WO2019178706A1 - Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components - Google Patents

Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components Download PDF

Info

Publication number
WO2019178706A1
WO2019178706A1 PCT/CL2018/050015 CL2018050015W WO2019178706A1 WO 2019178706 A1 WO2019178706 A1 WO 2019178706A1 CL 2018050015 W CL2018050015 W CL 2018050015W WO 2019178706 A1 WO2019178706 A1 WO 2019178706A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
zinc oxide
silver
powders
zinc
Prior art date
Application number
PCT/CL2018/050015
Other languages
Spanish (es)
French (fr)
Inventor
Danny Francisco GUZMÁN MÉNDEZ
Original Assignee
Universidad De Atacama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Atacama filed Critical Universidad De Atacama
Priority to PCT/CL2018/050015 priority Critical patent/WO2019178706A1/en
Publication of WO2019178706A1 publication Critical patent/WO2019178706A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements

Definitions

  • the present invention relates to the field of metallurgy, more specifically to a process for obtaining powders of a silver-zinc oxide alloy (Ag-ZnO), with a homogeneous distribution of oxide precipitates on a nanometric scale, which can be sintered to obtain a monolithic structure, usable to manufacture electrical contactors, anodes, among other components.
  • a silver-zinc oxide alloy Al-ZnO
  • contactors devices responsible for opening and closing electrical circuits.
  • the contactors are manufactured from a base metal with a high electrical and thermal conductivity, such as silver (Ag), with the presence of a second phase, which is usually a metal oxide.
  • This oxide gives the composite a greater mechanical resistance and improves its behavior against erosion by electric arc. Additionally, it has been shown that the presence of certain oxides decreases the tendency to weld during the operation of the contactor.
  • the mechanical and electrical properties of the contactor are closely related to the size and dispersion of the oxides in the silver matrix (Ag).
  • silver-cadmium oxide (Ag-CdO) alloys are the most commonly used commercially. These alloys are manufactured by means of a process that involves casting (Ag-Cd solid solution formation), lamination and internal oxidation.
  • silver-zinc oxide (Ag-ZnO) alloys have aroused great interest with a view to replacing cadmium-based alloys (Cd), because zinc (Zn) possesses physi-chemical properties similar to cadmium ( Cd), but without the toxic effects of this last element.
  • Ag-ZnO alloys compared to the Ag-SnÜ2 alloys (another possible substitute), have lower contact resistance and better resistance to the electric arc.
  • Ag-SnÜ2 alloys they have drawbacks in their manufacture, which has limited their manufacturing on a commercial scale.
  • 06/06/2012 entitled “METHOD FOR MANUFACTURING Ag-OXIDE ELECTRIC MATERIAL CONTACTOR, AND PRODUCT THEREOF”, proposes to carry out the internal oxidation process using oxygen pressures between 5 and 50 Kg / cm 2 . Although, it is possible to improve the dispersion of the oxides, this process involves facilities with a high cost.
  • the production of the Ag-ZnO alloy has been studied, using the conventional powder metallurgy route (compaction-sintering), starting from silver powders (Ag) and zinc oxide (ZnO).
  • the dispersion of zinc oxide (ZnO) in the silver matrix (Ag) depends on the initial particle size of powders.
  • their agglomeration occurs, making it difficult to obtain a fine and homogeneous distribution, affecting the mechanical and electrical properties of the contactor.
  • ZnO zinc oxide precipitates
  • US6432157 (B1) dated 08/13/2002, entitled “METHOD FOR PREPARING AG-ZNO ELECTRIC CONTACT MATERIAL AND ELECTRIC CONTACT MATERIAL PRODUCED THEREBY” proposes to improve the distribution of zinc oxides (ZnO), by a process that includes: oxidation of solid silver-zinc solution (Ag-Zn) chips, compaction, sintering and extrusion. Even when extrusion manages to improve the distribution of oxides, the process is long and complex, which makes it unattractive.
  • the present invention provides a simple methodology for the production of powders of Ag-ZnO alloys by hot reactive grinding, from powders of solid silver-zinc solution (Ag-Zn), obtaining as a result, a homogeneous distribution of zinc oxide (ZnO) on a nanometric scale, impossible to achieve by other methods of synthesis.
  • the generated powders can be sintered to produce a monolithic structure, usable to manufacture electrical contactors, anodes, among other components.
  • the first objective of the present invention is to provide a process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver matrix (Ag), which comprises processing Silver-zinc solid solution powders (Ag-Zn) in a mill at temperatures between 50-150 ° C, in the presence of an oxygen-rich atmosphere. Due to the effects of grinding and the fragile nature of zinc oxide (ZnO), homogenization of the distribution of this precipitate occurs on a nanometric scale.
  • Ag-ZnO silver-zinc oxide
  • a material is obtained whose microstructure consists of small precipitates of zinc oxide (ZnO) homogeneously distributed in a silver matrix (Ag), useful for the manufacture of electrical components, such as contactors, relays, anodes, among others .
  • ZnO zinc oxide
  • Ag silver matrix
  • Figure 1 shows a modified mill scheme to perform the hot reactive grinding process.
  • the drive shaft, perimeter furnace, gas inlet-outlet system and the reaction chamber are appreciated.
  • Figure 2 shows the X-ray diffractograms of the samples subjected to different hot reactive grinding times. Enlarged areas of the diffraction of the plane (11) of the solid silver-zinc solution (Ag-Zn) and of the diffractogram of the sample submitted to 3 hours of processing are presented.
  • Figure 3 shows micrographs (at different magnifications) obtained by scanning electron microscopy of the powders after 3 h of hot reactive grinding. The size distribution of the agglomerates is also presented.
  • Figure 4 shows a cross-sectional micrograph of the powders after 3 h of hot reactive grinding obtained by field emission scanning electron microscopy.
  • silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver matrix (Ag) the inventor proposes a new method of material synthesis, called “ Hot Reactive Grinding ”.
  • powders of solid silver-zinc solution (Ag-Zn) are processed in a mill at temperatures between 50-150 ° C, in the presence of an oxygen rich atmosphere.
  • the oxidation of zinc (Zn) begins at the surface of the powders, and due to the effects of grinding and the fragile nature of zinc oxide (ZnO), there is a homogenization of the distribution of this precipitate as that the reactive grinding process advances.
  • Silver-zinc solid solution powders (Ag-Zn) with a nominal composition of Ag 15% atomic Zn, obtained by mechanical alloy, were introduced into a modified attrition mill (Figure 1 scheme), which comprises a drive shaft (4 ), perimeter furnace (3), gas inlet-outlet system (1) and the reaction chamber (2).
  • the powders were ground for 0.5; one ; fifteen; 2 and 3 hours at 138 Q C under oxygen flow of 1200 cm 3 m and 1 .
  • a mass ratio of 100: 1 ball powders was used, while the rotational speed of the drive shaft was maintained at 400 rpm.
  • Figure 2 presents the X-ray diffraction analysis after the hot reactive grinding process.
  • a transfer of the diffraction peak of the plane (11) of the solid silver-zinc solution (Ag-Zn) towards smaller angles 2Q is observed as the process time increases.
  • the above is evidence of an increase in the volume of your unit cell, due to the loss of zinc (Zn) due to its oxidation.
  • This conclusion is ratified by analyzing the X-ray diffractogram of the sample subjected to 3 h of hot reactive grinding, where the presence of zinc oxide (ZnO) is clearly detected.
  • the volume of unit broth of the solid silver-zinc solution (Ag-Zn), 0.0681 1 nm 3 presents values close to the volume of the unit cell of the silver (Ag ) pure, 0.06818 nm 3 , which is evidence that much of the zinc (Zn) present in the solid solution has been oxidized.
  • Figure 3 shows micrographs obtained by scanning electron microscopy of the powders after 3 hours of hot reactive grinding. It is noted the presence of agglomerates with an average size close to 29 pm. These agglomerates are formed by small laminar particles, which is evidence of the great plastic deformation to which the powders were subjected during the process.
  • Figure 4 shows a micrograph of a metallographically prepared sample of powders with 3 hours of hot reactive grinding. This micrograph was acquired using a field emission scanning electron microscope. It is observed that the powders are constituted by a matrix rich in silver (Ag), with nanometric precipitates of zinc oxide (ZnO) homogeneously distributed.
  • Ag silver
  • ZnO zinc oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Contacts (AREA)

Abstract

A method for producing silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver (Ag) matrix, comprising processing silver-zinc (Ag-Zn) solid solution powders in a mill at temperatures of 50-150°C, in the presence of an oxygen-rich atmosphere, which, due to the effects of milling and the fragile nature of the zinc oxide (ZnO), results in homogenisation of the distribution of that precipitate on a nanometre scale that cannot be achieved using conventional synthesis methods. The powder obtained is sintered to obtain a monolithic structure that can be used to manufacture electrical contactors and relays, anodes, amongst other components.

Description

PROCESO DE OBTENCIÓN DE POLVOS DE ALEACIÓN PLATA-ÓXIDO DE CINC (AG-ZNO) Y ESTRUCTURA MONOLÍTICA SINTERIZADA PARA FABRICAR  PROCESS FOR OBTAINING SILVER-OXIDE ALLOY POWDER CINC (AG-ZNO) AND SINOLIZED MONOLITICAL STRUCTURE TO MANUFACTURE
COMPONENTES ELÉCTRICOS  ELECTRIC COMPONENTS
CAMPO DE APLICACIÓN SCOPE
La presente invención se refiere al campo de la metalurgia, más específicamente a un proceso para la obtención de polvos de una aleación plata - óxido de cinc (Ag-ZnO), con una distribución homogénea de precipitados de óxido a escala nanométrica, los cuales pueden ser sinterizados para obtener una estructura monolítica, utilizable para fabricar contactores eléctricos, ánodos, entre otros componentes.  The present invention relates to the field of metallurgy, more specifically to a process for obtaining powders of a silver-zinc oxide alloy (Ag-ZnO), with a homogeneous distribution of oxide precipitates on a nanometric scale, which can be sintered to obtain a monolithic structure, usable to manufacture electrical contactors, anodes, among other components.
DESCRIPCIÓN DEL ARTE PREVIO DESCRIPTION OF PRIOR ART
Uno de los elementos más usados en la industria eléctrica son los contactores, dispositivos encargados de abrir y cerrar circuitos eléctricos. Los contactores son fabricados a partir de un metal base con una alta conductividad eléctrica y térmica, como la plata (Ag), con presencia de una segunda fase, que generalmente suele ser un óxido metálico. Este óxido, otorga al material compuesto una mayor resistencia mecánica y mejora su comportamiento frente a la erosión por arco eléctrico. Adicionalmente, se ha demostrado que la presencia de ciertos óxidos, disminuye la tendencia a la soldadura durante el funcionamiento del contactor. Es importante destacar, que las propiedades mecánicas y eléctricas del contactor se encuentran estrechamente relacionadas con el tamaño y dispersión de los óxidos en la matriz de plata (Ag).  One of the most used elements in the electrical industry are contactors, devices responsible for opening and closing electrical circuits. The contactors are manufactured from a base metal with a high electrical and thermal conductivity, such as silver (Ag), with the presence of a second phase, which is usually a metal oxide. This oxide gives the composite a greater mechanical resistance and improves its behavior against erosion by electric arc. Additionally, it has been shown that the presence of certain oxides decreases the tendency to weld during the operation of the contactor. Importantly, the mechanical and electrical properties of the contactor are closely related to the size and dispersion of the oxides in the silver matrix (Ag).
Dentro de las aleaciones que presentan óxidos como segunda fase, las aleaciones plata-óxido de cadmio (Ag-CdO) son las más utilizadas comercialmente. Estas aleaciones, son fabricadas por medio de un proceso que involucra fundición (formación solución sólida Ag-Cd), laminación y oxidación interna.  Among the alloys that have oxides as a second phase, silver-cadmium oxide (Ag-CdO) alloys are the most commonly used commercially. These alloys are manufactured by means of a process that involves casting (Ag-Cd solid solution formation), lamination and internal oxidation.
Debido a la naturaleza tóxica del cadmio (Cd) y sus compuestos, existen fuertes presiones para disminuir su uso. En este contexto, la directiva 201 1/65/UE del Parlamento Europeo (RoHS 201 1/65/UE) ha restringido el empleo de este elemento en los equipos eléctricos y electrónicos. Sin embargo, producto de que no existe en la actualidad un sustituto viable para remplazar las aleaciones Ag-CdO, su uso en dispositivos de contacto eléctrico sigue siendo permitido. Due to the toxic nature of cadmium (Cd) and its compounds, there are strong pressures to decrease its use. In this context, Directive 201 1/65 / EU of the European Parliament (RoHS 201 1/65 / EU) has restricted the use of this element in electrical and electronic equipment. However, a product that does not exist in the Currently a viable substitute for replacing Ag-CdO alloys, its use in electrical contact devices is still allowed.
En el último tiempo, las aleaciones plata-óxido de cinc (Ag-ZnO) han despertado gran interés con miras a reemplazar las aleaciones base cadmio (Cd), debido a que el cinc (Zn) posee propiedades físico-químicas similares al cadmio (Cd), pero sin los efectos tóxicos de este último elemento. A lo anterior se suma, que las aleaciones Ag-ZnO en comparación con las aleaciones Ag-SnÜ2 (otro posible sustituto), tienen menor resistencia de contacto y mejor resistencia al arco eléctrico. Sin embargo, al igual que las aleaciones Ag-SnÜ2, poseen inconvenientes en su manufactura, lo que ha limitado su fabricación a escala comercial.  In recent times, silver-zinc oxide (Ag-ZnO) alloys have aroused great interest with a view to replacing cadmium-based alloys (Cd), because zinc (Zn) possesses physi-chemical properties similar to cadmium ( Cd), but without the toxic effects of this last element. In addition, the Ag-ZnO alloys compared to the Ag-SnÜ2 alloys (another possible substitute), have lower contact resistance and better resistance to the electric arc. However, like Ag-SnÜ2 alloys, they have drawbacks in their manufacture, which has limited their manufacturing on a commercial scale.
En efecto, cuando la solución sólida plata-cinc (Ag-Zn) excede el 5% en masa de cinc (Zn), durante el proceso de oxidación interna, se forma una capa superficial de óxido de cinc (ZnO), que impide que el proceso continúe, debido a la baja difusión del oxígeno a través de ella.  Indeed, when the solid silver-zinc solution (Ag-Zn) exceeds 5% by mass of zinc (Zn), during the internal oxidation process, a surface layer of zinc oxide (ZnO) is formed, which prevents the process continues, due to the low diffusion of oxygen through it.
Para dar solución a este problema, la patente JP4947850 (B2) de fecha To solve this problem, patent JP4947850 (B2) dated
06/06/2012, titulado “METHOD FOR MANUFACTURING Ag-OXIDE ELECTRIC CONTACTOR MATERIAL, AND PRODUCT THEREOF”, propone realizar el proceso de oxidación interna utilizando presiones de oxígeno entre 5 y 50 Kg/cm2. Si bien, se logra mejorar la dispersión de los óxidos, este proceso involucra instalaciones con un elevado costo. 06/06/2012, entitled “METHOD FOR MANUFACTURING Ag-OXIDE ELECTRIC MATERIAL CONTACTOR, AND PRODUCT THEREOF”, proposes to carry out the internal oxidation process using oxygen pressures between 5 and 50 Kg / cm 2 . Although, it is possible to improve the dispersion of the oxides, this process involves facilities with a high cost.
Adicionalmente, se ha estudiado la producción de la aleación Ag-ZnO, mediante la ruta pulvimetalúrgica convencional (compactación-sinterización), partiendo de polvos de plata (Ag) y óxido de cinc (ZnO). En este caso, la dispersión del óxido de cinc (ZnO) en la matriz de plata (Ag) depende del tamaño de partícula inicial de polvos. Sin embargo, al trabajar con partículas de menor tamaño, se produce la aglomeración de éstas, dificultando la obtención de una distribución fina y homogénea, afectando las propiedades mecánicas y eléctricas del contactor.  Additionally, the production of the Ag-ZnO alloy has been studied, using the conventional powder metallurgy route (compaction-sintering), starting from silver powders (Ag) and zinc oxide (ZnO). In this case, the dispersion of zinc oxide (ZnO) in the silver matrix (Ag) depends on the initial particle size of powders. However, when working with smaller particles, their agglomeration occurs, making it difficult to obtain a fine and homogeneous distribution, affecting the mechanical and electrical properties of the contactor.
Con el objeto de solucionar los problemas de aglomeración y mala distribución de óxidos, la patente US4609525 A de fecha 02/09/1986, titulada“CADMIUM-FREE SILVER AND METAL OXIDE COMPOSITE USEFUL FOR ELECTRICAL CONTACTS AND A METHOD FOR ITS MANUFACTURE”, propone realizar la oxidación de polvos de solución sólida plata-cinc (Ag-Zn), previamente molidos. De esta forma, debido a los defectos originados producto de la molienda y la corta distancia de difusión (polvos), se obtiene una distribución fina y homogénea de precipitados de óxido de cinc (ZnO) en la matriz de plata (Ag). In order to solve the problems of agglomeration and poor distribution of oxides, patent US4609525 A dated 02/09/1986, entitled “CADMIUM-FREE SILVER AND METAL OXIDE COMPOSITE USEFUL FOR ELECTRICAL CONTACTS AND A METHOD FOR ITS MANUFACTURE”, proposes perform the oxidation of powders of solid silver-zinc solution (Ag-Zn), previously ground. In this way, due to The defects caused by grinding and the short diffusion distance (powders), a fine and homogeneous distribution of zinc oxide precipitates (ZnO) in the silver matrix (Ag) is obtained.
En esta misma vía, la patente US6432157 (B1 ) de fecha 13/08/2002, titulada “METHOD FOR PREPARING AG-ZNO ELECTRIC CONTACT MATERIAL AND ELECTRIC CONTACT MATERIAL PRODUCED THEREBY” plantea mejorar la distribución de óxidos de cinc (ZnO), mediante un proceso que incluye: oxidación de virutas de solución sólida plata-cinc (Ag-Zn), compactación, sinterización y extrusión. Aun cuando la extrusión logra mejorar la distribución de óxidos, el proceso es largo y complejo, lo cual lo hace poco atractivo.  In this same way, US6432157 (B1) dated 08/13/2002, entitled “METHOD FOR PREPARING AG-ZNO ELECTRIC CONTACT MATERIAL AND ELECTRIC CONTACT MATERIAL PRODUCED THEREBY” proposes to improve the distribution of zinc oxides (ZnO), by a process that includes: oxidation of solid silver-zinc solution (Ag-Zn) chips, compaction, sintering and extrusion. Even when extrusion manages to improve the distribution of oxides, the process is long and complex, which makes it unattractive.
Considerando lo descrito, la presente invención provee una metodología sencilla para la producción de polvos de aleaciones Ag-ZnO mediante molienda reactiva en caliente, a partir de polvos de solución sólida plata-cinc (Ag-Zn), obteniendo como resultado, una distribución homogénea de óxido de cinc (ZnO) a escala nanométrica, imposible de alcanzar por otros métodos de síntesis. De esta forma, los polvos generados, pueden ser sinterizados para producir una estructura monolítica, utilizable para fabricar contactores eléctricos, ánodos, entre otros componentes. RESUMEN DE LA INVENCIÓN  Considering what has been described, the present invention provides a simple methodology for the production of powders of Ag-ZnO alloys by hot reactive grinding, from powders of solid silver-zinc solution (Ag-Zn), obtaining as a result, a homogeneous distribution of zinc oxide (ZnO) on a nanometric scale, impossible to achieve by other methods of synthesis. In this way, the generated powders can be sintered to produce a monolithic structure, usable to manufacture electrical contactors, anodes, among other components. SUMMARY OF THE INVENTION
El primer objetivo de la presente invención es proveer un proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) con una distribución fina y homogénea de precipitados de óxido en la matriz de plata (Ag), el cual comprende procesar polvos de solución sólida plata-cinc (Ag-Zn) en un molino a temperaturas entre 50-150°C, en presencia de una atmósfera rica en oxígeno. Debido a los efectos de la molienda y al carácter frágil del óxido de cinc (ZnO), se produce una homogeneización de la distribución de este precipitado a escala nanométrica. Adicionalmente, a medida que el proceso de molienda reactiva avanza y debido al aumento de la densidad de defectos cristalinos producidos por la alta deformación plástica a que están sometidos los polvos, se generan nuevos sitios de nucleación para el óxido de cinc (ZnO), lo que contribuye a obtener precipitados de menor tamaño. Como objetivo adicional, a partir de los polvos producidos mediante molienda reactiva en caliente, se plantea la fabricación de materiales monolíticos para uso en aplicaciones de contacto eléctrico, a través de las rutas pulvimetalúrgicas conocidas (compactación-sinterización, compactación en caliente, extrusión, compactación isostática en caliente, etc.). De esta forma, se obtiene un material cuya microestructura está constituida por pequeños precipitados de óxido de cinc (ZnO) homogéneamente distribuido en una matriz de plata (Ag), útil para la fabricación de componentes eléctricos, como contactores, relés, ánodos, entro otros. The first objective of the present invention is to provide a process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver matrix (Ag), which comprises processing Silver-zinc solid solution powders (Ag-Zn) in a mill at temperatures between 50-150 ° C, in the presence of an oxygen-rich atmosphere. Due to the effects of grinding and the fragile nature of zinc oxide (ZnO), homogenization of the distribution of this precipitate occurs on a nanometric scale. Additionally, as the reactive grinding process progresses and due to the increase in the density of crystalline defects caused by the high plastic deformation to which the powders are subjected, new nucleation sites for zinc oxide (ZnO) are generated, which contributes to obtaining smaller precipitates. As an additional objective, from the powders produced by hot reactive grinding, the manufacture of monolithic materials for use in electrical contact applications is proposed, through known powder metallurgical routes (compaction-sintering, hot compaction, extrusion, compaction hot isostatic, etc.). In this way, a material is obtained whose microstructure consists of small precipitates of zinc oxide (ZnO) homogeneously distributed in a silver matrix (Ag), useful for the manufacture of electrical components, such as contactors, relays, anodes, among others .
BREVE DESCRIPCIÓN DE LA FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra un esquema del molino modificado para realizar el proceso de molienda reactiva en caliente. Se aprecia el eje impulsor, horno perimetral, sistema de entrada-salida de gases y la cámara de reacción.  Figure 1 shows a modified mill scheme to perform the hot reactive grinding process. The drive shaft, perimeter furnace, gas inlet-outlet system and the reaction chamber are appreciated.
La figura 2 muestra los difractogramas de rayos X de las muestras sometidas a diferentes tiempos de molienda reactiva en caliente. Se presentan zonas ampliadas de la difracción del plano (1 11 ) de la solución sólida plata-cinc (Ag-Zn) y del difractograma de la muestra sometida a 3 h de procesamiento.  Figure 2 shows the X-ray diffractograms of the samples subjected to different hot reactive grinding times. Enlarged areas of the diffraction of the plane (11) of the solid silver-zinc solution (Ag-Zn) and of the diffractogram of the sample submitted to 3 hours of processing are presented.
La figura 3 muestra micrografías (a diferentes magnificaciones) obtenidas mediante microscopía electrónica de barrido de los polvos luego 3 h de molienda reactiva en caliente. Se presenta adicionalmente la distribución de tamaños de los aglomerados.  Figure 3 shows micrographs (at different magnifications) obtained by scanning electron microscopy of the powders after 3 h of hot reactive grinding. The size distribution of the agglomerates is also presented.
La figura 4 muestra una micrografía de sección trasversal de los polvos luego 3 h de molienda reactiva en caliente obtenida mediante microscopía electrónica de barrido de emisión de campo.  Figure 4 shows a cross-sectional micrograph of the powders after 3 h of hot reactive grinding obtained by field emission scanning electron microscopy.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Con el objetivo de obtener polvos de aleación plata-óxido de cinc (Ag-ZnO) con una distribución fina y homogénea de precipitados de óxido en la matriz de plata (Ag), el inventor propone un nuevo método de síntesis de materiales, denominado “Molienda Reactiva en Caliente”. En este método, polvos de solución sólida plata-cinc (Ag-Zn), son procesados en un molino a temperaturas entre 50-150°C, en presencia de una atmósfera rica en oxígeno. Si bien, la oxidación del cinc (Zn) comienza en la superficie de los polvos, y debido a los efectos de la molienda y al carácter frágil del óxido de cinc (ZnO), se produce una homogeneización de la distribución de este precipitado a medida que el proceso de molienda reactiva avanza. Adicionalmente, se plantea que debido al aumento de la densidad de defectos cristalinos producidos por la alta deformación plástica a que están sometidos los polvos, se genera nuevos sitios de nucleación para el óxido de cinc (ZnO), lo que contribuye a obtener precipitados de menor tamaño. Todo esto catalizado por el aumento de la temperatura y la presencia de una atmósfera rica oxígeno. In order to obtain silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver matrix (Ag), the inventor proposes a new method of material synthesis, called “ Hot Reactive Grinding ”. In this method, powders of solid silver-zinc solution (Ag-Zn) are processed in a mill at temperatures between 50-150 ° C, in the presence of an oxygen rich atmosphere. Although, the oxidation of zinc (Zn) begins at the surface of the powders, and due to the effects of grinding and the fragile nature of zinc oxide (ZnO), there is a homogenization of the distribution of this precipitate as that the reactive grinding process advances. Additionally, it is proposed that due to the increase in the density of crystalline defects caused by the high plastic deformation to which the powders are subjected, new nucleation sites for zinc oxide (ZnO) are generated, which contributes to obtaining lower precipitates size. All this catalyzed by the increase in temperature and the presence of an oxygen rich atmosphere.
Ejemplo de aplicación Application example
Polvos de solución sólida plata-cinc (Ag-Zn) con una composición nominal de Ag 15% atómico Zn, obtenidos mediante aleado mecánico, fueron introducidos en un molino de atrición modificado (esquema Figura 1 ), el cual comprende un eje impulsor (4), horno perimetral (3), sistema de entrada-salida de gases (1 ) y la cámara de reacción (2). Los polvos fueron molidos durante 0,5; 1 ; 1 ,5; 2 y 3 horas a 138QC bajo flujo de oxígeno de 1200 cm3 mim1. Se utilizó una relación en masa polvos bolas de 100:1 , mientras que la velocidad de rotación del eje impulsor se mantuvo en 400 rpm. Silver-zinc solid solution powders (Ag-Zn) with a nominal composition of Ag 15% atomic Zn, obtained by mechanical alloy, were introduced into a modified attrition mill (Figure 1 scheme), which comprises a drive shaft (4 ), perimeter furnace (3), gas inlet-outlet system (1) and the reaction chamber (2). The powders were ground for 0.5; one ; fifteen; 2 and 3 hours at 138 Q C under oxygen flow of 1200 cm 3 m and 1 . A mass ratio of 100: 1 ball powders was used, while the rotational speed of the drive shaft was maintained at 400 rpm.
La figura 2 presenta los análisis de difracción de rayos X luego del proceso de molienda reactiva en caliente. Se aprecia un traslado del pico de difracción del plano (1 11 ) de la solución sólida plata-cinc (Ag-Zn) hacia ángulos 2Q menores a medida que el tiempo de proceso aumenta. Lo anterior es evidencia de un aumento del volumen de su celda unitaria, debido a la pérdida de cinc (Zn) producto de su oxidación. Esta conclusión se ratifica al analizar el difractograma de rayos X de la muestra sometida a 3 h de molienda reactiva en caliente, donde se detecta claramente la presencia de óxido de cinc (ZnO). Adicionalmente, a este mismo tiempo de molienda, se confirma que el volumen de calda unitaria de la solución sólida plata-cinc (Ag-Zn), 0,0681 1 nm3, presenta valores cercanos al volumen de celda unitaria de la plata (Ag) pura, 0,06818 nm3, lo cual es evidencia que la gran parte del cinc (Zn) presente en la solución sólida ha sido oxidado. Figure 2 presents the X-ray diffraction analysis after the hot reactive grinding process. A transfer of the diffraction peak of the plane (11) of the solid silver-zinc solution (Ag-Zn) towards smaller angles 2Q is observed as the process time increases. The above is evidence of an increase in the volume of your unit cell, due to the loss of zinc (Zn) due to its oxidation. This conclusion is ratified by analyzing the X-ray diffractogram of the sample subjected to 3 h of hot reactive grinding, where the presence of zinc oxide (ZnO) is clearly detected. Additionally, at this same grinding time, it is confirmed that the volume of unit broth of the solid silver-zinc solution (Ag-Zn), 0.0681 1 nm 3 , presents values close to the volume of the unit cell of the silver (Ag ) pure, 0.06818 nm 3 , which is evidence that much of the zinc (Zn) present in the solid solution has been oxidized.
La figura 3 presenta micrografías obtenidas mediante microscopía electrónica de barrido de los polvos luego de 3 horas de molienda reactiva en caliente. Se observa la presencia de aglomerados con un tamaño promedio cercano a los 29 pm. Estos aglomerados están formados por pequeñas partículas laminares, lo cual es evidencia de la gran deformación plástica a la que estuvieron sometidos los polvos durante el proceso. Figure 3 shows micrographs obtained by scanning electron microscopy of the powders after 3 hours of hot reactive grinding. It is noted the presence of agglomerates with an average size close to 29 pm. These agglomerates are formed by small laminar particles, which is evidence of the great plastic deformation to which the powders were subjected during the process.
En la figura 4 se puede observar una micrografía de una muestra preparada metalográficamente, de polvos con 3 horas de molienda reactiva en caliente. Esta micrografía fue adquirida utilizando un microscopio electrónico de barrido de emisión de campo. Se observa que los polvos están constituidos por una matriz rica en plata (Ag), con precipitados nanométricos de óxido de cinc (ZnO) homogéneamente distribuidos.  Figure 4 shows a micrograph of a metallographically prepared sample of powders with 3 hours of hot reactive grinding. This micrograph was acquired using a field emission scanning electron microscope. It is observed that the powders are constituted by a matrix rich in silver (Ag), with nanometric precipitates of zinc oxide (ZnO) homogeneously distributed.
A diferencia de los métodos convencionales de oxidación interna, donde se necesitan varias horas de tratamiento a temperaturas cercanas a los 850°C para completar la oxidación del cinc (Zn), mediante el método propuesto en esta invención, se puede obtener polvos de una aleación plata-óxido de cinc (Ag-ZnO) con una distribución homogénea de precipitados a escala nanométrica, imposible de alcanzar por los métodos de síntesis existentes hasta el momento, a temperaturas bajas y en un tiempo relativamente corto.  Unlike conventional internal oxidation methods, where several hours of treatment at temperatures close to 850 ° C are required to complete the oxidation of zinc (Zn), by means of the method proposed in this invention, powders of an alloy can be obtained Zinc-silver oxide (Ag-ZnO) with a homogeneous distribution of precipitates on a nanometric scale, impossible to achieve by the methods of synthesis available so far, at low temperatures and in a relatively short time.

Claims

REIVINDICACIONES
1 Un proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) con una distribución fina y homogénea de precipitados de óxido en la matriz de plata (Ag), que comprende procesar polvos de solución sólida plata-cinc (Ag- Zn) en un molino a temperaturas entre 50-150°C, en presencia de una atmósfera rica en oxígeno, y debido a los efectos de la molienda y al carácter frágil del óxido de cinc (ZnO), se produce una homogeneización de la distribución de este precipitado a escala nanométrica a medida que el proceso de molienda reactiva avanza y debido al aumento de la densidad de defectos cristalinos producidos por la alta deformación plástica a que están sometidos los polvos, se generan nuevos sitios de nucleación para el óxido de cinc (ZnO), lo que contribuye a obtener precipitados de menor tamaño. 1 A process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders with a fine and homogeneous distribution of oxide precipitates in the silver matrix (Ag), comprising processing powders of solid silver-zinc solution (Ag - Zn) in a mill at temperatures between 50-150 ° C, in the presence of an oxygen-rich atmosphere, and due to the effects of grinding and the fragile nature of zinc oxide (ZnO), homogenization of the distribution of this precipitate on a nanometric scale as the reactive grinding process progresses and due to the increase in the density of crystalline defects caused by the high plastic deformation to which the powders are subjected, new nucleation sites for zinc oxide are generated (ZnO), which contributes to obtaining smaller precipitates.
2 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 1 , donde los polvos de solución sólida plata-cinc (Ag-Zn) tienen una composición nominal de Ag 15% atómico Zn, obtenidos mediante aleado mecánico. 2 The process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 1, wherein the solid silver-zinc (Ag-Zn) solution powders have a nominal composition of Ag 15% atomic Zn, obtained by mechanical alloy.
3 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 1 , donde los polvos de solución sólida plata-cinc (Ag-Zn) fueron introducidos en un molino de atrición modificado. The process of obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 1, wherein the solid silver-zinc (Ag-Zn) solution powders were introduced into a modified attrition mill.
4 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 3, donde la relación en masa polvos: bolas es de 100:1 , mientras que la velocidad de rotación del eje impulsor del molino de atrición modificado se mantuvo en 400 rpm. 5 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 4, donde los polvos fueron molidos durante 0,5 hora a 138QC bajo flujo de oxígeno de 1200 cm3 mim1. 4 The process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 3, wherein the mass ratio of powders: balls is 100: 1, while the rotational speed of the drive shaft of the mill of Modified attrition was maintained at 400 rpm. The process of obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 4, wherein the powders were ground for 0.5 hour at 138 Q C under oxygen flow of 1200 cm 3 m and 1 .
6 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 4, donde los polvos fueron molidos durante 1 hora a 138QC bajo flujo de oxígeno de 1200 cm3 min 1. 7 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 4, donde los polvos fueron molidos durante 1 ,5 horas a 138QC bajo flujo de oxígeno de 1200 cm3 mim1. The process of obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 4, wherein the powders were ground for 1 hour at 138 Q C under oxygen flow of 1200 cm 3 min 1 . 7 The process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 4, wherein the powders were ground for 1.5 hours at 138 Q C under oxygen flow of 1200 cm 3 m and 1 .
8 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 4, donde los polvos fueron molidos durante 2 horas a 138QC bajo flujo de oxígeno de 1200 cm3 mim1. 8 The process of obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 4, wherein the powders were ground for 2 hours at 138 Q C under oxygen flow of 1200 cm 3 m and 1 .
9 El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 4, donde los polvos fueron molidos durante 3 horas a 138QC bajo flujo de oxígeno de 1200 cm3 mim1. The process of obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 4, wherein the powders were ground for 3 hours at 138 Q C under oxygen flow of 1200 cm 3 m and 1 .
1 0. El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 9, donde el volumen de celda unitaria de la solución sólida plata-cinc (Ag-Zn) es de 0,0681 1 nm3. 1 0. The process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 9, wherein the unit cell volume of the solid silver-zinc solution (Ag-Zn) is 0.0681 1 nm 3 .
1 1. El proceso de obtención de polvos de aleación plata-óxido de cinc (Ag-ZnO) según la reivindicación 10, donde la distribución de este aglomerado es de un tamaño promedio de 29 pm.  1. The process for obtaining silver-zinc oxide (Ag-ZnO) alloy powders according to claim 10, wherein the distribution of this agglomerate is an average size of 29 pm.
1 2. Una estructura monolítica sinterizada con una distribución fina y homogénea de precipitados de óxido en una matriz de plata (Ag), que comprende la sinterización, por métodos pulvimetalúrgicos convencionales, de los polvos de aleación plata-óxido de cinc (Ag-ZnO) obtenidos mediante un proceso de molienda reactiva en caliente.  1 2. A sintered monolithic structure with a fine and homogeneous distribution of oxide precipitates in a silver matrix (Ag), comprising the sintering, by conventional powder metallurgical methods, of zinc-zinc oxide (Ag-ZnO) alloy powders ) obtained by a hot reactive grinding process.
1 3. La estructura monolítica sinterizada según reivindicación 12, porque de dicha estructura monolítica se fabrican componentes eléctricos.  The sintered monolithic structure according to claim 12, because electrical components are made of said monolithic structure.
1 4. La estructura monolítica sinterizada según reivindicación 13, porque dichos componentes eléctricos son contactores o relés eléctricos.  1 4. The sintered monolithic structure according to claim 13, wherein said electrical components are contactors or electrical relays.
1 5. La estructura monolítica sinterizada según reivindicación 13, porque dichos componentes eléctricos son ánodos. 1 5. The sintered monolithic structure according to claim 13, wherein said electrical components are anodes.
PCT/CL2018/050015 2018-03-20 2018-03-20 Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components WO2019178706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050015 WO2019178706A1 (en) 2018-03-20 2018-03-20 Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050015 WO2019178706A1 (en) 2018-03-20 2018-03-20 Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components

Publications (1)

Publication Number Publication Date
WO2019178706A1 true WO2019178706A1 (en) 2019-09-26

Family

ID=67988265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050015 WO2019178706A1 (en) 2018-03-20 2018-03-20 Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components

Country Status (1)

Country Link
WO (1) WO2019178706A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871444A (en) * 2022-07-12 2022-08-09 长春黄金研究院有限公司 Preparation method of silver powder with high tap density and narrow particle size distribution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432157B1 (en) * 1999-04-23 2002-08-13 Tanaka Kikinzoku Kogyo K.K. Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432157B1 (en) * 1999-04-23 2002-08-13 Tanaka Kikinzoku Kogyo K.K. Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GUZMAN, D. ET AL.: "ESTUDIO DE LA OBTENCIÓN DE POLVOS DE UNA ALEACI6N AG-ZNO MEDIANTE ALEADO MECANICO Y MOLIENDA REACTIVA, PARA USO EN CONTACTORES ELÉCTRICOS", REV. LATINAM. METAL. MATER., vol. 32, no. 2, 2012, pages 195 - 201, XP055637418, ISSN: 0255-6952 *
GUZMAN, D. ET AL.: "Synthesis of Ag-ZnO powders by means of a mechanochemical Process", APPL. PHYS. A, vol. 117, 2014, pages 871, XP035404800, Retrieved from the Internet <URL:https://doi.org/10.1007/s00339-014-8447-7> *
JOSHI, P. ET AL.: "Silver-zinc oxide electrical contact materials by mechanochemical synthesis route", INDIAN JOURNAL OF PURE & APPLIED PHYSICS, vol. 45, 2007, pages 9 - 15, XP055637430, ISSN: 0019-5596 *
MENDEZ, DANNY FRANCISCO GUZMAN: "Study of ag-zno alloys production by mechanical alloying, internaloxidation/hot reaction milling and hot pressing for electrical contactapplications. Informe final", PROYECTO FONDECYT INITIATION, 7 March 2017 (2017-03-07), XP055637388, Retrieved from the Internet <URL:http://repositorio.conicyt.cl/bitstream/handle/10533/201576/11100284.pdf?sequence=1&isAllowed=y> [retrieved on 20180827] *
WEI, Z. ET AL.: "Effect of preparing method of ZnO powders on electrical arc erosion behavior of Ag/ZnO electrical contact material", J. MATER. RES., vol. 31, no. 4, 29 February 2016 (2016-02-29), pages 468 - 479, XP055637421 *
YI, D. ET AL.: "Influence of ball-milling on the oxidation behavior of Ag- Zn alloy powders", MATERIALS AND CORROSION, vol. 61, no. 7, 2010, XP001557573 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871444A (en) * 2022-07-12 2022-08-09 长春黄金研究院有限公司 Preparation method of silver powder with high tap density and narrow particle size distribution

Similar Documents

Publication Publication Date Title
Bathula et al. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys
KR100924054B1 (en) Thermoelectric material and method for producing same
JP5024393B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
Saleemi et al. Thermoelectric performance of higher manganese silicide nanocomposites
JP2011029566A (en) Method for fabrication of high performance densified nanocrystalline bulk thermoelectric material using high pressure sintering technique
US8883047B2 (en) Thermoelectric skutterudite compositions and methods for producing the same
Han et al. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material
Li et al. Cu 2 HgSnSe 4 nanoparticles: synthesis and thermoelectric properties
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
Hsu et al. Effect of the Zr0. 5Hf0. 5CoSb1-xSnx/HfO2 half-Heusler nanocomposites on the ZT value
JP2015196902A (en) POWDER FOR Ag/SnO2 ELECTRIC CONTACT, Ag/SnO2 ELECTRIC CONTACT MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2011204835A (en) Composite thermoelectric material and method for manufacturing the same
Dąbrowski et al. Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering
Karati et al. Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys
KR20180060265A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL CONTROLLED OXIDATION AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
WO2019178706A1 (en) Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components
JP6879435B2 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
Li et al. Thermoelectric performance of AgPb x SbTe 20 (x= 17 to 23) bulk materials derived from large-particle raw materials
CN114655936B (en) Porous thermoelectric alloy material and preparation method thereof
CN109604605B (en) Rapid preparation of CoSb by solid-phase reaction method3Method (2)
WO2021131408A1 (en) Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element
Kuehster Processing of mayenite electride and its composites in spark plasma sintering
KR100689253B1 (en) Method for producing thermoelectric skutterudites
JP7003734B2 (en) Bulk body containing strontium and its manufacturing method
KR101339880B1 (en) Sb-DOPED ZrNiSn HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911040

Country of ref document: EP

Kind code of ref document: A1