JP2007258200A - Thermoelectric conversion material and thermoelectric conversion film using the same - Google Patents
Thermoelectric conversion material and thermoelectric conversion film using the same Download PDFInfo
- Publication number
- JP2007258200A JP2007258200A JP2006076561A JP2006076561A JP2007258200A JP 2007258200 A JP2007258200 A JP 2007258200A JP 2006076561 A JP2006076561 A JP 2006076561A JP 2006076561 A JP2006076561 A JP 2006076561A JP 2007258200 A JP2007258200 A JP 2007258200A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- composition
- composition ratio
- oxide
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 136
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 119
- 239000000203 mixture Substances 0.000 claims abstract description 133
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 239000011575 calcium Substances 0.000 claims description 57
- 229910052791 calcium Inorganic materials 0.000 claims description 35
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 229910052712 strontium Inorganic materials 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910052788 barium Inorganic materials 0.000 claims description 22
- 229910052797 bismuth Inorganic materials 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 17
- 229910052684 Cerium Inorganic materials 0.000 claims description 17
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 15
- 229910052714 tellurium Inorganic materials 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- 229910052772 Samarium Inorganic materials 0.000 claims description 14
- 239000011734 sodium Substances 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 14
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 13
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- 239000010941 cobalt Substances 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- 229910052693 Europium Inorganic materials 0.000 claims description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 12
- 229910052787 antimony Inorganic materials 0.000 claims description 12
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 12
- 229910052746 lanthanum Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 11
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 11
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 11
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 11
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 11
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 11
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 11
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910004250 CaCoO Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical group [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 5
- 239000000470 constituent Substances 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 23
- 238000000465 moulding Methods 0.000 description 13
- 238000007740 vapor deposition Methods 0.000 description 11
- 239000013590 bulk material Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 5
- 229910002367 SrTiO Inorganic materials 0.000 description 4
- 238000003746 solid phase reaction Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- -1 Pr 2 O 3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、熱電変換材料及びそれを用いた熱電変換膜に関する。 The present invention relates to a thermoelectric conversion material and a thermoelectric conversion film using the same.
熱エネルギーから電気エネルギーへの変換、あるいはその逆過程が可能な熱電変換材料を用いることにより、可動部を有することのない無排出のデバイスを提供できるとともに、デバイス自体を小型軽量化することができ、さらにはその信頼性を向上できるなどの種々の利点を有するデバイスの提供が可能になる。 By using a thermoelectric conversion material that can convert thermal energy to electrical energy or vice versa, it is possible to provide a non-discharge device that does not have moving parts, and to reduce the size and weight of the device itself. In addition, it is possible to provide a device having various advantages such as improvement in reliability.
現在、ペルチェ効果を利用した熱電冷却は、温度制御が容易であることから幅広い分野において実用化されているが、ゼーベック効果を利用した熱電発電は、僻地での使用などその用途が限られてきた。 Currently, thermoelectric cooling using the Peltier effect has been put to practical use in a wide range of fields because it is easy to control the temperature, but thermoelectric power generation using the Seebeck effect has been limited in its use, such as in remote areas. .
しかしながら、近年、石油資源などの産出量が、2010〜2020年頃にピークを迎えると予測され、エネルギーの安定供給、経済成長及び環境保全を実現しながらも、石油問題の早急な解決に迫られており、これまで用いられなかった廃熱エネルギーの高効率利用が必要不可欠である。また、人類の生活において用いられているエネルギーのほとんどが、廃熱として放出されている。したがって、ゼーベック効果を利用した熱電変換は、廃熱を回収して再利用するのに最適な技術の一つであり、熱エネルギー変換システムへの応用技術として非常に期待されている。 However, in recent years, the output of petroleum resources and the like is predicted to peak around 2010-2020, and while achieving stable energy supply, economic growth, and environmental conservation, it is urgently required to solve oil problems. Therefore, it is indispensable to use waste heat energy that has not been used so far. In addition, most of the energy used in human life is released as waste heat. Therefore, thermoelectric conversion using the Seebeck effect is one of the most suitable techniques for recovering and reusing waste heat, and is highly expected as an application technique to a thermal energy conversion system.
現在、実用化されている熱電変換材料であるBi2Te、PbTeなどの金属間化合物は、有毒な元素を含有していることから、製造・使用時に問題となる。さらに、高温での使用を考えた場合、構成成分の気化蒸発とそれによる汚染、酸化物相の生成などによる変換効率の低下が生じ、使用可能な温度に限界がある。そこで、熱電変換の広範な使用を目指すには、低コストで高温においても安定に使用が可能な、環境負荷の少ない新規材料が求められてきた。 Intermetallic compounds such as Bi 2 Te and PbTe , which are thermoelectric conversion materials that are currently in practical use, contain toxic elements, which causes problems during production and use. Furthermore, when considering use at a high temperature, the conversion efficiency is reduced due to vaporization and evaporation of the constituent components and the resulting contamination, generation of an oxide phase, etc., and the usable temperature is limited. Therefore, in order to aim for wide-ranging use of thermoelectric conversion, new materials with low environmental impact that can be used stably even at high temperatures at low cost have been demanded.
このような背景から、高温においても安定に存在できる酸化物系熱電材料の利用が注目されてきた。多くの酸化物系材料は、一般に高温大気中において安定しており、毒性も低く、製造も容易なため、耐熱材料などの様々な分野で利用されてきた。酸化物系の新素材は、(Ca,Co,O)、(Bi,Sr,Ca,Co,O)、(Na,Co,O)などのCo元素を含む混合組成で構成される材料、(Zn、Al、O)で構成される酸化物材料、RE2-XMXCu1O4-Y (RE=La、Pr、Nd、Sm、Eu及びGdから選ばれる少なくとも一種の希土類元素、M=Ba、Sr、Ca及びCeから選ばれる酸化物材料)が確認されている(例えば、非特許文献1〜3参照及び特許文献1参照)。このような酸化物系熱電変換材料は、室温から絶対温度700Kまでの測定温度の上昇に伴い、熱電特性、たとえば、出力因子(パワーファクター)が向上するため、絶対温度700K程度の高い作動温度においては、高い熱電特性が確認されている。 From such a background, the use of oxide-based thermoelectric materials that can exist stably even at high temperatures has attracted attention. Many oxide-based materials are generally stable in a high-temperature atmosphere, have low toxicity, and are easy to produce, and thus have been used in various fields such as heat-resistant materials. New oxide-based materials are materials composed of a mixed composition containing Co elements such as (Ca, Co, O), (Bi, Sr, Ca, Co, O), (Na, Co, O), ( Zn, Al, an oxide material composed of O), RE 2-X M X Cu 1 O 4-Y (RE = La, Pr, Nd, Sm, at least one rare earth element selected from Eu and Gd, M = Oxide material selected from Ba, Sr, Ca and Ce) (for example, see Non-Patent Documents 1 to 3 and Patent Document 1). Such an oxide-based thermoelectric conversion material has improved thermoelectric characteristics, for example, an output factor (power factor) as the measurement temperature increases from room temperature to an absolute temperature of 700K. Has been confirmed to have high thermoelectric properties.
しかし、絶対温度700K以上の高い温度領域の廃熱エネルギーとともに、絶対温度300K程度から絶対温度500K
程度の中温度領域の廃熱エネルギーも多く存在し、その有効利用も重要な課題となるが、前述の酸化物熱電変換材料では、
充分な性能が確認されていない。
そこで、熱電変換の広範な使用を目指すには、低コストで幅広い動作温度領域においても安定に使用が可能な、環境負荷の少ない新規材料が求められていた。
However, together with waste heat energy in the high temperature range above 700K, the absolute temperature is about 300K to absolute temperature 500K.
There is also a lot of waste heat energy in the middle temperature range, and its effective use is also an important issue, but with the oxide thermoelectric conversion material described above,
Sufficient performance has not been confirmed.
Therefore, in order to aim at wide use of thermoelectric conversion, a new material with low environmental impact that can be stably used in a wide operating temperature range at low cost has been demanded.
本発明は、低コストで幅広い動作温度領域においても安定に使用が可能な、環境負荷の少ない、新規な熱電変換材料を提供することを目的とする。 An object of the present invention is to provide a novel thermoelectric conversion material that can be used stably in a wide range of operating temperatures at low cost and has a low environmental load.
上記目的を達成すべく、本発明の第1の発明は、下記(1−1)に示す半導体材料又は下記(1−2)に示す酸化物系材料から選ばれる少なくとも一種を含む第1成分
及び下記(2)に示す酸化物系材料から選ばれる少なくとも一種を含む第2成分を含むことを特徴とする、熱電変換材料に関する。
(1)第1成分
(1−1)元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。
半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)
(1−2)元素組成CaCoO、BiSrCaCoO及びNaCoO
(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料、元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)
からなる酸化物材料、元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる少なくとも一種類の酸化物材料)
(2)第2成分
元素組成APDQORからなる酸化物系材料(Aはイットリウム(Y)、RE(REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素)、セリウム(Ce)、ジルコニウム(Zr)、アルミニウム(Al)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びマグネシウム(Mg)から選ばれる少なくとも一種の元素、Dはチタン(Ti)、ジルコニウム(Zr)、ケイ素(Si)、スズ(Sn)及びタングステン(W)から選ばれる少なくとも一種の元素、Oは酸素である。但し、AがY、RE及びAlから選ばれる少なくとも一種の元素の場合、組成比はP=2、Q=0及びR=3、AがCe及びZrから選ばれる少なくとも一種の元素の場合、組成比はP=1、Q=0及びR=2、但し、AがZrの場合は、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。AがMgの場合、組成比はP=1、Q=0及びR=1、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがTi、Zr、Si及びSnから選ばれる少なくとも一種の元素である場合、組成比はP=1、Q=1及びR=3、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがWである場合は、組成比はP=1、Q=1及びR=4)
In order to achieve the above object, a first invention of the present invention includes a first component containing at least one selected from a semiconductor material shown in the following (1-1) or an oxide-based material shown in the following (1-2): The thermoelectric conversion material characterized by including the 2nd component containing at least 1 type chosen from the oxide type material shown to following (2).
(1) First component (1-1) Elemental composition Bi A Sb B Pb C Te D or semiconductor material containing at least one selected from Si E Ge F (Bi is bismuth, Sb is antimony, Pb is lead and Te is Tellurium.
The composition ratio is not limited as long as it is a composition range that forms a structure as a semiconductor material, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C is greater than zero. And D, E and F are greater than zero. )
(1-2) Elemental composition CaCoO, BiSrCaCoO and NaCoO
(Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen. However, the composition ratio is not limited as long as it is a composition range that forms the structure of the composite oxide). Cobalt-containing oxide material containing at least one selected from any of these, elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen. However, the composition ratio is within the composition range that forms the structure of the composite oxide. Is not limited.)
Oxide material consisting of elemental composition RE 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu) and gadolinium ( At least one rare earth element selected from Gd), M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce), Cu is copper and O is oxygen, The composition ratio is 0 <X <2, 0 ≦ Y <4).
(2) a second component element composition A P D Q O R of oxide based material (A is yttrium (Y), RE (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm ), Europium (Eu) and gadolinium (Gd), at least one rare earth element), cerium (Ce), zirconium (Zr), aluminum (Al), barium (Ba), strontium (Sr), calcium (Ca) And at least one element selected from magnesium (Mg), D is at least one element selected from titanium (Ti), zirconium (Zr), silicon (Si), tin (Sn) and tungsten (W), O is oxygen Provided that when A is at least one element selected from Y, RE and Al, the composition ratio is P = 2, Q = 0 and = 3, when A is at least one element selected from Ce and Zr, the composition ratio is P = 1, Q = 0 and R = 2, provided that when A is Zr, at least part of the Zr sites of ZrO 2 Is substituted by Y. When A is Mg, the composition ratio is P = 1, Q = 0 and R = 1, A is at least one element selected from Ba, Sr and Ca, When D is at least one element selected from Ti, Zr, Si and Sn, the composition ratio is P = 1, Q = 1 and R = 3, and A is at least one selected from Ba, Sr and Ca. In the case of an element and D is W, the composition ratio is P = 1, Q = 1 and R = 4)
この熱電変換材料は、その材料組成に起因して、主として正孔か電子かのいずれかが電気伝導に寄与するようになる。また、好ましい態様によって、第2成分が特定の範囲の含有量とすることによって、前記熱電変換材料における酸素欠損の割合が適切な範囲となり、結果的に作動温度領域が低い場合にも、良好な熱電変換特性を呈する。 In this thermoelectric conversion material, either holes or electrons mainly contribute to electrical conduction due to the material composition. In addition, when the second component has a content in a specific range according to a preferred embodiment, the oxygen deficiency ratio in the thermoelectric conversion material is in an appropriate range, and as a result, even when the operating temperature region is low, it is favorable. It exhibits thermoelectric conversion characteristics.
また、本発明の第2の発明は、下記(1−1)に示す半導体材料又は下記(1−2)に示す酸化物系材料から選ばれる少なくとも一種を含む第1成分及び下記(2)に示す酸化物系材料から選ばれる少なくとも一種を含む第2成分を含むことを特徴とする、熱電変換膜に関する。
(1)第1成分
(1−1)元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。
半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)
(1−2)元素組成CaCoO、BiSrCaCoO及びNaCoO(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料、元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)からなる酸化物材料、元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、
ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる少なくとも一種類の酸化物材料)
(2)第2成分
元素組成APDQORからなる酸化物系材料(Aはイットリウム(Y)、RE(REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素)、セリウム(Ce)、ジルコニウム(Zr)、アルミニウム(Al)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びマグネシウム(Mg)から選ばれる少なくとも一種の元素、Dはチタン(Ti)、ジルコニウム(Zr)、ケイ素(Si)、スズ(Sn)及びタングステン(W)から選ばれる少なくとも一種の元素、Oは酸素である。但し、AがY、RE及びAlから選ばれる少なくとも一種の元素の場合、組成比はP=2、Q=0及びR=3、AがCe及びZrから選ばれる少なくとも一種の元素の場合、組成比はP=1、Q=0及びR=2、但し、AがZrの場合は、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。AがMgの場合、組成比はP=1、Q=0及びR=1、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがTi、Zr、Si及びSnから選ばれる少なくとも一種の元素である場合、組成比はP=1、Q=1及びR=3、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがWである場合は、組成比はP=1、Q=1及びR=4)
Moreover, 2nd invention of this invention is the 1st component containing at least 1 type chosen from the semiconductor material shown to the following (1-1), or the oxide type material shown to the following (1-2), and the following (2) The present invention relates to a thermoelectric conversion film comprising a second component containing at least one selected from the oxide-based materials shown.
(1) First component (1-1) Elemental composition Bi A Sb B Pb C Te D or semiconductor material containing at least one selected from Si E Ge F (Bi is bismuth, Sb is antimony, Pb is lead and Te is Tellurium.
The composition ratio is not limited as long as it is a composition range that forms a structure as a semiconductor material, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C is greater than zero. And D, E and F are greater than zero. )
(1-2) Elemental composition CaCoO, BiSrCaCoO and NaCoO (Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen, provided that the composition range forms the structure of the composite oxide. The composition ratio is not limited.) A cobalt-containing oxide material containing at least one selected from any one of the following: elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen, provided that the composite oxide) The composition ratio is not limited as long as it is a composition range that forms a structure of the following :) an oxide material comprising: elemental composition RE 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), Neodymium (Nd), Samarium (Sm),
At least one rare earth element selected from europium (Eu) and gadolinium (Gd), M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce), Cu is copper And O is oxygen and the composition ratio is 0 <X <2, 0 ≦ Y <4).
(2) a second component element composition A P D Q O R of oxide based material (A is yttrium (Y), RE (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm ), Europium (Eu) and gadolinium (Gd), at least one rare earth element), cerium (Ce), zirconium (Zr), aluminum (Al), barium (Ba), strontium (Sr), calcium (Ca) And at least one element selected from magnesium (Mg), D is at least one element selected from titanium (Ti), zirconium (Zr), silicon (Si), tin (Sn) and tungsten (W), O is oxygen Provided that when A is at least one element selected from Y, RE and Al, the composition ratio is P = 2, Q = 0 and = 3, when A is at least one element selected from Ce and Zr, the composition ratio is P = 1, Q = 0 and R = 2, provided that when A is Zr, at least part of the Zr sites of ZrO 2 Is substituted by Y. When A is Mg, the composition ratio is P = 1, Q = 0 and R = 1, A is at least one element selected from Ba, Sr and Ca, When D is at least one element selected from Ti, Zr, Si and Sn, the composition ratio is P = 1, Q = 1 and R = 3, and A is at least one selected from Ba, Sr and Ca. In the case of an element and D is W, the composition ratio is P = 1, Q = 1 and R = 4)
この熱電変換膜は、所定方向に配向し、特にそのc軸が形成すべき基板の主面に対して垂直となるように配向し、前記熱電変換膜内には異方性が生じにくい。従って、その材料組成に起因して、主として正孔か電子かのいずれかが電気伝導に寄与するので、前記熱電変換膜は、p型又はn型熱電変換膜として機能する。そのため、材料の選択によって、p−n接合が可能となり、熱電変換デバイスとして高性能化ができる。また、好ましい態様によって、第2成分が特定の範囲の含有量とすることによって、前記熱電変換膜における酸素欠損の割合が適切な範囲となり、結果的に作動温度領域が低い場合にも、良好な熱電変換特性を呈する。 This thermoelectric conversion film is oriented in a predetermined direction, and in particular, oriented so that its c-axis is perpendicular to the main surface of the substrate to be formed, and anisotropy hardly occurs in the thermoelectric conversion film. Therefore, due to the material composition, either hole or electron mainly contributes to electric conduction, so the thermoelectric conversion film functions as a p-type or n-type thermoelectric conversion film. Therefore, by selecting a material, a pn junction is possible, and high performance can be achieved as a thermoelectric conversion device. In addition, when the second component has a content in a specific range according to a preferred embodiment, the ratio of oxygen vacancies in the thermoelectric conversion film is in an appropriate range, and as a result, even when the operating temperature region is low, it is favorable. It exhibits thermoelectric conversion characteristics.
上述の通り、本発明の第1の発明の熱電変換材料及び本発明の第2の発明の熱電変換膜は、幅広い作動温度領域の範囲で良好な熱電変換特性を呈する熱電変換材料及び熱電変換膜を提供できる。 As described above, the thermoelectric conversion material of the first invention of the present invention and the thermoelectric conversion film of the second invention of the present invention are a thermoelectric conversion material and a thermoelectric conversion film that exhibit good thermoelectric conversion characteristics in a wide operating temperature range. Can provide.
以下、本発明の第1の発明である熱電変換材料及び本発明の第2の発明である熱電変換膜、それらの製造方法、並びにその他の特徴について、最良の形態に基づいて詳細に説明する。本明細書中の説明において、例えば、0.1〜16mol%等、mol%や重量%で示す数値範囲は、特別に不等号の記載の無い限り、数値範囲の両端も含むものとする。
まず、本発明の第1の発明である熱電変換材料及び本発明の第2の発明である熱電変換膜に、共通して用いる第1成分及び第2成分について、説明する。
Hereinafter, the thermoelectric conversion material according to the first aspect of the present invention and the thermoelectric conversion film according to the second aspect of the present invention, their manufacturing method, and other characteristics will be described in detail based on the best mode. In the description of the present specification, for example, a numerical range such as 0.1 to 16 mol% expressed by mol% or weight% includes both ends of the numerical range unless otherwise specified.
First, the first component and the second component that are commonly used for the thermoelectric conversion material according to the first aspect of the present invention and the thermoelectric conversion film according to the second aspect of the present invention will be described.
本発明に用いる第1成分とは、下記(1−1)に示す半導体材料又は下記(1−2)に示す酸化物系材料から選ばれる少なくとも一種を含むものである。
(1−1)元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)
(1−2)元素組成CaCoO、BiSrCaCoO及びNaCoO(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料、元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)からなる酸化物材料、元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる少なくとも一種類の酸化物材料)
The 1st component used for this invention contains at least 1 type chosen from the semiconductor material shown to following (1-1), or the oxide type material shown to following (1-2).
(1-1) A semiconductor material containing at least one element selected from elemental composition Bi A Sb B Pb C Te D or Si E Ge F (Bi is bismuth, Sb is antimony, Pb is lead, and Te is tellurium. Semiconductor material) The composition ratio is not limited as long as it is a composition range that forms a structure as follows, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C is greater than zero, and , D, E and F are greater than zero.)
(1-2) Elemental composition CaCoO, BiSrCaCoO and NaCoO (Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen, provided that the composition range forms the structure of the composite oxide. The composition ratio is not limited.) A cobalt-containing oxide material containing at least one selected from any one of the following: elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen, provided that the composite oxide) The composition ratio is not limited as long as it is a composition range that forms a structure of the following :) an oxide material comprising: elemental composition RE 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), At least one rare earth element selected from neodymium (Nd), samarium (Sm), europium (Eu) and gadolinium (Gd); M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce), Cu is copper and O is oxygen, and the composition ratio is 0 <X <2, 0 ≦ At least one oxide material comprising Y <4)
本発明に用いる元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。
半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)とは、Bi及びTeを含む半導体材料、Sb及びTeを含む半導体材料、Bi、Sb及びTeを含む半導体材料、Bi、Sb、Pb及びTeを含む半導体材料、Si及びGeを含む半導体材料である。中でも、Bi及びTeを含む半導体材料、Sb及びTeを含む半導体材料、Bi、Sb及びTeを含む半導体材料、Bi、Sb、Pb及びTeを含む半導体材料など、テルル含有半導体材料が熱電変換特性という観点から好ましい。いずれの半導体材料も、半導体材料としての構造を組む組成範囲であれば、組成比は限定されない。例えば、Bi及びTeを含む半導体材料の場合、Bi2Te3の組成比が最良であるが、それぞれ0.5ずれても第1成分の半導体材料として用いることができる。
A semiconductor material containing at least one element selected from the elemental composition Bi A Sb B Pb C Te D or Si E Ge F used in the present invention (Bi is bismuth, Sb is antimony, Pb is lead, and Te is tellurium.
The composition ratio is not limited as long as it is a composition range that forms a structure as a semiconductor material, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C is greater than zero. And D, E and F are greater than zero. ) Is a semiconductor material containing Bi and Te, a semiconductor material containing Sb and Te, a semiconductor material containing Bi, Sb and Te, a semiconductor material containing Bi, Sb, Pb and Te, and a semiconductor material containing Si and Ge. is there. Among them, tellurium-containing semiconductor materials such as semiconductor materials containing Bi and Te, semiconductor materials containing Sb and Te, semiconductor materials containing Bi, Sb and Te, and semiconductor materials containing Bi, Sb, Pb and Te are thermoelectric conversion characteristics. It is preferable from the viewpoint. As long as any semiconductor material has a composition range that forms a structure as a semiconductor material, the composition ratio is not limited. For example, in the case of a semiconductor material containing Bi and Te, the composition ratio of Bi 2 Te 3 is the best, but even if each deviates by 0.5, it can be used as the first component semiconductor material.
本発明に用いる元素組成CaCoO、BiSrCaCoO及びNaCoO(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料とは、それぞれCa及びCoを含む酸化物材料、Bi、Sr、Ca及びCoを含む酸化物材料、Na及びCoを含む酸化物材料であり、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。前記コバルト元素含有酸化物材料の中でも、Ca及びCoを含む酸化物材料、Bi、Sr、Ca及びCoを含む酸化物材料が熱電変換特性という観点から好ましい。例えば、Ca及びCoを含む酸化物材料の場合、Ca2Co2O5又はCa2Co3O5の組成比が最良であるが、それぞれ0.5ずれても第1成分の酸化物材料として用いることができる。 Cobalt containing at least one element selected from any of the elemental compositions CaCoO, BiSrCaCoO and NaCoO used in the present invention (Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen). The contained oxide material is an oxide material containing Ca and Co, an oxide material containing Bi, Sr, Ca and Co, and an oxide material containing Na and Co, respectively. If so, the composition ratio is not limited. Among the cobalt element-containing oxide materials, oxide materials containing Ca and Co and oxide materials containing Bi, Sr, Ca and Co are preferable from the viewpoint of thermoelectric conversion characteristics. For example, in the case of an oxide material containing Ca and Co, the composition ratio of Ca 2 Co 2 O 5 or Ca 2 Co 3 O 5 is the best. Can be used.
本発明に用いる元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。)からなる酸化物材料は、Zn及びAlを含む酸化物材料であり、但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。) An oxide material made of elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen) used in the present invention is an oxide material containing Zn and Al, provided that it forms a complex oxide structure. If it is a composition range, a composition ratio will not be limited. )
本発明に用いる元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる酸化物材料とは、例えば、La2-XCeXCu1O4-Y、Pr2-XCexCu1O4-Y、Sm2-XCexCu1O4-Y及びSm2-XCaxCu1O4-Y等が挙げられ、中でも、0<X<0.5の範囲が、熱電変換特性という観点から好ましい。 RE elemental composition used in the present invention 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu) and gadolinium (Gd) At least one rare earth element selected from: M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce); Cu is copper and O is oxygen; the 0 <X <a oxide material consisting of 2,0 ≦ Y <4), for example, La 2-X Ce X Cu 1 O 4-Y, Pr 2-X Ce x Cu 1 O 4-Y, Sm Examples include 2-X Ce x Cu 1 O 4 -Y and Sm 2 -X Ca x Cu 1 O 4 -Y . Among them, the range of 0 <X <0.5 is preferable from the viewpoint of thermoelectric conversion characteristics.
本発明に用いる第2成分とは、元素組成APDQORからなる酸化物系材料である。ここで、Aはイットリウム(Y)、RE(REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素)、セリウム(Ce)、ジルコニウム(Zr)、アルミニウム(Al)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びマグネシウム(Mg)から選ばれる少なくとも一種の元素、Dはチタン(Ti)、ジルコニウム(Zr)、ケイ素(Si)、スズ(Sn)及びタングステン(W)から選ばれる少なくとも一種の元素、Oは酸素である。但し、AがY、RE及びAlから選ばれる少なくとも一種の元素の場合、組成比はP=2、Q=0及びR=3、AがCe及びZrから選ばれる少なくとも一種の元素の場合、組成比はP=1、Q=0及びR=2、但し、AがZrの場合は、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。AがMgの場合、組成比はP=1、Q=0及びR=1、
AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがTi、Zr、Si及びSnから選ばれる少なくとも一種の元素である場合、組成比はP=1、Q=1及びR=3、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがWである場合は、組成比はP=1、Q=1及びR=4である。
The second component used in the present invention, an oxide-based material consisting of elemental composition A P D Q O R. Here, A is yttrium (Y), RE (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), and gadolinium (Gd). Element), cerium (Ce), zirconium (Zr), aluminum (Al), barium (Ba), strontium (Sr), calcium (Ca) and magnesium (Mg), D is titanium (Ti ), Zirconium (Zr), silicon (Si), tin (Sn), and tungsten (W), O is oxygen. However, when A is at least one element selected from Y, RE and Al, the composition ratio is P = 2, Q = 0 and R = 3, and when A is at least one element selected from Ce and Zr, the composition The ratios are P = 1, Q = 0, and R = 2. However, when A is Zr, at least a part of the Zr sites of ZrO 2 is substituted with Y and stabilized. When A is Mg, the composition ratio is P = 1, Q = 0 and R = 1,
When A is at least one element selected from Ba, Sr, and Ca, and D is at least one element selected from Ti, Zr, Si, and Sn, the composition ratio is P = 1, Q = 1, and When R = 3, A is at least one element selected from Ba, Sr, and Ca and D is W, the composition ratio is P = 1, Q = 1, and R = 4.
より具体的には、Y2O3、La2O3、 Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、CeO2、BaCeO3、SrCeO3、CaCeO3、Y安定化ZrO2、MgO、BaTiO3、SrTiO3、CaTiO3、CaWO4、SrWO4、BaWO4、BaZrO3、CaZrO3、SrZrO3、BaSiO3、SrSiO3、CaSiO3、SrSnO3、BaSnO3、CaSnO3、Al2O3等が挙げられる。ここで、Y安定化ZrO2とは、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。Yの置換量はZrサイト全体に対して0.1〜16mol%が好ましく、中でも1〜10mol%がより好ましく、特に4mol%又は8mol%が材料の安定性という観点から好ましい。 More specifically, Y 2 O 3 , La 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , CeO 2 , BaCeO 3 , SrCeO 3 , CaCeO 3, Y-stabilized ZrO 2, MgO, BaTiO 3, SrTiO 3, CaTiO 3, CaWO 4, SrWO 4, BaWO 4, BaZrO 3, CaZrO 3, SrZrO 3, BaSiO 3, SrSiO 3, CaSiO 3, SrSnO 3, BaSnO 3, CaSnO 3, Al 2 O 3 and the like. Here, Y-stabilized ZrO 2 is stabilized by substituting at least part of the Zr sites of ZrO 2 with Y. The substitution amount of Y is preferably 0.1 to 16 mol% with respect to the entire Zr site, more preferably 1 to 10 mol%, and particularly preferably 4 mol% or 8 mol% from the viewpoint of the stability of the material.
本発明の第1の発明である熱電変換材料は、前記第1成分及び前記第2成分を含み、通常、第1成分が90重量%〜99.9重量%、第2成分が10重量%〜0.1重量%である。従って、第1成分が母相となり、第2成分が分散相となる。中でも、第2成分が0.1〜0.5重量%とすると、熱電変換特性という観点から好ましい。
この熱電変換材料は、その材料組成に起因して、主として正孔か電子かのいずれかが電気伝導に寄与するようになる。また、好ましい態様によって、第2成分が0.1〜0.5重量%の範囲の含有量とすることによって、前記熱電変換材料における酸素欠損の割合が適切な範囲となり、結果的に作動温度領域が低い場合にも、良好な熱電変換特性を呈する。
The thermoelectric conversion material according to the first aspect of the present invention includes the first component and the second component. Usually, the first component is 90 wt% to 99.9 wt%, and the second component is 10 wt% to 0.1% by weight. Accordingly, the first component becomes the parent phase and the second component becomes the dispersed phase. Especially, it is preferable from a viewpoint of a thermoelectric conversion characteristic that a 2nd component shall be 0.1 to 0.5 weight%.
In this thermoelectric conversion material, either holes or electrons mainly contribute to electrical conduction due to the material composition. In addition, according to a preferred embodiment, by setting the content of the second component in the range of 0.1 to 0.5% by weight, the ratio of oxygen vacancies in the thermoelectric conversion material becomes an appropriate range, resulting in an operating temperature range. Even when it is low, it exhibits good thermoelectric conversion characteristics.
次に、本発明の第1成分の製造方法を説明する。目的とする第1成分の組成比となるように、前記(1−1)に示す半導体材料、前記(1−2)に示す酸化物系材料の構成元素を含む酸化物を原料として所定量を秤量して、粉砕、混合を行い、固相反応法で加圧成型、熱処理をする。粉砕、混合、加圧成型及び熱処理を繰り返して、製造する。
例えば、元素組成Sm2-XCeCu1O4-Yの熱電変換材料(バルクの材料)を製造する場合、原料として、Sm2O3、CeO2及びCuOの3種類の酸化物を用いる。
・CuOのように吸湿性の高い原料は、秤量前に加熱乾燥(1000℃で12時間)するのが好ましい。
・上記3種類の酸化物を、目的の組成比になるように秤量後、乳鉢で粉砕、混合する。
・金型、成型器を用いて加圧成型し、円柱状ペレットを得る。
・前記円柱状ペレットから吸着ガスなどを取り除去するために、700℃24時間で仮焼成をする。
・仮焼成後の前記円柱状ペレットを粉砕、混合する。
・粉砕、混合した粉末を、再度、成型して、800〜1080℃、24〜72時間の
本焼成をする。
・本焼成の間には反応を促進させるため、粉砕、混合、加圧成型を繰り返すのが好ましい。
Next, the manufacturing method of the 1st component of this invention is demonstrated. A predetermined amount of the semiconductor material shown in (1-1) and the oxide containing the constituent elements of the oxide-based material shown in (1-2) are used as raw materials so as to achieve the desired composition ratio of the first component. Weigh, pulverize and mix, perform pressure molding and heat treatment by solid phase reaction method. It is manufactured by repeating pulverization, mixing, pressure molding and heat treatment.
For example, when manufacturing elemental composition Sm 2-X CeCu 1 O 4 -Y of the thermoelectric conversion material (bulk material), as a raw material, using a Sm 2 O 3, 3 kinds of oxides of CeO 2 and CuO.
-A highly hygroscopic raw material such as CuO is preferably heated and dried (1000 ° C for 12 hours) before weighing.
-The above three kinds of oxides are weighed so as to have the desired composition ratio, and then pulverized and mixed in a mortar.
-Press molding using a mold and a molding machine to obtain cylindrical pellets.
In order to remove the adsorbed gas and the like from the columnar pellets, temporary baking is performed at 700 ° C. for 24 hours.
-Crush and mix the columnar pellets after calcination.
-The pulverized and mixed powder is molded again and subjected to main firing at 800 to 1080 ° C for 24 to 72 hours.
-It is preferable to repeat pulverization, mixing, and pressure molding in order to promote the reaction during the main firing.
次に、本発明の第2成分の製造方法を説明する。第1成分と同様に、目的とする第2成分の組成比となるように、前記(2)に示す酸化物系材料の構成元素を含む酸化物を原料として所定量を秤量して、粉砕・混合を行い、固相反応法で加圧成型・熱処理をする。粉砕、混合、加圧成型及び熱処理を繰り返して、製造する。 Next, the manufacturing method of the 2nd component of this invention is demonstrated. As with the first component, a predetermined amount is weighed from the oxide containing the constituent elements of the oxide-based material shown in (2) so as to achieve the desired composition ratio of the second component. Mix and perform pressure molding and heat treatment by solid phase reaction method. It is manufactured by repeating pulverization, mixing, pressure molding and heat treatment.
本発明の第1の発明である熱電変換材料は、第1成分を母相として、第2成分をサブミクロンメートルサイズの分散相として構成されている。透過型電子顕微鏡等の微細構造観察から確認することができる。
前記第1の発明である熱電変換材料の製造方法としては、第1成分及び第2成分を、それぞれ製造又は市販品の購入で準備をする。その後、目的とする熱電変換材料の組成比となるように、前記第1成分及び前記第2成分を、所定量を秤量して、粉砕・混合を行い、固相反応法で加圧成型・熱処理をする。粉砕、混合、加圧成型及び熱処理を繰り返して、最後に加圧成型して、熱電変換材料(バルク材料)を製造する。また、第1成分及び第2成分の組合せによっては、第1成分及び第2成分を別々に製造することなく、最初からそれぞれの原料を目的とする熱電変換材料の組成比となるように、所定量を秤量して、粉砕、混合、加圧成型及び熱処理を繰り返して、熱電変換材料を得ることもできる。
The thermoelectric conversion material according to the first aspect of the present invention is configured with a first component as a parent phase and a second component as a sub-micrometer sized dispersed phase. This can be confirmed by observation of a fine structure such as a transmission electron microscope.
As a manufacturing method of the thermoelectric conversion material which is the said 1st invention, a 1st component and a 2nd component are each prepared by manufacture or purchase of a commercial item. Thereafter, a predetermined amount of the first component and the second component are weighed, pulverized and mixed so that the composition ratio of the target thermoelectric conversion material is obtained, and pressure molding / heat treatment is performed by a solid phase reaction method. do. The thermoelectric conversion material (bulk material) is manufactured by repeating pulverization, mixing, pressure molding and heat treatment, and finally pressure molding. In addition, depending on the combination of the first component and the second component, the composition ratio of the thermoelectric conversion material intended for each raw material from the beginning may be obtained without separately manufacturing the first component and the second component. A thermoelectric conversion material can also be obtained by weighing a fixed amount and repeating pulverization, mixing, pressure molding and heat treatment.
以上のような操作を経て得た熱電変換材料(バルク材料)は、優れた熱電変換特性を呈するようになる。例えば、室温から600Kの温度範囲において、ZT(Z=S2σ/k,S:ゼーベック係数(V/K)、σ:導電率(S/m),k:熱伝導率(W/mK),T=絶対温度(K))で表される性能指数が0.002以上となり、第2成分が含まれない熱電変換材料(バルク材料)に比べ、約2倍以上の性能指数を有する。 The thermoelectric conversion material (bulk material) obtained through the above operation exhibits excellent thermoelectric conversion characteristics. For example, in the temperature range from room temperature to 600K, ZT (Z = S 2 σ / k, S: Seebeck coefficient (V / K), σ: conductivity (S / m), k: thermal conductivity (W / mK) , T = absolute temperature (K)) is 0.002 or more, which is about twice or more that of a thermoelectric conversion material (bulk material) that does not contain the second component.
本発明の第2の発明である熱電変換膜は、所定の基板の上に形成され、前記第1成分及び前記第2成分を含み、通常、第1成分が90重量%〜99.9重量%、第2成分が10重量%〜0.1重量%である。従って、第1成分が母相となり、第2成分が分散相となり、中でも、第2成分が0.1〜0.5重量%とすると、熱電変換特性という観点から好ましい。更に、第2成分は、数十ナノメートルサイズの分散相であり、熱電変換膜のc軸が前記熱電変換膜を形成すべき基板の主面と略垂直方向に配向している。分散層のサイズは透過型電子顕微鏡等の微細構造観察から、熱電変換膜のc軸の配向状態はX線回折法による結晶のc軸方向の回折ピークの観察から、それぞれ確認することができる。
前記第2の発明である熱電変換膜の製造方法としては、所定の基板を準備し、前記熱電変換材料若しくは第1成分及び第2成分をこの基板上に汎用の成膜技術を施す方法でよい。
前記基板は、前記熱電変換膜が所定の配向性を有するようにエピタキシャル成長できるものであれば特に限定されない。具体的には、前記熱電変換膜の格子定数と近い格子定数を有するMgO基板又はSrTiO3基板を用いることができる。
The thermoelectric conversion film according to the second aspect of the present invention is formed on a predetermined substrate and includes the first component and the second component, and usually the first component is 90 wt% to 99.9 wt%. The second component is 10% by weight to 0.1% by weight. Therefore, it is preferable from the viewpoint of thermoelectric conversion characteristics that the first component serves as a parent phase and the second component serves as a dispersed phase. Further, the second component is a dispersed phase having a size of several tens of nanometers, and the c-axis of the thermoelectric conversion film is oriented in a direction substantially perpendicular to the main surface of the substrate on which the thermoelectric conversion film is to be formed. The size of the dispersion layer can be confirmed by observation of a fine structure such as a transmission electron microscope, and the c-axis orientation state of the thermoelectric conversion film can be confirmed by observation of a diffraction peak in the c-axis direction of the crystal by an X-ray diffraction method.
The method for producing a thermoelectric conversion film according to the second invention may be a method in which a predetermined substrate is prepared and the thermoelectric conversion material or the first component and the second component are subjected to a general-purpose film forming technique on the substrate. .
The substrate is not particularly limited as long as the substrate can be epitaxially grown so that the thermoelectric conversion film has a predetermined orientation. Specifically, an MgO substrate or an SrTiO 3 substrate having a lattice constant close to that of the thermoelectric conversion film can be used.
また、前記成膜技術としては、レーザ蒸着法、スパッタリング法、及びCVD法などを用いることができる。特に、蒸着源の組成を膜組成に対して忠実に反映させることができるという観点から、レーザ蒸着法を用いることが好ましい。レーザ蒸着法は、例えばエキシマレーザなどを蒸着源としてのターゲットに照射し、レーザエネルギーによって前記ターゲットから蒸着微粒子を削り取るようにして得、前記蒸着微粒子を前記基板上に堆積させることによって膜形成を行う。 Further, as the film forming technique, a laser vapor deposition method, a sputtering method, a CVD method, or the like can be used. In particular, it is preferable to use a laser vapor deposition method from the viewpoint that the composition of the vapor deposition source can be faithfully reflected on the film composition. In the laser vapor deposition method, for example, an excimer laser or the like is irradiated onto a target as a vapor deposition source, the vapor deposition fine particles are scraped off from the target by laser energy, and the vapor deposition fine particles are deposited on the substrate to form a film. .
このようにレーザ蒸着法は蒸着源の組成を膜組成に反映させることができるので、例えば、第1成分及び第2成分を所定組成の前記熱電変換膜をレーザ蒸着法によって形成する場合、前記膜組成と同一の第1成分及び第2成分を所定組成の前記熱電変換材料(バルク材料)をターゲットとして準備する。 Thus, since the laser vapor deposition method can reflect the composition of the vapor deposition source in the film composition, for example, when the thermoelectric conversion film having a predetermined composition of the first component and the second component is formed by the laser vapor deposition method, the film A first component and a second component having the same composition are prepared using the thermoelectric conversion material (bulk material) having a predetermined composition as a target.
また、前記熱電変換膜中に第2成分からなる微細な酸化物材料を形成させる方法としては、特に限定されないが、上述のように予め目的とする熱電変換膜の組成と同一の熱電変換材料(バルク材料)をターゲットとして準備してもよいが、所定組成の第1成分のバルク材料及び所定組成の第2成分のバルク材料をターゲットとして交互に席そうする方法でも構わない。得られる熱電変換膜中の第2成分の含有量は10重量%〜0.1重量%である。 Further, the method for forming a fine oxide material composed of the second component in the thermoelectric conversion film is not particularly limited. However, as described above, the thermoelectric conversion material having the same composition as the target thermoelectric conversion film ( Bulk material) may be prepared as a target, but a method of alternately placing a first component bulk material of a predetermined composition and a second component bulk material of a predetermined composition as a target may be used. The content of the second component in the obtained thermoelectric conversion film is 10% by weight to 0.1% by weight.
また、本発明の熱電変換膜を上述した成膜技術によって形成する場合、前記基板に対するエピタキシャル成長を実現するためには、前記基板を所定温度、好ましくは300℃以上に加熱する。 In addition, when the thermoelectric conversion film of the present invention is formed by the above-described film formation technique, the substrate is heated to a predetermined temperature, preferably 300 ° C. or higher, in order to realize epitaxial growth on the substrate.
さらに、前記熱電変換膜の結晶性を向上させるためには、前記熱電変換膜を酸素含有雰囲気で形成する。具体的には、形成雰囲気中における酸素分圧を0.1Torr以上にする。 Furthermore, in order to improve the crystallinity of the thermoelectric conversion film, the thermoelectric conversion film is formed in an oxygen-containing atmosphere. Specifically, the oxygen partial pressure in the forming atmosphere is set to 0.1 Torr or more.
以上のような操作を経て得た熱電変換膜は、所定方向に配向し、特にそのc軸が形成すべき基板の主面に対して垂直となるように配向し、前記熱電変換膜内には異方性が生じることなく、その材料組成に起因した優れた熱電変換特性を呈するようになる。主として正孔か電子かのいずれかが電気伝導に寄与するので、前記熱電変換膜は、p型又はn型熱電変換膜として機能する。そのため、材料の選択によって、p−n接合が可能となり、熱電変換デバイスとして高性能化ができる。
例えば、絶対温度400Kから600Kの温度範囲において、ZT(Z=S2σ/k,S:ゼーベック係数(V/K)、σ:導電率(S/m),k:熱伝導率(W/mK),T=絶対温度(K))で表される性能指数が0.02以上となり、第2成分が含まれない熱電変換膜に比べ、約2倍以上の性能指数を有する。
また、好ましい態様によって、第2成分が0.1〜0.5重量%の範囲の含有量とすることによって、前記熱電変換膜における酸素欠損の割合が適切な範囲となり、結果的に作動温度領域が低い場合にも、良好な熱電変換特性を呈する。
The thermoelectric conversion film obtained through the operation as described above is oriented in a predetermined direction, in particular, oriented so that its c-axis is perpendicular to the main surface of the substrate to be formed, and in the thermoelectric conversion film Without anisotropy, excellent thermoelectric conversion characteristics resulting from the material composition are exhibited. Since either holes or electrons mainly contribute to electrical conduction, the thermoelectric conversion film functions as a p-type or n-type thermoelectric conversion film. Therefore, by selecting a material, a pn junction is possible, and high performance can be achieved as a thermoelectric conversion device.
For example, in the temperature range from 400 K to 600 K, ZT (Z = S 2 σ / k, S: Seebeck coefficient (V / K), σ: conductivity (S / m), k: thermal conductivity (W / mK), T = absolute temperature (K)) is 0.02 or more, and the figure of merit is about twice or more that of a thermoelectric conversion film not containing the second component.
In addition, according to a preferred embodiment, by setting the content of the second component in the range of 0.1 to 0.5% by weight, the ratio of oxygen vacancies in the thermoelectric conversion film becomes an appropriate range, resulting in an operating temperature range. Even when it is low, it exhibits good thermoelectric conversion characteristics.
上述の通り、作動温度領域が広い前記熱電変換材料若しくは前記熱電変換膜を具えることにより、作動温度領域が広い熱電変換モジュールを作成することができる。 As described above, by providing the thermoelectric conversion material or the thermoelectric conversion film having a wide operating temperature range, a thermoelectric conversion module having a wide operating temperature range can be created.
(実施例1)
まず、第1成分として、それぞれBi2Te3、Ca2Co2O5及びSm1.98Ce0.02Cu1O4 を作製した。Bi2Te3、は、市販品を購入して用いた。 Ca2Co2O5は原料としてCaO及びCo2O3を用いて、Sm1.98Ce0.02Cu1O4は原料としてSm2O3、CeO2、CuOを用いて、それぞれ固相反応法で作製した。次に、第2成分として、それぞれY2O3、Sm2O3、Pr2O3、CeO2、BaZrO3、Y安定化ZrO2(Yの置換量はZrサイト全体に対して4mol%)、MgO、BaTiO3及びAl2O3を作製した。表1に記載の通り、前記第1成分及び前記第2成分を、第1成分95重量%、第2成分5重量%の組成比となるように秤量した後、乳鉢で粉砕・混合し、金型、プレス機を用いて加圧成型して、の円柱状ペレットを得た。粉砕・混合、加圧成型を3回繰り返して、円柱状ペレットの熱電変換材料を得た。得られた熱電変換材料のバルクのままの絶対温度400K及び600Kにおける性能指数(ZT)を測定したところ、表1に示す結果が得られた。
Example 1
First, Bi 2 Te 3 , Ca 2 Co 2 O 5 and Sm 1.98 Ce 0.02 Cu 1 O 4 were prepared as the first component, respectively. Bi 2 Te 3 was purchased from a commercial product. Ca 2 Co 2 O 5 uses CaO and Co 2 O 3 as raw materials, and Sm 1.98 Ce 0.02 Cu 1 O 4 uses Sm 2 O 3 , CeO 2 , and CuO as raw materials. It was prepared by a reaction method. Next, as the second component, Y 2 O 3 , Sm 2 O 3 , Pr 2 O 3 , CeO 2 , BaZrO 3 , Y-stabilized ZrO 2 (the substitution amount of Y is 4 mol% with respect to the entire Zr site). MgO, BaTiO 3 and Al 2 O 3 were prepared. As shown in Table 1, the first component and the second component were weighed so that the composition ratio was 95% by weight of the first component and 5% by weight of the second component, and then ground and mixed in a mortar. A cylindrical pellet was obtained by pressure molding using a mold and a press. Crushing / mixing and pressure molding were repeated three times to obtain a cylindrical pellet thermoelectric conversion material. When the figure of merit (ZT) at an absolute temperature of 400K and 600K in the bulk of the obtained thermoelectric conversion material was measured, the results shown in Table 1 were obtained.
(実施例2)
第1成分98重量%、第2成分2重量%の組成比とする以外は、実施例1と同様にして、
円柱状ペレットの熱電変換材料を得た。得られた熱電変換材料をターゲットとして用いて、(100)SrTiO3基板上に膜厚500nmの薄膜を作製した。得られた熱電変換膜の、
絶対温度400K及び600Kにおける性能指数(ZT)を測定したところ、表2に示す結果が得られた。実用に足る充分高い性能指数を示すことが分かる。
また、透過型電子顕微鏡の微細構造観察から、第2成分は数十ナノメートルサイズの分散相であることが確認できた。X線回折法による測定した結果、結晶のc軸方向の回折ピークのみが強く観察されたことから、熱電変換膜のc軸が前記熱電変換膜を形成すべき基板の主面と略垂直方向に配向していると確認できた。
(Example 2)
Except for the composition ratio of 98% by weight of the first component and 2% by weight of the second component, the same as in Example 1,
A cylindrical pellet thermoelectric conversion material was obtained. A thin film having a thickness of 500 nm was formed on a (100) SrTiO 3 substrate using the obtained thermoelectric conversion material as a target. Of the obtained thermoelectric conversion membrane,
When the figure of merit (ZT) was measured at an absolute temperature of 400K and 600K, the results shown in Table 2 were obtained. It can be seen that the figure of merit is high enough for practical use.
Further, from the observation of the microstructure of the transmission electron microscope, it was confirmed that the second component was a dispersed phase having a size of several tens of nanometers. As a result of measurement by the X-ray diffraction method, only the diffraction peak in the c-axis direction of the crystal was strongly observed. Therefore, the c-axis of the thermoelectric conversion film was substantially perpendicular to the main surface of the substrate on which the thermoelectric conversion film was to be formed. It was confirmed that it was oriented.
(比較例1)
第1成分として、それぞれBi2Te3、Ca2Co2O5及びSm1.98Ce0.02Cu1O4
を用いて、第2成分を用いなかった以外は、実施例1と同様に固相反応法で熱電変換材料を作製した。得られた熱電変換材料(バルク材料のまま)の絶対温度400K及び600Kにおける性能指数(ZT)を測定したところ、全て0.0008〜0.001の範囲の特性だった。
(Comparative Example 1)
As the first component, Bi 2 Te 3 , Ca 2 Co 2 O 5 and Sm 1.98 Ce 0.02 Cu 1 O 4, respectively.
A thermoelectric conversion material was produced by the solid phase reaction method in the same manner as in Example 1 except that the second component was not used. When the figure of merit (ZT) at 400 K and 600 K of the absolute temperature of the obtained thermoelectric conversion material (as a bulk material) was measured, all the characteristics were in the range of 0.0008 to 0.001.
(比較例2)
比較例1で得られた熱電変換材料をターゲットとして用いて、実施例2と同様にして、(100)SrTiO3基板上に膜厚500nmの薄膜を作製した。得られた熱電変換膜の、絶対温度400K及び600Kにおける性能指数(ZT)を測定したところ、全て0.008〜0.01の範囲の特性だった。
(Comparative Example 2)
Using the thermoelectric conversion material obtained in Comparative Example 1 as a target, a thin film having a thickness of 500 nm was produced on a (100) SrTiO 3 substrate in the same manner as in Example 2. When the figure of merit (ZT) at an absolute temperature of 400K and 600K was measured for the obtained thermoelectric conversion film, all the characteristics were in the range of 0.008 to 0.01.
以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。例えば、本発明の熱電変換材料及び熱電変換膜は、上述したレーザ蒸着法などの気相法に加えて、固相法や液相法などによっても形成することができる。 As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed. For example, the thermoelectric conversion material and the thermoelectric conversion film of the present invention can be formed by a solid phase method, a liquid phase method, or the like in addition to the vapor phase method such as the laser vapor deposition method described above.
Claims (7)
(1)第1成分
(1−1)元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。
半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)
(1−2)元素組成CaCoO、BiSrCaCoO及びNaCoO(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料、元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)からなる酸化物材料、元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、
ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる少なくとも一種類の酸化物材料)
(2)第2成分
元素組成APDQORからなる酸化物系材料(Aはイットリウム(Y)、RE(REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素)、セリウム(Ce)、ジルコニウム(Zr)、アルミニウム(Al)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びマグネシウム(Mg)から選ばれる少なくとも一種の元素、Dはチタン(Ti)、ジルコニウム(Zr)、ケイ素(Si)、スズ(Sn)及びタングステン(W)から選ばれる少なくとも一種の元素、Oは酸素である。但し、AがY、RE及びAlから選ばれる少なくとも一種の元素の場合、組成比はP=2、Q=0及びR=3、AがCe及びZrから選ばれる少なくとも一種の元素の場合、組成比はP=1、Q=0及びR=2、但し、AがZrの場合は、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。AがMgの場合、組成比はP=1、Q=0及びR=1、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがTi、Zr、Si及びSnから選ばれる少なくとも一種の元素である場合、組成比はP=1、Q=1及びR=3、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがWである場合は、組成比はP=1、Q=1及びR=4) A first component including at least one selected from a semiconductor material shown in the following (1-1) or an oxide-based material shown in the following (1-2) and at least one selected from an oxide-based material shown in the following (2). A thermoelectric conversion material comprising a second component.
(1) First component (1-1) Elemental composition Bi A Sb B Pb C Te D or semiconductor material containing at least one selected from Si E Ge F (Bi is bismuth, Sb is antimony, Pb is lead and Te is Tellurium.
The composition ratio is not limited as long as it is a composition range that forms a structure as a semiconductor material, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C is greater than zero. And D, E and F are greater than zero. )
(1-2) Elemental composition CaCoO, BiSrCaCoO and NaCoO (Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen, provided that the composition range forms the structure of the composite oxide. The composition ratio is not limited.) A cobalt-containing oxide material containing at least one selected from any one of the following: elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen, provided that the composite oxide) The composition ratio is not limited as long as it is a composition range that forms a structure of the following :) an oxide material comprising: elemental composition RE 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), Neodymium (Nd), Samarium (Sm),
At least one rare earth element selected from europium (Eu) and gadolinium (Gd), M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce), Cu is copper And O is oxygen and the composition ratio is 0 <X <2, 0 ≦ Y <4).
(2) a second component element composition A P D Q O R of oxide based material (A is yttrium (Y), RE (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm ), Europium (Eu) and gadolinium (Gd), at least one rare earth element), cerium (Ce), zirconium (Zr), aluminum (Al), barium (Ba), strontium (Sr), calcium (Ca) And at least one element selected from magnesium (Mg), D is at least one element selected from titanium (Ti), zirconium (Zr), silicon (Si), tin (Sn) and tungsten (W), O is oxygen Provided that when A is at least one element selected from Y, RE and Al, the composition ratio is P = 2, Q = 0 and = 3, when A is at least one element selected from Ce and Zr, the composition ratio is P = 1, Q = 0 and R = 2, provided that when A is Zr, at least part of the Zr sites of ZrO 2 Is substituted by Y. When A is Mg, the composition ratio is P = 1, Q = 0 and R = 1, A is at least one element selected from Ba, Sr and Ca, When D is at least one element selected from Ti, Zr, Si and Sn, the composition ratio is P = 1, Q = 1 and R = 3, and A is at least one selected from Ba, Sr and Ca. In the case of an element and D is W, the composition ratio is P = 1, Q = 1 and R = 4)
及び下記(2)に示す酸化物系材料から選ばれる少なくとも一種を含む第2成分を含むことを特徴とする、熱電変換膜。
(1)第1成分
(1−1)元素組成BiASbBPbCTeD又はSiEGeFから選ばれる少なくとも一種を含む半導体材料(Biはビスマス、Sbはアンチモン、Pbは鉛及びTeはテルルである。半導体材料としての構造を組む組成範囲であれば、組成比は限定されないが、組成比A、B及びCはいずれもゼロ以上であり、かつ、A、B及びCの少なくともいずれかはゼロより大きく、かつ、D、 E及びFはゼロより大きい。)
(1−2)元素組成CaCoO、BiSrCaCoO及びNaCoO(Caはカルシウム、Coはコバルト、Biはビスマス、Srはストロンチウム、Naはナトリウム及びOは酸素である。
但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)のいずれかから選ばれる少なくとも一種を含むコバルト含有酸化物材料、元素組成ZnAlO(Znは亜鉛、Alはアルミニウム及びOは酸素である。但し、複合酸化物の構造を組む組成範囲であれば、組成比は限定されない。)からなる酸化物材料、元素組成RE2-XMXCu1O4-Y (REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素、Mはバリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びセリウム(Ce)から選ばれる少なくとも一種の元素、Cuは銅及びOは酸素であり、組成比は0<X<2、0≦Y<4)からなる少なくとも一種類の酸化物材料)
(2)第2成分
元素組成APDQORからなる酸化物系材料(Aはイットリウム(Y)、RE(REはランタン(La)、プラセオジム(Pr)、 ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)及びガドリニウム(Gd)から選ばれる少なくとも一種の希土類元素)、セリウム(Ce)、ジルコニウム(Zr)、アルミニウム(Al)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)及びマグネシウム(Mg)から選ばれる少なくとも一種の元素、Dはチタン(Ti)、ジルコニウム(Zr)、ケイ素(Si)、スズ(Sn)及びタングステン(W)から選ばれる少なくとも一種の元素、Oは酸素である。但し、AがY、RE及びAlから選ばれる少なくとも一種の元素の場合、組成比はP=2、Q=0及びR=3、AがCe及びZrから選ばれる少なくとも一種の元素の場合、組成比はP=1、Q=0及びR=2、但し、AがZrの場合は、ZrO2のZrサイトの少なくとも一部がYに置換されて安定化されている。AがMgの場合、組成比はP=1、Q=0及びR=1、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがTi、Zr、Si及びSnから選ばれる少なくとも一種の元素である場合、組成比はP=1、Q=1及びR=3、AがBa、Sr及びCaから選ばれる少なくとも一種の元素であり、かつ、DがWである場合は、組成比はP=1、Q=1及びR=4) A first component including at least one selected from a semiconductor material shown in the following (1-1) or an oxide-based material shown in the following (1-2) and at least one selected from an oxide-based material shown in the following (2). A thermoelectric conversion film comprising a second component.
(1) First component (1-1) Elemental composition Bi A Sb B Pb C Te D or semiconductor material containing at least one selected from Si E Ge F (Bi is bismuth, Sb is antimony, Pb is lead and Te is The composition ratio is not limited as long as it is a composition range that forms a structure as a semiconductor material, but the composition ratios A, B, and C are all zero or more, and at least one of A, B, and C Is greater than zero, and D, E, and F are greater than zero.)
(1-2) Elemental composition CaCoO, BiSrCaCoO and NaCoO (Ca is calcium, Co is cobalt, Bi is bismuth, Sr is strontium, Na is sodium and O is oxygen.
However, the composition ratio is not limited as long as it is within a composition range that forms the structure of the composite oxide. A cobalt-containing oxide material containing at least one selected from the group consisting of elemental composition ZnAlO (Zn is zinc, Al is aluminum, and O is oxygen. However, if the composition range forms a complex oxide structure, the composition ratio is not limited. oxide material consisting of), elemental composition RE 2-X M X Cu 1 O 4-Y (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), At least one rare earth element selected from europium (Eu) and gadolinium (Gd), M is at least one element selected from barium (Ba), strontium (Sr), calcium (Ca) and cerium (Ce), Cu is copper And O is oxygen and the composition ratio is 0 <X <2, 0 ≦ Y <4).
(2) a second component element composition A P D Q O R of oxide based material (A is yttrium (Y), RE (RE is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm ), Europium (Eu) and gadolinium (Gd), at least one rare earth element), cerium (Ce), zirconium (Zr), aluminum (Al), barium (Ba), strontium (Sr), calcium (Ca) And at least one element selected from magnesium (Mg), D is at least one element selected from titanium (Ti), zirconium (Zr), silicon (Si), tin (Sn) and tungsten (W), O is oxygen Provided that when A is at least one element selected from Y, RE and Al, the composition ratio is P = 2, Q = 0 and = 3, when A is at least one element selected from Ce and Zr, the composition ratio is P = 1, Q = 0 and R = 2, provided that when A is Zr, at least part of the Zr sites of ZrO 2 Is substituted by Y. When A is Mg, the composition ratio is P = 1, Q = 0 and R = 1, A is at least one element selected from Ba, Sr and Ca, When D is at least one element selected from Ti, Zr, Si and Sn, the composition ratio is P = 1, Q = 1 and R = 3, and A is at least one selected from Ba, Sr and Ca. In the case of an element and D is W, the composition ratio is P = 1, Q = 1 and R = 4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076561A JP2007258200A (en) | 2006-03-20 | 2006-03-20 | Thermoelectric conversion material and thermoelectric conversion film using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076561A JP2007258200A (en) | 2006-03-20 | 2006-03-20 | Thermoelectric conversion material and thermoelectric conversion film using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007258200A true JP2007258200A (en) | 2007-10-04 |
Family
ID=38632172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006076561A Pending JP2007258200A (en) | 2006-03-20 | 2006-03-20 | Thermoelectric conversion material and thermoelectric conversion film using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007258200A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8029703B2 (en) | 2008-08-29 | 2011-10-04 | Lg Chem, Ltd. | Compound semiconductor and its manufacturing method, and thermoelectric conversion device using the same |
JP2013543652A (en) * | 2010-09-16 | 2013-12-05 | リサーチ・トライアングル・インスティチュート | Rare earth doped materials with improved thermoelectric figure of merit |
CN105514257A (en) * | 2016-01-06 | 2016-04-20 | 西华大学 | Ca3Co4O9/Bi2Ca2Co2OyComposite thermoelectric material and preparation method thereof |
US9660165B2 (en) | 2008-08-29 | 2017-05-23 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
CN110627502A (en) * | 2019-10-22 | 2019-12-31 | 中南大学 | Low-temperature p-type composite thermoelectric material and preparation method thereof |
US11162159B2 (en) | 2017-03-15 | 2021-11-02 | Lg Chem, Ltd. | Compound semiconductor and use thereof |
CN114068795A (en) * | 2021-03-10 | 2022-02-18 | 杭州安誉科技有限公司 | Semiconductor element for thermoelectric module of real-time fluorescent quantitative PCR instrument |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1093147A (en) * | 1996-09-18 | 1998-04-10 | Kubota Corp | Thermo-element material and its manufacture |
JP2001223395A (en) * | 2000-02-09 | 2001-08-17 | Natl Inst Of Advanced Industrial Science & Technology Meti | Manufacturing method od thermoelectric material |
JP2003324220A (en) * | 2002-05-02 | 2003-11-14 | Toyota Motor Corp | Method for manufacturing oxide based thermoelectric conversion thin film based on laser vapor deposition method |
JP2005223307A (en) * | 2004-01-08 | 2005-08-18 | Univ Nagoya | Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film |
JP2005294478A (en) * | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
-
2006
- 2006-03-20 JP JP2006076561A patent/JP2007258200A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1093147A (en) * | 1996-09-18 | 1998-04-10 | Kubota Corp | Thermo-element material and its manufacture |
JP2001223395A (en) * | 2000-02-09 | 2001-08-17 | Natl Inst Of Advanced Industrial Science & Technology Meti | Manufacturing method od thermoelectric material |
JP2003324220A (en) * | 2002-05-02 | 2003-11-14 | Toyota Motor Corp | Method for manufacturing oxide based thermoelectric conversion thin film based on laser vapor deposition method |
JP2005223307A (en) * | 2004-01-08 | 2005-08-18 | Univ Nagoya | Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film |
JP2005294478A (en) * | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9620696B2 (en) | 2008-08-28 | 2017-04-11 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
US8029703B2 (en) | 2008-08-29 | 2011-10-04 | Lg Chem, Ltd. | Compound semiconductor and its manufacturing method, and thermoelectric conversion device using the same |
KR101117847B1 (en) * | 2008-08-29 | 2012-03-16 | 주식회사 엘지화학 | New compound semiconductor and producing method thereof, and thermoelectric conversion element using the same |
US8173097B2 (en) | 2008-08-29 | 2012-05-08 | Lg Chem, Ltd. | Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same |
US8226843B2 (en) | 2008-08-29 | 2012-07-24 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
US8535637B2 (en) | 2008-08-29 | 2013-09-17 | Lg Chem, Ltd. | Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same |
US9660165B2 (en) | 2008-08-29 | 2017-05-23 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
US8715538B2 (en) | 2008-08-29 | 2014-05-06 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof; and thermoelectric conversion element using the same |
US9437796B2 (en) | 2010-09-16 | 2016-09-06 | Research Triangle Institute | Rare earth-doped materials with enhanced thermoelectric figure of merit |
JP2013543652A (en) * | 2010-09-16 | 2013-12-05 | リサーチ・トライアングル・インスティチュート | Rare earth doped materials with improved thermoelectric figure of merit |
CN105514257A (en) * | 2016-01-06 | 2016-04-20 | 西华大学 | Ca3Co4O9/Bi2Ca2Co2OyComposite thermoelectric material and preparation method thereof |
US11162159B2 (en) | 2017-03-15 | 2021-11-02 | Lg Chem, Ltd. | Compound semiconductor and use thereof |
CN110627502A (en) * | 2019-10-22 | 2019-12-31 | 中南大学 | Low-temperature p-type composite thermoelectric material and preparation method thereof |
CN110627502B (en) * | 2019-10-22 | 2020-12-22 | 中南大学 | Low-temperature p-type composite thermoelectric material and preparation method thereof |
CN114068795A (en) * | 2021-03-10 | 2022-02-18 | 杭州安誉科技有限公司 | Semiconductor element for thermoelectric module of real-time fluorescent quantitative PCR instrument |
CN114068795B (en) * | 2021-03-10 | 2022-07-01 | 杭州安誉科技有限公司 | Semiconductor element for thermoelectric module of real-time fluorescent quantitative PCR instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Delorme et al. | Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics | |
JP5035561B2 (en) | Oxide sintered body having n-type thermoelectric properties | |
JP2007258200A (en) | Thermoelectric conversion material and thermoelectric conversion film using the same | |
JP5252474B2 (en) | Oxide composite having n-type thermoelectric properties | |
Owens-Baird et al. | Thermoelectric materials | |
Presečnik et al. | Microstructural and thermoelectric properties of WO3-doped Ca3Co4O9 ceramics | |
JP4024294B2 (en) | Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element | |
Jackson et al. | Neodymium-strontium titanate: a new ceramic for an old problem | |
JP4635387B2 (en) | Method for producing plate-like powder and method for producing crystal-oriented ceramics | |
KR102109500B1 (en) | Oxide nano particle dispersed and chalcogenide based composite thermoelectric material | |
JP2003142742A (en) | Manganese oxide thermoelectric converting material | |
Amirkhizi et al. | Effect of B-site doping on the thermoelectric performances of Ca0. 97Y0. 01 La0. 01 Yb0. 01Mn1-2xNbxMoxO3 thermoelectric ceramics | |
JP4608940B2 (en) | Thermoelectric material | |
JP4013245B2 (en) | CRYSTAL-ORIENTED CERAMIC AND PROCESS FOR PRODUCING THE SAME, PLATE POWDER FOR PRODUCTION OF CRYSTAL-ORIENTED CERAMIC, AND THERMOELECTRIC CONV | |
Jibri et al. | Suppression of thermal conductivity in LaCoO3 ceramic by lattice disorder and mass fluctuation scattering for thermoelectric application | |
JP4776916B2 (en) | n-type thermoelectric conversion material | |
JP2004087537A (en) | P type thermoelectric converting material and its manufacturing method | |
JP2012028504A (en) | CaMnO3 TYPE THERMOELECTRIC CONVERSION MATERIAL AND METHOD FOR PRODUCING THE SAME | |
JP5931413B2 (en) | P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module | |
JP2000012915A (en) | Thermoelectric conversion material | |
JP3089301B1 (en) | Thermoelectric conversion material and method for producing composite oxide sintered body | |
Seo et al. | Fabrication and thermoelectric properties of Sr1− xSixMnO3− δ | |
JP2008124404A (en) | Thermoelectric material and manufacturing method of thermoelectric material | |
US6806218B2 (en) | Grain oriented ceramics, thermoelectric conversion element and production process thereof | |
JP3472814B2 (en) | Composite oxide with excellent thermoelectric conversion performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111011 |