空気と
接触して酸化被膜が付着するため、熱電材料成形体の形
成後、機械切削加工又は研削加工により、成形体表面の
酸化被膜を取り除く。
When the preformed body is formed, when the preformed body is heated, and when the thermoelectric material molded body is formed, the surface of the molded body comes into contact with air and an oxide film adheres. The oxide film on the surface of the compact is removed by mechanical cutting or grinding.

【0017】[0017]

【実施例】実施例 以下、本発明の実施例を掲げて説明する。本発明の実施
例では、(Bi2Te3)0.85(Bi2Se3)0.15で示される
Bi−Te−Seからなるn型の熱電素子材料を作製し
た。まず、原料粉末を、モル比でBi:Te:Se=
2:2.55:0.45=40:51:9となるように秤
量した。この原料粉末100重量部に、添加金属として
Laを0.5重量部添加した粉末を実施例1、Laを1
重量部添加した粉末を実施例2、Laを全く添加しない
粉末を比較例1とする。
EXAMPLE will be described below with reference to Examples of the present invention. In an embodiment of the present invention were prepared (Bi 2 Te 3) 0.85 ( Bi 2 Se 3) n -type thermoelectric element material consisting of Bi-Te-Se represented by 0.15. First, the raw material powder is mixed in a molar ratio of Bi: Te: Se =
The weight was weighed so that 2: 2.55: 0.45 = 40: 51: 9. Example 1 was obtained by adding 0.5 parts by weight of La as an additive metal to 100 parts by weight of this raw material powder, and 1 part of La was added.
The powder to which parts by weight were added was referred to as Example 2, and the powder to which La was not added at all was referred to as Comparative Example 1.

【0018】前記粉末を、Arガス雰囲気下の転動ボー
ルミルの中で約15時間粉砕混合し、各粉末が十分に混
合された粉末を得た。得られた混合粉末の平均粒径は約
10μmである。この混合粉末を大気雰囲気下で金型の
中へ装填した後、金型をプレス機にセットし、常温、圧
力2800kgf/cm2、プレス時間20秒の条件で大気雰
囲気下にて混合粉末から予備成形体を形成した。得られ
た予備成形体を、500℃に維持された大気雰囲気の加
熱装置の中で1時間加熱した。次に、予備成形体を加熱
装置から取り出し、圧力3150kgf/cm2、プレス時間
20秒の条件で大気雰囲気下にて加圧成形した。得られ
た熱電素子材料成形体のサイズは直径45mm×厚さ10
mmである。
The powder was pulverized and mixed for about 15 hours in a rolling ball mill in an Ar gas atmosphere to obtain a powder in which each powder was sufficiently mixed. The average particle size of the obtained mixed powder is about 10 μm. After loading the mixed powder into a mold under an air atmosphere, the mold is set in a press machine, and the mixed powder is preliminarily prepared under the atmosphere at a normal temperature, a pressure of 2800 kgf / cm 2 and a press time of 20 seconds. A compact was formed. The obtained preform was heated for 1 hour in a heating device maintained at 500 ° C. in an air atmosphere. Next, the preformed body was taken out of the heating device, and was pressed and formed under the conditions of a pressure of 3150 kgf / cm 2 and a pressing time of 20 seconds in an air atmosphere. The size of the obtained thermoelectric element material compact is 45 mm in diameter × 10 in thickness.
mm.

【0019】実施例1、実施例2、比較例1の夫々の粉
末から得られた熱電素子材料成形体のキャリア濃度をホ
ール測定法により測定し、その結果を表1に示す。
The carrier concentration of the thermoelectric element material compact obtained from each of the powders of Example 1, Example 2 and Comparative Example 1 was measured by the Hall measurement method, and the results are shown in Table 1.

【0020】◎

【表1】 [Table 1]

【0021】表1の結果に示されるように、n型熱電素
子材料では、Laの添加により、キャリア濃度が低下す
ることがわかる。このように、予備成形体の形成と該予
備成形体の加圧焼結を大気雰囲気下で行なっても、キャ
リア濃度を制御できる。
As shown in the results of Table 1, in the n-type thermoelectric element material, it can be seen that the carrier concentration is reduced by adding La. As described above, the carrier concentration can be controlled even when the formation of the preformed body and the pressure sintering of the preformed body are performed in the air atmosphere.

【0022】実施例2で得られた成形体の金属顕微鏡組
織(×100)を図1に示す。図1中、黒い粒状のものが
La酸化物であり、約100μm以下の微細な粒状の形
態で組織中に略均一に分散していることがわかる。
FIG. 1 shows the metallographic microstructure (× 100) of the compact obtained in Example 2. In FIG. 1, it can be seen that the black particles are La oxides and are dispersed almost uniformly in the structure in the form of fine particles of about 100 μm or less.

【0023】実施例2で得られた成形体をSEMで観察
すると共に、電子線プローブマイクロ分析(EPMA)に
より観察した。SEMで観察した組織と、EPMAによ
るO(酸素)、Bi、Te、Se及びLaの各元素の分布
状態を図2に示す。各元素の分布において、白っぽく見
える部分が、図中に表示した夫々の元素の濃度の高い部
分を表わしている。図2より、Oの高濃度の位置は、L
aの高濃度の位置と略対応するが、Bi、Te及びSe
の高濃度位置とは対応していないことがわかる。これか
ら、OはLaの酸化物としてのみ存在し、結晶格子内で
殆んど固溶していないことがわかる。
The molded product obtained in Example 2 was observed by SEM and also by electron probe micro analysis (EPMA). FIG. 2 shows the structure observed by SEM and the distribution of each element of O (oxygen), Bi, Te, Se and La by EPMA. In the distribution of each element, whitish portions indicate portions where the concentration of each element is high, as shown in the figure. From FIG. 2, the position of the high concentration of O is L
a, which substantially corresponds to the position of high concentration of Bi, Te, Se
It can be seen that this does not correspond to the high density position. This indicates that O exists only as an oxide of La and hardly forms a solid solution in the crystal lattice.

【0024】[0024]

【発明の効果】本発明の熱電素子材料の製造方法では、
予備成形体の形成と該予備成形体の加圧焼結を大気雰囲
気下で行なっても、予備成形体の内部に侵入した大気中
の酸素は、酸素との親和力の大きい添加金属と選択的に
反応し、前記添加金属の酸化物にすることができる。本
発明の熱電素子材料は、組織中に、酸素との親和力の大
きい添加金属の酸化物が略均一に分散しており、n型素
子に対してはキャリア濃度の上昇を抑制し、p型素子に
対してはキャリア濃度の低下を抑制することができる。
このように、粉末の予備成形体の形成と、得られた予備
成形体の加圧焼結を、大気雰囲気下で実施しても、所定
のキャリア濃度を具備した熱電素子材料を得ることがで
きるので、真空の維持又は不活性ガス消費に伴なう製造
コストの削減を達成できる。本発明の熱電素子及びその
製造方法は、熱電発電や熱電冷却、温度センサーや半導
体プロセスにおける恒温装置、エレクトロニクスデバイ
スの冷却など、幅広い分野で使用される熱電材料とし
て、産業上の利用性は極めて大きいといえる。
According to the method for producing a thermoelectric element material of the present invention,
Even if the formation of the pre-formed body and the pressure sintering of the pre-formed body are performed in an air atmosphere, the oxygen in the air that has entered the inside of the pre-formed body selectively reacts with the added metal having a high affinity for oxygen. React to form an oxide of the additional metal. In the thermoelectric element material of the present invention, an oxide of an additional metal having a high affinity for oxygen is substantially uniformly dispersed in a tissue, and an increase in carrier concentration is suppressed with respect to an n-type element. , A decrease in carrier concentration can be suppressed.
As described above, even if the formation of the powder pre-formed body and the pressure sintering of the obtained pre-formed body are performed in an air atmosphere, a thermoelectric element material having a predetermined carrier concentration can be obtained. Therefore, it is possible to achieve a reduction in manufacturing costs associated with maintaining a vacuum or consuming an inert gas. INDUSTRIAL APPLICABILITY The thermoelectric element and the method for manufacturing the thermoelectric element of the present invention have extremely large industrial applicability as a thermoelectric material used in a wide range of fields, such as thermoelectric power generation and thermoelectric cooling, temperature sensors and constant temperature devices in semiconductor processes, and cooling of electronic devices. It can be said that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電材料成形体の金属組織を示す図面
代用顕微鏡写真(×100)である。
FIG. 1 is a drawing-substituting micrograph (× 100) showing a metal structure of a thermoelectric material molded body of the present invention.

【図2】本発明の熱電材料成形体の金属組織をSEMに
より示すと共に、O、Bi、Te、Se及びLaの各成
分をEPMAにより示す図面代用写真である。
FIG. 2 is a drawing substitute photograph showing a metal structure of a thermoelectric material molded body of the present invention by SEM, and showing each component of O, Bi, Te, Se and La by EPMA.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱電素子を構成する金属の原料粉末を秤
量し、秤量された金属原料粉末を混合し、該混合粉末を
プレスして予備成形体を形成し、該予備成形体を加圧焼
結することにより熱電素子材料を製造する方法におい
て、前記金属原料粉末に、原料金属のどの金属よりも酸
素との親和力の大きい金属の粉末を添加し、これら粉末
を無酸素雰囲気下で混合し、混合された粉末を大気雰囲
気下で予備成形体に形成し、該予備成形体を大気雰囲気
下で加圧焼結するものであって、予備成形体の形成工程
で、予備成形体の内部に侵入した大気中の酸素は、酸素
との親和力の大きい添加金属と選択的に反応して前記添
加金属の酸化物となるようにしたことを特徴とする熱電
素子材料の製造方法。
1. A raw material powder of a metal constituting a thermoelectric element is weighed, the weighed metal raw material powder is mixed, the mixed powder is pressed to form a preform, and the preform is pressure-fired. In the method of manufacturing a thermoelectric element material by sintering, to the metal raw material powder, a metal powder having a higher affinity for oxygen than any of the raw material metals is added, and these powders are mixed in an oxygen-free atmosphere, The mixed powder is formed into a pre-formed body in an air atmosphere, and the pre-formed body is pressure-sintered in an air atmosphere. The method according to claim 1, wherein the oxygen in the atmosphere selectively reacts with an additional metal having a high affinity for oxygen to form an oxide of the additional metal.
【請求項2】 熱電素子を構成する金属の原料粉末に、
原料金属のどの金属よりも酸素との親和力の大きい金属
の粉末を添加して混合し、得られた混合粉末を焼結して
得られる熱電素子材料であって、組織中に、酸素との親
和力の大きい添加金属の酸化物が略均一に分散している
ことを特徴とする熱電素子材料。
2. A raw material powder of a metal constituting a thermoelectric element,
A thermoelectric element material obtained by adding and mixing a metal powder having a higher affinity for oxygen than any of the raw material metals, and sintering the resulting mixed powder. A thermoelectric element material, characterized in that an oxide of an additive metal having a large value is substantially uniformly dispersed.
JP8269459A 1996-09-18 1996-09-18 Thermo-element material and its manufacture Withdrawn JPH1093147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269459A JPH1093147A (en) 1996-09-18 1996-09-18 Thermo-element material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269459A JPH1093147A (en) 1996-09-18 1996-09-18 Thermo-element material and its manufacture

Publications (1)

Publication Number Publication Date
JPH1093147A true JPH1093147A (en) 1998-04-10

Family

ID=17472738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269459A Withdrawn JPH1093147A (en) 1996-09-18 1996-09-18 Thermo-element material and its manufacture

Country Status (1)

Country Link
JP (1) JPH1093147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269871A (en) * 2005-03-25 2006-10-05 Matsushita Electric Works Ltd Method of manufacturing thermoelectric material
JP2006269870A (en) * 2005-03-25 2006-10-05 Matsushita Electric Works Ltd Method of manufacturing thermoelectric material
JP2007258200A (en) * 2006-03-20 2007-10-04 Univ Nagoya Thermoelectric conversion material and thermoelectric conversion film using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269871A (en) * 2005-03-25 2006-10-05 Matsushita Electric Works Ltd Method of manufacturing thermoelectric material
JP2006269870A (en) * 2005-03-25 2006-10-05 Matsushita Electric Works Ltd Method of manufacturing thermoelectric material
JP4581782B2 (en) * 2005-03-25 2010-11-17 パナソニック電工株式会社 Thermoelectric material manufacturing method
JP4631494B2 (en) * 2005-03-25 2011-02-16 パナソニック電工株式会社 Method for manufacturing thermoelectric material
JP2007258200A (en) * 2006-03-20 2007-10-04 Univ Nagoya Thermoelectric conversion material and thermoelectric conversion film using the same

Similar Documents

Publication Publication Date Title
KR100924054B1 (en) Thermoelectric material and method for producing same
EP0874406A2 (en) A co-sb based thermoelectric material and a method of producing the same
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US10662507B2 (en) Method for producing a thermoelectric material
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
KR20170002946A (en) Magnetic composite and method of manufacturing the same
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
KR20180060265A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL CONTROLLED OXIDATION AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
JPH1093147A (en) Thermo-element material and its manufacture
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
EP0948061B1 (en) P-type thermoelectric converting substance and method of manufacturing the same
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JPH09275228A (en) Sb-containing thermoelectric material molding and manufacturing method thereof
JPS61268006A (en) Anisotropic magnet
JP2009509043A (en) Tungsten shot
JPH1070318A (en) Manufacture of thermoelectric material formed item
JP2002223013A (en) Thermoelectric conversion element and manufacturing method of it
JPH0628250B2 (en) Process for producing arsenic diffusing agent and its molded article and method for producing semiconductor device using the same
WO2019178706A1 (en) Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components
JPH09172205A (en) Manufacture of thermoelectric material
JPH06216415A (en) Manufacture of thermoelectric conversion material
JP2010232554A (en) Method of manufacturing thermoelectric conversion material
US3359097A (en) Method of producing thermoelectric bodies
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH0677069A (en) Manufacture of anisotropic magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202