JPH1092616A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH1092616A
JPH1092616A JP8246104A JP24610496A JPH1092616A JP H1092616 A JPH1092616 A JP H1092616A JP 8246104 A JP8246104 A JP 8246104A JP 24610496 A JP24610496 A JP 24610496A JP H1092616 A JPH1092616 A JP H1092616A
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
permanent magnet
earth permanent
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8246104A
Other languages
Japanese (ja)
Other versions
JP3247839B2 (en
Inventor
Yoshio Tawara
好夫 俵
Tadao Nomura
忠雄 野村
Katsushi Tokunaga
勝志 徳永
Taku Ito
卓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP24610496A priority Critical patent/JP3247839B2/en
Publication of JPH1092616A publication Critical patent/JPH1092616A/en
Application granted granted Critical
Publication of JP3247839B2 publication Critical patent/JP3247839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Nd-Fe-B rare-earth-based permanent magnet by manufacturing a nano-composite structure having magnetic anisotropy by using a novel method which is different from the conventional methods. SOLUTION: A rare-earth permanent magnet is composed of Nd, Fe, and B and the main phase of the magnet is composed of Nd2 Fe14 , with the B-phase Fe, an alloy containing Fe, or an intermetallic compound of the magnet being composed of a finely dispersed texture. The Nd2 Fe14 main phase and B phase having magnetic anisotropy and the finely dispersed structure are obtained by dispersing the B-element in the Nd2 Fe14 intermetallic compound. Then the mixed powder of Nd2 Fe14 intermetallic compound, B, B2 , O3 , or boric acid, and a Ca metal is heat-treated by a reductive diffusion method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は優れた磁気特性を有
する希土類永久磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth permanent magnet having excellent magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】Nd-Fe-B系焼結磁石は45MGOeを超える
高い磁気特性を有し、またSm 系磁石に比較して低原料
コストであることから需要が増大している。さらにより
高性能な次世代磁石の探索が行われている中で、近年ナ
ノコンポジット磁石が注目を集めている(IEEE Trans.
Magn. 27 (1991),p.3588他)。これはハード磁性相中に
数十nmオーダーのソフト磁性相が微細に分散した組織か
らなり、両相の磁化が交換相互作用で結び付くことによ
ってソフト相の磁化は容易に反転せず、全体として単一
相のように振る舞うものであり、既存原料の組み合わせ
によっても保磁力を損なうことなく、より高い飽和磁化
が得られる可能性があり、計算ではSm2Co173 /F
e-Co においてBHmax =137MGOe の値が報告(J. Phys.
Rev. 48(1993),p.15812)されている。これまで実際に
Nd2Fe14 B/Fe3B(J. de Phys. 49(1988),C8-669
)やSm2Co173 /Fe (J. Magn, Magn. Mater. 1
24(1993),L1)等の組合せが実験報告されてきた。これ
らの研究で行われている微細分散組織の作製方法として
は、メトルスパン法やメカニカルアロイング(MA)法
により得られた合金薄帯や粉末を熱処理して微結晶化す
る手段がとられている。しかしこれらの方法では、熱処
理条件により結晶粒径が制御できる半面、磁気的に等方
性のものしか得られず、異方性Nd-Fe-B焼結磁石の磁
気特性には及ばない。また高温焼結すると粒径が粗大化
して磁気特性が劣化するために、現在のところボンド磁
石としての用途しか期待できないという問題点があっ
た。
2. Description of the Related Art Demand is increasing for Nd-Fe-B sintered magnets because they have high magnetic properties exceeding 45 MGOe and have lower raw material costs than Sm magnets. In search of higher performance next-generation magnets, nanocomposite magnets have recently attracted attention (IEEE Trans.
Magn. 27 (1991), p.3588, etc.). This consists of a microstructure in which a soft magnetic phase of the order of several tens of nanometers is finely dispersed in a hard magnetic phase.The magnetization of the soft phase is not easily reversed by the exchange interaction of the two phases, and the whole is simply unitary. It behaves like a single phase, and a higher saturation magnetization may be obtained without losing the coercive force even with a combination of existing raw materials. The calculation shows that Sm 2 Co 17 N 3 / F
A value of BH max = 137MGOe was reported in e-Co (J. Phys.
Rev. 48 (1993), p.15812). Until now, Nd 2 Fe 14 B / Fe 3 B (J. de Phys. 49 (1988), C8-669)
) And Sm 2 Co 17 N 3 / Fe (J. Magn, Magn. Mater. 1
24 (1993), L1) and other combinations have been reported experimentally. As a method of producing a finely dispersed structure used in these studies, a method of heat-treating an alloy ribbon or powder obtained by a metrological spanning method or a mechanical alloying (MA) method to microcrystallize is used. . However, in these methods, although the crystal grain size can be controlled by the heat treatment conditions, only a magnetically isotropic one can be obtained, which does not reach the magnetic properties of the anisotropic Nd-Fe-B sintered magnet. In addition, when sintering at a high temperature, the particle size becomes coarse and the magnetic properties deteriorate, so that there is a problem that only use as a bonded magnet can be expected at present.

【0003】[0003]

【発明が解決しようとする課題】このように従来の作製
方法では、Nd-Fe-B焼結磁石を超える磁気特性を得る
ことは難しい。本発明は従来と異なる新規な方法を用
い、磁気的異方性を有するナノコンポジット組織を作製
することにより、より磁気特性の高いNd-Fe-B系希土
類永久磁石を提供しようとするものである。
As described above, it is difficult to obtain magnetic properties exceeding those of a sintered Nd-Fe-B magnet by the conventional manufacturing method. The present invention intends to provide a Nd-Fe-B-based rare earth permanent magnet having higher magnetic properties by producing a nanocomposite structure having magnetic anisotropy by using a novel method different from the conventional method. .

【0004】[0004]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために微細分散析出方法を種々検討した結
果、Nd とFe から成る金属間化合物を出発原料とし、
この相にB元素を拡散させると共に、Nd2Fe14 B相生
成反応を行わせることによって微細分散組織が得られる
ことを見出し、諸条件を確立して本発明を完成させた。
その要旨は、Nd、Fe、Bの元素から成り、かつその主相
であるNd2Fe14 B相中にFe またはFe を含む合金も
しくは金属間化合物が微細に分散した組織から成る希土
類永久磁石の製造方法において、式 Nd2Fe17 で表さ
れる金属間化合物を原料とし、該金属間化合物相にB元
素を拡散させて、磁気的異方性および前記微細分散組織
を有する主相Nd2Fe14 Bを得ることを特徴とする希土
類永久磁石の製造方法である。請求項2は、B、B2
3 または硼酸の内の1種以上、金属間化合物Nd2Fe17
および金属Ca から成る混合粉体を熱処理して、BをN
d-Fe 金属間化合物中に拡散させることを特徴とする請
求項1に記載の希土類永久磁石の製造方法である。請求
項3は、Nd2Fe14 B主相中にFe またはFe を含む合
金もしくは金属間化合物が微細に分散した組織を主相と
する磁石が、磁気的異方性を有していることを特徴とす
る希土類永久磁石の製造方法である。
Means for Solving the Problems The present inventors have studied various methods for finely dispersing and precipitating in order to solve the above-mentioned problems. As a result, an intermetallic compound composed of Nd and Fe was used as a starting material.
The inventors have found that a finely dispersed structure can be obtained by diffusing the element B into this phase and causing a Nd 2 Fe 14 B phase formation reaction, and established various conditions to complete the present invention.
The gist of the invention is that a rare-earth permanent magnet composed of elements of Nd, Fe, and B and having a structure in which Fe or an alloy or an intermetallic compound containing Fe is finely dispersed in its main phase, Nd 2 Fe 14 B phase. In the production method, an intermetallic compound represented by the formula Nd 2 Fe 17 is used as a raw material, and element B is diffused into the intermetallic compound phase to form a main phase Nd 2 Fe having magnetic anisotropy and the finely dispersed structure. A method for producing a rare earth permanent magnet, characterized by obtaining 14B . Claim 2 is B, B 2 O
3 or one or more of boric acids, an intermetallic compound Nd 2 Fe 17
And heat treatment of the mixed powder comprising Ca and B
The method for producing a rare earth permanent magnet according to claim 1, wherein the permanent magnet is diffused in d-Fe intermetallic compound. A third aspect of the present invention is that a magnet having a main phase of a structure in which Fe or an alloy or an intermetallic compound containing Fe is finely dispersed in a main phase of Nd 2 Fe 14 B has magnetic anisotropy. This is a method for producing a rare earth permanent magnet.

【0005】請求項4は、希土類元素R(RはYを含む
希土類元素の内1種以上4種以下)、元素M(MはR、
Bを除くCo、Ni、Al、Si、Ga、Ag、Au、Cu、V、 Cr、M
n、Sc 、 Mo、W、 Ti、Hf、Ta、Nb、Zr、Pd、Pt、Zn、G
e、Sb、Sn およびIn から選択される1種以上5種以下
の元素で、少なくともFe を含む)およびBを含む3種
以上の元素から成り、かつその主相であるR214B相
中にFe またはFe を含む合金もしくは金属間化合物が
微細に分散した組織から成る希土類永久磁石の製造方法
において、式 Rm Fen で表される金属間化合物(こ
こにm、n は正の整数で、原子比 n/m>7.0 とする)を原
料とし、該金属間化合物相にB元素を拡散させて、磁気
的異方性および前記微細分散組織を有する主相R214
Bを得ることを特徴とする希土類永久磁石の製造方法で
ある。請求項5は、B、B23 または硼酸の内1種以
上、金属間化合物Rmn (ここにm、n は正の整数で、
原子比 n/m>7.0 とする)および金属Ca から成る混合
粉体を熱処理して、BをRとMから成る金属間化合物中
に拡散させることを特徴とする希土類永久磁石の製造方
法である。請求項6は、R214B主相中にFe または
Fe を含む合金もしくは金属間化合物が微細に分散した
組織を主相とする磁石が、磁気的異方性を有しているこ
とを特徴とする希土類永久磁石の製造方法である。
[0005] Claim 4 describes a rare earth element R (R is one or more and four or less of rare earth elements including Y), an element M (M is R,
Except for B, Co, Ni, Al, Si, Ga, Ag, Au, Cu, V, Cr, M
n, Sc, Mo, W, Ti, Hf, Ta, Nb, Zr, Pd, Pt, Zn, G
e, Sb, Sn, and In at least one element and no more than five elements selected from the group consisting of at least Fe, and three or more elements containing B, and the main phase of the R 2 M 14 B phase the method of manufacturing a rare earth permanent magnet alloy or intermetallic compound containing Fe or Fe is a fine dispersed organizations in the formula R m Fe intermetallic compound represented by n (here m, n is a positive integer The atomic ratio n / m> 7.0) is used as a raw material, and the element B is diffused into the intermetallic compound phase to obtain a main phase R 2 M 14 having magnetic anisotropy and the finely dispersed structure.
B is a method for producing a rare-earth permanent magnet. Claim 5 relates to one or more of B, B 2 O 3 and boric acid, and an intermetallic compound R m M n (where m and n are positive integers,
Atomic ratio n / m> 7.0) and heat treating a mixed powder of metal Ca to diffuse B into the intermetallic compound of R and M, thereby producing a rare earth permanent magnet. . According to a sixth aspect of the present invention, the magnet whose main phase is a structure in which Fe or an alloy or intermetallic compound containing Fe is finely dispersed in the R 2 M 14 B main phase has magnetic anisotropy. This is a method for producing a rare earth permanent magnet.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。本発明のNd-Fe-B系希土類永久磁石は、
ハード磁性相の主相中にソフト磁性相が極めて微細に分
散した組織から成っている。一般に母相中に析出物が微
細分散した組織を得るためによく用いられるのは、過飽
和固溶体の熱処理による析出である。アモルファス急冷
薄帯やMA粉体からの微結晶化もこの方法の一種と見做
せる。しかしこれらの方法では磁化容易軸が特定方向に
向かないため等方性のものしか得られない。もしNd2
e14 B相(以下、Nd2Fe14 B相またはR214B相を
2-14-1相という)にFe の固溶域があるならば、結晶方
位を揃えたままFe を析出させることも可能であるが、
報告されている状態図から明らかなように、Fe はほと
んど固溶しない。そこで本発明では新たな製造方法を種
々検討した結果、Nd2Fe17 もしくは原子比が n/m>7.
0 なるRm Mn 金属間化合物を原料とし、この金属間化
合物相にB元素を拡散させると共に、2-14-1相生成反応
を行わせることによって上記微細分散組織が得られるこ
とを見出した。
Embodiments of the present invention will be described below in detail. The Nd-Fe-B rare earth permanent magnet of the present invention
It is composed of a structure in which the soft magnetic phase is very finely dispersed in the main phase of the hard magnetic phase. In general, precipitation of a supersaturated solid solution by heat treatment is often used to obtain a structure in which precipitates are finely dispersed in a matrix. Amorphous quenched ribbons and microcrystallization from MA powder can be considered as a kind of this method. However, in these methods, since the axis of easy magnetization does not point in a specific direction, only an isotropic one can be obtained. If Nd 2 F
e 14 B phase (hereinafter referred to as Nd 2 Fe 14 B phase or R 2 M 14 B phase)
If there is a solid solution region of Fe in the (2-14-1 phase), it is possible to precipitate Fe with the crystal orientation aligned.
As is evident from the reported phase diagram, Fe hardly forms a solid solution. Therefore, in the present invention, as a result of studying various new production methods, Nd 2 Fe 17 or an atomic ratio of n / m> 7.
It has been found that the above finely dispersed structure can be obtained by using the Rm Mn intermetallic compound as a raw material and diffusing the element B into the intermetallic compound phase and performing a 2-14-1 phase formation reaction.

【0007】Nd2Fe17 金属間化合物を原料とした場
合、この反応は以下のように表せる。 Nd2Fe17 + B ─→ Nd2Fe14 B + 3Fe また、Rm Mn 金属間化合物の一例として、Nd Fe11
Ti を用いた場合は、次のように示される。 2Nd Fe11 Ti +5B─→ Nd2Fe14 B + 8F
e + 2Ti B2 Nd 原子とFe 原子はNd2Fe17 もしくはRmn 相内
で元々均質に存在しているので、Bが均一に拡散すれば
2-14-1相も相内で均一に反応生成し、同時に余剰のFe
が極めて微細に分散して排出される。熱処理条件を最適
化することによって、これらの余剰Fe が数十nm以下の
粒径で2-14-1相中に分散した組織を得ることができる。
このとき2-14-1相がハード磁性相、Fe がソフト磁性相
に対応する。このような反応をさせるには、出発原料の
mn 金属間化合物が n/m>7.0 である必要がある。
n/m が7.0 以下のときは余剰Fe が形成されないために
このような分散析出は起こらない。またこの反応は出発
原料であるNd2Fe17 もしくはRmn 相へのB拡散に
よって行われるため、形成される2-14-1相の結晶方位は
元の相の方位に束縛され、磁化容易軸が一方向に揃って
いる。
When the Nd 2 Fe 17 intermetallic compound is used as a raw material, this reaction can be expressed as follows. Nd 2 Fe 17 + B─ → Nd 2 Fe 14 B + 3Fe Further, as an example of the Rm Mn intermetallic compound, Nd Fe 11
When Ti is used, it is expressed as follows. 2Nd Fe 11 Ti + 5B─ → Nd 2 Fe 14 B + 8F
Since e + 2Ti B 2 Nd atoms and Fe atoms are present in originally homogeneous Nd 2 Fe 17 or R m M n Aiuchi, if B is uniformly diffused
2-14-1 The phase also reacts uniformly in the phase, and at the same time, excess Fe
Are very finely dispersed and discharged. By optimizing the heat treatment conditions, it is possible to obtain a structure in which the excess Fe is dispersed in the 2-14-1 phase with a particle size of several tens nm or less.
At this time, the phase 2-14-1 corresponds to the hard magnetic phase, and Fe corresponds to the soft magnetic phase. To such a reaction, it is necessary R m M n intermetallic starting material is n / m> 7.0.
When n / m is 7.0 or less, such dispersion precipitation does not occur because no excess Fe is formed. Since this reaction performed by B diffusion into Nd 2 Fe 17 or R m M n-phase as a starting material, the crystal orientation of the 2-14-1 phase formed is bound to the orientation of the original phase, the magnetization Easy axes are aligned in one direction.

【0008】n/m>7.0 なるRmn 金属間化合物と
は、例えばNd2Fe17、Nd2( Fe,Co)17、Nd2( Fe,A
l)17、Nd2( Fe,Si)17、Nd2( Fe,Co,Ga)17、Nd2
( Fe,Co,Ta)17、Nd2( Fe,Co,Zr)17、Nd2( Fe,
Co,Nb)17、Nd2( Fe,Co,Hf)17、( Nd,Pr,Dy)
2(Fe,Co,Ta)17、( Nd,Pr,Dy)2(Fe,Co,Zr)17
(Nd,Pr,Dy)2(Fe,Co,Nb)17、( Nd,Pr、Dy)2(F
e,Co,Hf)17、( Nd,Pr,Dy)2(Fe,Co,Ti)17、( N
d,Pr、Dy)2(Fe,Co,V)17 等一般に2-17相と呼ばれて
いるTh2Zn17 型化合物や、Nd(Fe,Ti)12、Nd(Fe,
Cr)12、Nd(Fe,Mo)12、Nd(Fe,W)12 、Nd(Fe,S
i)12、Nd(Fe,V)12 、Nd(Fe,Co,Ti)12、Nd(Fe,
Co,Cr)12、Nd(Fe,Co,Mo)12、Nd(Fe,Co,W)
12 、Nd(Fe,Co,Si)12、Nd(Fe,Co,V)12 、( N
d,Pr,Dy)( Fe,Co,Ti)12、( Nd,Pr,Dy)( Fe,C
o,Cr)12、( Nd,Pr,Dy)( Fe,Co,Mo)12、( Nd,P
r,Dy)( Fe,Co,W)12 、( Nd,Pr,Dy)( Fe,Co,S
i)12、( Nd,Pr,Dy)2(Fe,Co,V)12 等の1-12 金属
間化合物、Nd3( Fe,Ti)29、Nd3( Fe,Cr)29、Nd3
( Fe,Mo)29、Nd3( Fe,W)29 、Nd3( Fe,Si)29
Nd3( Fe,V)29 、Nd3( Fe,Co,Ti)29、Nd3( Fe,
Co,Cr)29、Nd3( Fe,Co,Mo)29、Nd3( Fe,Co,
W)29 、Nd3( Fe,Co,Si)29、Nd3( Fe,Co,V)
29 、( Nd,Pr,Dy)3(Fe,Co,Ti)29、( Nd,Pr,D
y)3(Fe,Co,Cr )29 、( Nd,Pr,Dy)3(Fe,Co,Mo)
29、 ( Nd,Pr,Dy)3(Fe,Co,W)29、( Nd,Pr,Dy)
3(Fe,Co,Si)29、 ( Nd,Pr,Dy)3(Fe,Co,V)29
の3-29 金属間化合物が挙げられるが、これらに限定さ
れるものではない。
[0008] n / m> 7.0 becomes R m M A n intermetallic compounds, for example, Nd 2 Fe 17, Nd 2 ( Fe, Co) 17, Nd 2 (Fe, A
l) 17 , Nd 2 (Fe, Si) 17 , Nd 2 (Fe, Co, Ga) 17 , Nd 2
(Fe, Co, Ta) 17 , Nd 2 (Fe, Co, Zr) 17 , Nd 2 (Fe,
(Co, Nb) 17 , Nd 2 (Fe, Co, Hf) 17 , (Nd, Pr, Dy)
2 (Fe, Co, Ta) 17 , (Nd, Pr, Dy) 2 (Fe, Co, Zr) 17 ,
(Nd, Pr, Dy) 2 (Fe, Co, Nb) 17 , (Nd, Pr, Dy) 2 (F
e, Co, Hf) 17 , (Nd, Pr, Dy) 2 (Fe, Co, Ti) 17 , (N
d, Pr, Dy) 2 ( Fe, Co, V) 17 or the like and generally 2-17 phase and is called Th 2 Zn 17 type compounds, Nd (Fe, Ti) 12 , Nd (Fe,
Cr) 12 , Nd (Fe, Mo) 12 , Nd (Fe, W) 12 , Nd (Fe, S)
i) 12 , Nd (Fe, V) 12 , Nd (Fe, Co, Ti) 12 , Nd (Fe,
Co, Cr) 12 , Nd (Fe, Co, Mo) 12 , Nd (Fe, Co, W)
12 , Nd (Fe, Co, Si) 12 , Nd (Fe, Co, V) 12 , (N
d, Pr, Dy) (Fe, Co, Ti) 12 , (Nd, Pr, Dy) (Fe, C
o, Cr) 12 , (Nd, Pr, Dy) (Fe, Co, Mo) 12 , (Nd, P
r, Dy) (Fe, Co, W) 12 , (Nd, Pr, Dy) (Fe, Co, S
i) 12, (Nd, Pr , Dy) 2 (Fe, Co, V) 1-12 intermetallic compounds such as 12, Nd 3 (Fe, Ti ) 29, Nd 3 (Fe, Cr) 29, Nd 3
(Fe, Mo) 29 , Nd 3 (Fe, W) 29 , Nd 3 (Fe, Si) 29 ,
Nd 3 (Fe, V) 29 , Nd 3 (Fe, Co, Ti) 29 , Nd 3 (Fe, V)
Co, Cr) 29 , Nd 3 (Fe, Co, Mo) 29 , Nd 3 (Fe, Co,
W) 29 , Nd 3 (Fe, Co, Si) 29 , Nd 3 (Fe, Co, V)
29 , (Nd, Pr, Dy) 3 (Fe, Co, Ti) 29 , (Nd, Pr, D
y) 3 (Fe, Co, Cr) 29 , (Nd, Pr, Dy) 3 (Fe, Co, Mo)
29 , (Nd, Pr, Dy) 3 (Fe, Co, W) 29 , (Nd, Pr, Dy)
Examples thereof include, but are not limited to, 3-29 intermetallic compounds such as 3 (Fe, Co, Si) 29 and (Nd, Pr, Dy) 3 (Fe, Co, V) 29 .

【0009】また磁気特性や相安定性をさらに向上させ
るために、上記以外にもNd の一部または全部をYを含
む他の希土類元素、即ちLa、Ce、Pr、Sm、Eu、Gd、Tb、
Dy、Ho、Er、Tm、Yb およびLu から成る群から選択さ
れる1種以上3種、具体的にはPr、Pr-Dy、Ce-Dy、P
r-Tb、Ce-Tb 、 Pr-Tb-Dy、Pr-Ce-Dy 等で置換し
たり、Fe の一部をCo、Ni、Al、Si、Ga、Ag、Au、Cu、
V、 Cr、Mn、Sc 、 Mo、W、 Ti、Hf、Ta、Nb、Zr、Pd、
Pt、Zn、Ge、Sb、Sn、In その他1種以上その他1種以
上4種以下の元素で置換してもよい。具体的には、例え
ば、Co、Ni、Ti、Mo、Co-Al、Co-Si、Co-Ga、Co-C
u、Co-V、 Co-Cr、Co-Mn、Co-Mo、Co-W、 Co-Ti、
Co-Hf、Co-Ta、Co-Nb、Co-Zr、Co-Ni、Co-Ti-A
l、Co-Ti-Ga、Co-Ti-Si、Co-Ti-Zr、Co-Ti-Nb、
Co-Ti-Hf、Co-Ti-Ta、Co-Mo-Al、Co-Mo-Ga、C
o-Mo-Si、Co-Mo-Zr、Co-Mo-Nb、Co-Mo-Hf、Co-
Mo-Ta、Co-Ti-Al-Ga、Co-Ti-Al-Zr、Co-Ti-A
l-Nb、Co-Ti-Al-Hf、Co-Ti-Al-Ta、Co-Mo-Al-
Ga、Co-Mo-Al-Zr、Co-Mo-Al-Nb、Co-Mo-Al-H
f、Co-Mo-Al-Ta、Co-Ti-Si-Ga、Co-Mo-Si-Zr
等の組み合わせが例示される。
In order to further improve the magnetic characteristics and phase stability, other rare earth elements containing Nd partially or wholly containing Y, ie, La, Ce, Pr, Sm, Eu, Gd, Tb, other than those described above, are used. ,
At least one selected from the group consisting of Dy, Ho, Er, Tm, Yb and Lu, specifically Pr, Pr-Dy, Ce-Dy, P
r-Tb, Ce-Tb, Pr-Tb-Dy, Pr-Ce-Dy, etc., or a part of Fe is Co, Ni, Al, Si, Ga, Ag, Au, Cu,
V, Cr, Mn, Sc, Mo, W, Ti, Hf, Ta, Nb, Zr, Pd,
Pt, Zn, Ge, Sb, Sn, In and the like may be substituted with one or more other elements and one or more and four or less elements. Specifically, for example, Co, Ni, Ti, Mo, Co-Al, Co-Si, Co-Ga, Co-C
u, Co-V, Co-Cr, Co-Mn, Co-Mo, Co-W, Co-Ti,
Co-Hf, Co-Ta, Co-Nb, Co-Zr, Co-Ni, Co-Ti-A
l, Co-Ti-Ga, Co-Ti-Si, Co-Ti-Zr, Co-Ti-Nb,
Co-Ti-Hf, Co-Ti-Ta, Co-Mo-Al, Co-Mo-Ga, C
o-Mo-Si, Co-Mo-Zr, Co-Mo-Nb, Co-Mo-Hf, Co-
Mo-Ta, Co-Ti-Al-Ga, Co-Ti-Al-Zr, Co-Ti-A
l-Nb, Co-Ti-Al-Hf, Co-Ti-Al-Ta, Co-Mo-Al-
Ga, Co-Mo-Al-Zr, Co-Mo-Al-Nb, Co-Mo-Al-H
f, Co-Mo-Al-Ta, Co-Ti-Si-Ga, Co-Mo-Si-Zr
And the like.

【0010】この時、形成されるハード相はNd2Fe14
Bに限定されず、(Nd,Pr)2(Fe,Co)14B、( Nd,D
y)2(Fe,Al)14B、(Nd,Pr,Dy)2(Fe,Co,Si)14
等Nd、Fe の各々が他元素で置換され得るし、ソフト相
もFe に限らずFe-B、 Fe-Co、Fe-Ni、Fe-Al、Fe-
Si、Fe-Ga、Fe-Ag、Fe-Au、Fe-Cu、Fe-V、 Fe-C
r、Fe-Mo、Fe-W、 Fe-Ti、その他の組合せからなるF
e 基合金や化合物であってよい。ただしソフト相の条件
としては、飽和磁化がハード相よりも大きいことが必要
である。ソフト相の飽和磁化は大きい程好ましいので、
より望ましくはFe、Fe-C、 Fe-B、 Fe-N、 Fe-Co
、 Fe-Al、Fe-Si 等の金属、合金や化合物がよい。
mn 化合物のn/m の比は7.0 を超えるのがよく、7.
0 以下では2-14-1相の生成反応において余剰のFe また
はMが排出されないため、本発明の目的である微細分散
組織が形成されない。またこの時、同時にTi B2、Mo
B、 Cr B2 等の非磁性第3相が析出する場合もある。
これは単位体積当りの磁化を減少させるものの、耐食性
を向上させる等の効果も考えられ、少量ならば特に問題
はない。
At this time, the formed hard phase is Nd 2 Fe 14
Not limited to B, (Nd, Pr) 2 (Fe, Co) 14 B, (Nd, D
y) 2 (Fe, Al) 14 B, (Nd, Pr, Dy) 2 (Fe, Co, Si) 14 B
Each of Nd and Fe can be replaced by another element, and the soft phase is not limited to Fe but Fe-B, Fe-Co, Fe-Ni, Fe-Al, Fe-
Si, Fe-Ga, Fe-Ag, Fe-Au, Fe-Cu, Fe-V, Fe-C
F consisting of r, Fe-Mo, Fe-W, Fe-Ti, and other combinations
An e-base alloy or compound may be used. However, the condition of the soft phase requires that the saturation magnetization be larger than that of the hard phase. The larger the saturation magnetization of the soft phase, the better,
More preferably, Fe, Fe-C, Fe-B, Fe-N, Fe-Co
Metals, alloys and compounds such as Fe-Al and Fe-Si are preferred.
The ratio of n / m of R m M n compounds may from exceeding 7.0, 7.
Below 0, excessive Fe or M is not discharged in the 2-14-1 phase formation reaction, so that the finely dispersed structure, which is the object of the present invention, is not formed. At this time, Ti B 2 and Mo
B, there is a case where non-magnetic third phase such as Cr B 2 is precipitated.
Although this reduces the magnetization per unit volume, it is also considered to have an effect of improving corrosion resistance, etc., and there is no particular problem if the amount is small.

【0011】以上のような反応を行わせるためには、ま
ずNd2Fe17 やRmn 化合物中にBを均一に拡散させ
る工程が必要である。拡散が不十分な場合は、局所的に
未反応部分が残ったり、B過剰な相が形成されたりして
磁気特性が劣化する。この拡散方法として、例えばCa
を用いた還元拡散法を応用する。還元拡散法については
いくつかの提案(特開昭59-219404 号、特開昭62-26000
8 号参照)がなされているが、従来より提示されてきた
還元拡散法の要点は、原料として希土類の酸化物を用い
ることにある。一方本発明がCa を採択した理由は、N
d2Fe17 やRmn 化合物中のB拡散を促進させるため
にCa 液相を利用している点にある。従って本発明では
原料として希土類酸化物ではなく、希土類−Fe 化合物
を使用しており、従来の還元拡散法とは根本的に異なる
方法である。
In [0011] order to perform the above reactions, it is necessary step for first Nd 2 Fe 17 or R m M n uniformly diffuse into the compound B is. If the diffusion is insufficient, unreacted portions remain locally or a B-excess phase is formed, resulting in deterioration of magnetic properties. As this diffusion method, for example, Ca
Apply the reduction diffusion method using. Several proposals have been made for the reduction diffusion method (JP-A-59-219404, JP-A-62-26000).
However, the key point of the reduction diffusion method that has been proposed in the past is that a rare earth oxide is used as a raw material. On the other hand, the reason why the present invention adopted Ca is that N
The point is that a Ca liquid phase is used to promote B diffusion in d 2 Fe 17 and R mm M n compounds. Therefore, in the present invention, a rare earth-Fe compound is used as a raw material instead of a rare earth oxide, which is a fundamentally different method from the conventional reduction diffusion method.

【0012】以下、Nd2Fe17 を例に説明すると、本発
明の希土類永久磁石の製造工程は、粗粉砕されたNd2
e17 化合物、B23 粉末、金属Ca 粒を混合・プレス
して不活性ガス雰囲気中高温で熱処理する。B23
代わりに金属Bや硼酸等の粉末を用いてもよい。B2
3 のNd2Fe17 合金に対する混合比は、生成するソフト
相の種類によって異なるが、例としてFe を生成する場
合はNd2Fe17 のNdが全て2-14-1相を形成するのに必
要なB当量の0.8 倍から1.5 倍、Fe2Bを生成する場合
は2-14-1相とFe2B相を形成するのに必要なB当量を供
給するだけのB23 量の0.8 倍から1.5 倍、とすれば
よい。また金属Ca の混合比は、B23 を還元する必
要当量のままでは全てのCa がCa Oとなって液相がな
くなってしまうので、必要量の1.5 〜5倍、好ましくは
2〜4倍当量とする。B23 から還元されたBは、溶
融Ca を通ってNd2Fe17 相中へ拡散する。液相を媒介
とするので迅速かつ均一な拡散が行える。またCa はN
d2Fe17 粉末表面で酸化されたNd を還元する役割も果
たす。熱処理温度の上限は2-14-1相の融点(Nd2Fe14
Bの場合1155℃、Nd2Fe17 相の場合1185℃)の内低い
方の温度とする。この温度を超えると溶融反応を生じて
Fe 等の粗大粒が形成され、数十nm以下の微細分散組織
とすることが難しい。熱処理下限温度はCa 融点( 839
℃)であるが、添加元素により融点が低下した場合はそ
の温度まで下げることが可能である。熱処理後は通常の
還元拡散法と同様Ca の水洗、乾燥を行うことにより目
的とする微細分散組織から成る主相合金が得られる。R
mn 金属間化合物を用いる場合も、同様にして行えば
よい。
In the following, a description will be given of Nd 2 Fe 17 as an example. The manufacturing process of the rare earth permanent magnet of the present invention is carried out by roughly pulverized Nd 2 F 17.
e 17 Compound, B 2 O 3 powder, a metal Ca particles by mixing and pressing a heat treatment at a high temperature in an inert gas atmosphere. Powder such as metal B or boric acid may be used instead of B 2 O 3 . B 2 O
The mixing ratio of 3 to the Nd 2 Fe 17 alloy depends on the type of soft phase to be formed. For example, when Fe is formed, Nd of Nd 2 Fe 17 is necessary to form the 2-14-1 phase. 0.8 to 1.5 times the equivalent B equivalent, and when producing Fe 2 B, the B 2 O 3 amount of 0.8 is sufficient to supply the B equivalent required to form the 2-14-1 phase and the Fe 2 B phase. Double to 1.5 times. Also, the mixing ratio of metal Ca is 1.5 to 5 times, preferably 2 to 4 times the required amount, because if all necessary Ca for reducing B 2 O 3 remains at the required equivalent, all Ca becomes CaO and the liquid phase disappears. Double equivalent. B reduced from B 2 O 3 diffuses through the molten Ca into the Nd 2 Fe 17 phase. Because of the liquid phase, rapid and uniform diffusion can be achieved. Ca is N
It also plays a role in reducing Nd oxidized on the surface of the d 2 Fe 17 powder. The upper limit of the heat treatment temperature is the melting point of the 2-14-1 phase (Nd 2 Fe 14
B, 1155 ° C, and Nd 2 Fe 17 phase, 1185 ° C). If the temperature is exceeded, a melting reaction occurs to form coarse particles such as Fe, and it is difficult to obtain a finely dispersed structure of several tens nm or less. The lower limit temperature of the heat treatment is Ca melting point (839
° C), but when the melting point is lowered by the added element, it can be lowered to that temperature. After the heat treatment, Ca is washed with water and dried in the same manner as in the ordinary reduction diffusion method to obtain a desired main phase alloy having a finely dispersed structure. R
In the case of using the MMn intermetallic compound, the same operation may be performed.

【0013】従来のNd-Fe-B焼結磁石は2-14-1主相、
Nd-rich相、B-rich 相の3相からなり、低融点Nd-ri
ch相が液相焼結の焼結助剤として必要不可欠である。こ
のため溶融時の組成は3相共存域内にある。本発明にお
いては上記方法によって作製した微細分散組織粉体を2-
14-1単相の代わりに主相合金粉体とするが、これだけで
はNd-rich相、B-rich 相が得られないため、これらの
後2相に相当する組成粉末を別途用意しておき、主相合
金粉体と混合する。後2相に相当する合金は、希土類元
素:20〜40at%、B:0〜10at%、残部がFe またはM
なる組成範囲からなり、鋳造法、液体急冷法、R&D法
等を用いて製造する。その後の工程は従来のNd-Fe-B
焼結磁石と同様に、該混合粉体を微粉砕した後、磁場中
配向プレス、焼結する。焼結工程においてNd-rich相は
液化して主相表面をクリーニングすると共に粒成長、密
度化を促進し、保磁力を増大させる。前述のように1100
℃程度の焼結温度においても、分散したソフト相は2-14
-1相内を拡散し難いため、上記微細分散組織はその構造
を保持している。
The conventional Nd-Fe-B sintered magnet has a 2-14-1 main phase,
It consists of three phases, Nd-rich phase and B-rich phase, and has a low melting point Nd-ri
The ch phase is indispensable as a sintering aid for liquid phase sintering. Therefore, the composition at the time of melting is within the three-phase coexistence region. In the present invention, the finely dispersed tissue powder produced by the above method is
14-1 The main phase alloy powder is used instead of the single phase. However, the Nd-rich phase and the B-rich phase cannot be obtained with this alone, so the composition powders corresponding to the latter two phases are separately prepared. , Mixed with the main phase alloy powder. The alloys corresponding to the latter two phases are rare earth elements: 20 to 40 at%, B: 0 to 10 at%, and the balance Fe or M
It is manufactured by a casting method, a liquid quenching method, an R & D method, or the like. The subsequent process is the same as the conventional Nd-Fe-B
Like the sintered magnet, the mixed powder is finely pulverized, and then orientation-pressed and sintered in a magnetic field. In the sintering process, the Nd-rich phase is liquefied to clean the surface of the main phase, promote grain growth and density, and increase coercive force. 1100 as described above
Even at a sintering temperature of about ℃, the dispersed soft phase is 2-14
-1 Since it is difficult to diffuse in the phase, the finely dispersed structure retains its structure.

【0014】本発明の作用は、Nd2Fe17 もしくはRm
n 化合物中へのBの還元拡散にCa 液相を使用するこ
とによって、拡散が促進されかつ均一微細分散組織を発
達させたことにある。
The effect of the present invention is that Nd 2 Fe 17 or R m
The use of the Ca liquid phase for the reductive diffusion of B into the Mn compound promotes the diffusion and develops a uniform finely dispersed structure.

【実施例】以下、本発明の実施の形態を実施例を挙げて
具体的に説明するが、本発明はこれらに限定されるもの
ではない。 (実施例1)Nd メタル、Fe メタルを原子百分比で
2:17になるように秤量し、高周波溶解炉にてAr 雰囲
気下に溶解した。得られた試料を1100℃×10hr加熱して
溶体化処理を行ったのち粗粉砕して、粒径40mesh以下の
Nd2Fe17 原料粉末を得た。上記原料粉を粒径 150mesh
以下のB23 とVミキサーにて混合した後、さらに金
属Ca 粒を加えて混合し、プレスした。Nd2Fe17 :B
23 :Ca の秤量割合は分子モル比で2:1:9とし
た。B23 は還元後のBがNd2Fe17 全てをNd2Fe
14 Bとするのに必要な量、Ca はB23 をすべてB
に還元するのに必要な量の3倍に相当する。プレスした
試料をAr 雰囲気下熱処理炉内で 900℃×1hr熱処理し
冷却した。炉から取り出した試料は 100μm程度に粉砕
した後、弱アルカリ水溶液中で水洗し、Ca 及びCa O
を除去してから真空乾燥した。以上の工程により目的と
するNd2Fe14 B/Fe 微細分散組織を有する主相粉体
が得られた。これとは別にNd-30−Fe-20−Co-10−B
-40 原子%なる平均組成を持つ合金粉末を高周波溶解に
より作製した。これを上記主相粉体とともにVミキサー
にて混合後、ジェットミルで平均粒径3〜4μmまで微
粉砕した。さらにこの粉末を15kOe 磁場中で磁場方向に
配向させながら圧力0.7Ton/cm2でプレス成形した。成形
体をAr 雰囲気中で1100℃×1hr焼結し、室温冷却して
から 500〜 650℃×1hrの時効処理を行った。上記工程
により作製された焼結磁石の磁気特性を表1に示す。
The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these. (Example 1) Nd metal and Fe metal were weighed in an atomic percentage ratio of 2:17, and were melted in an Ar atmosphere in a high-frequency melting furnace. The obtained sample was heated at 1100 ° C. for 10 hours to perform a solution treatment, and then coarsely pulverized to obtain a Nd 2 Fe 17 raw material powder having a particle size of 40 mesh or less. The above raw material powder has a particle size of 150mesh
After mixing with the following B 2 O 3 using a V mixer, metal Ca particles were further added, mixed and pressed. Nd 2 Fe 17 : B
The weighing ratio of 2 O 3 : Ca was 2: 1: 9 in terms of molecular molar ratio. B 2 O 3 is obtained by reducing B to convert all Nd 2 Fe 17 to Nd 2 Fe.
The amount required to make 14 B, Ca is B 2 O 3
3 times the amount required to reduce The pressed sample was heat-treated at 900 ° C. for 1 hour in a heat treatment furnace in an Ar atmosphere and cooled. The sample taken out of the furnace was pulverized to about 100 μm, washed with a weak alkaline aqueous solution, and washed with Ca and CaO.
And vacuum dried. Through the above steps, a target main phase powder having a desired Nd 2 Fe 14 B / Fe fine dispersion structure was obtained. Apart from this, Nd-30-Fe-20-Co-10-B
An alloy powder having an average composition of -40 atomic% was prepared by high frequency melting. This was mixed with the main phase powder by a V mixer, and then finely pulverized by a jet mill to an average particle size of 3 to 4 μm. Further, this powder was press-formed at a pressure of 0.7 Ton / cm 2 while orienting in a magnetic field direction in a 15 kOe magnetic field. The molded body was sintered at 1100 ° C for 1 hour in an Ar atmosphere, cooled at room temperature, and then subjected to an aging treatment at 500 to 650 ° C for 1 hour. Table 1 shows the magnetic properties of the sintered magnet manufactured by the above steps.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例2)B23 の代わりに粒径325m
esh 以下のB粉末を用い、混合比をモル比でNd2 Fe17:
B: Ca =1: 1: 9とした他は実施例1と同様の条件
で作製し、磁気特性を表1に併記した。
(Embodiment 2) BTwo OThree Instead of particle size 325m
Using B powder below esh, the mixing ratio is Nd in molar ratio.Two Fe17:
B: Same conditions as in Example 1 except that Ca = 1: 1: 9
And the magnetic properties are also shown in Table 1.

【0017】(実施例3)B23 の代わりに硼酸H3
BO3 を用い、混合比をNd2Fe17:H3 BO3:Ca =
1: 1: 9としたた他は実施例1と同様の条件で作製
し、磁気特性を表1に併記した。
[0017] (Example 3) boric acid H 3 instead of B 2 O 3
Using BO 3 , the mixing ratio was Nd 2 Fe 17 : H 3 BO 3 : Ca =
Except that the ratio was set to 1: 1: 9, it was manufactured under the same conditions as in Example 1, and the magnetic characteristics are also shown in Table 1.

【0018】(実施例4)Nd メタル、Fe メタル、C
o メタルを原子百分率で2:12:5となるように秤量し溶
解した他は実施例1と同様の条件で作製し、磁気特性を
表1に併記した。
(Embodiment 4) Nd metal, Fe metal, C
o A metal was prepared under the same conditions as in Example 1 except that the metal was weighed and dissolved in an atomic percentage of 2: 12: 5, and the magnetic properties are also shown in Table 1.

【0019】(実施例5)Nd メタル、Pr メタル、F
e メタルを原子百分率(以下、同じ)で1.5:0.5:17とな
るように秤量し溶解した他は実施例1と同様の条件で作
製し、磁気特性を表1に併記した。
(Embodiment 5) Nd metal, Pr metal, F
e Metal was prepared under the same conditions as in Example 1 except that the metal was weighed and dissolved in an atomic percentage (hereinafter the same) to be 1.5: 0.5: 17, and the magnetic characteristics were also shown in Table 1.

【0020】(実施例6)Nd メタル、Fe メタル、T
i メタルを1:11:1となるように秤量し溶解したNd F
e11 Ti 原料粉を用い、Nd Fe11 Ti:B: Ca =2:
5:9とした他は実施例2と同様の条件で作製し、磁気
特性を表1に併記した。
(Embodiment 6) Nd metal, Fe metal, T
i Nd F dissolved and weighed so that metal becomes 1: 11: 1
Using e 11 Ti raw material powder, NdFe 11 Ti: B: Ca = 2:
Except that the ratio was set to 5: 9, it was manufactured under the same conditions as in Example 2, and the magnetic characteristics are also shown in Table 1.

【0021】(実施例7)Nd メタル、Fe メタル、C
o メタル、Ti メタルを1:9:2:1となるように秤
量し溶解した他は実施例6と同様の条件で作製し、磁気
特性を表1に併記した。
(Embodiment 7) Nd metal, Fe metal, C
o Metal and Ti metal were prepared under the same conditions as in Example 6 except that they were weighed and dissolved in a ratio of 1: 9: 2: 1, and the magnetic characteristics were also shown in Table 1.

【0022】(実施例8)Nd メタル、Fe メタル、M
o メタルを1:11.5:0.5 となるように秤量し溶解した
原料粉を用い、Nd Fe11.5 Mo0.5 :B: Ca =2:
5:9とした他は実施例2と同様の条件で作製し、磁気
特性を表1に併記した。
(Embodiment 8) Nd metal, Fe metal, M
The o Metal 1: 11.5: using a raw material powder weighed and dissolved at a 0.5, Nd Fe 11.5 Mo 0.5: B: Ca = 2:
Except that the ratio was set to 5: 9, it was manufactured under the same conditions as in Example 2, and the magnetic characteristics are also shown in Table 1.

【0023】(実施例9)Nd メタル、Fe メタル、C
o メタル、Mo メタルを1:9.4:2.1:0.5となるように秤
量し溶解した他は実施例8と同様の条件で作製し、磁気
特性を表1に併記した。
(Embodiment 9) Nd metal, Fe metal, C
o Metal and Mo metal were prepared under the same conditions as in Example 8 except that they were weighed and dissolved so as to be 1: 9.4: 2.1: 0.5, and the magnetic characteristics were also shown in Table 1.

【0024】(実施例10)混合比をNd2Fe17:B2
3:Ca =2:1.5 :9とした他は実施例1と同様の条件
で作製し、磁気特性を表1に併記した。
Example 10 The mixing ratio was Nd 2 Fe 17 : B 2 O
Except that 3 : Ca = 2: 1.5: 9, it was produced under the same conditions as in Example 1, and the magnetic characteristics are also shown in Table 1.

【0025】(実施例11)混合比をNd2Fe17:B: C
a =1:1.3 :9とした他は実施例2と同様の条件で作
製し、磁気特性を表1に併記した。
Example 11 The mixing ratio was Nd 2 Fe 17 : B: C
Except that a = 1: 1.3: 9, it was produced under the same conditions as in Example 2, and the magnetic properties are also shown in Table 1.

【0026】(比較例)Nd メタル、Fe メタル及びF
e-B合金を原子比でNd:Fe:B=15:77:8となるよう
に秤量し、高周波溶解炉にてAr 雰囲気下に溶解した。
得られた試料を1100℃×10hr加熱して溶体化処理を行っ
た後、粒径3μm以下に粉砕した。さらにこの粉末を15
kOe 磁場中で磁場方向に配向させながら圧力 0.7ton/cm
2 でプレス成形した。成形体をAr 雰囲気中で1100℃×
1hr焼結し、室温まで冷却してから 600℃×1hrの時効
処理を行った。作製された焼結磁石の磁気特性を表1に
併記する。
(Comparative Example) Nd metal, Fe metal and F
The e-B alloy was weighed so that the atomic ratio Nd: Fe: B = 15: 77: 8, and was melted in an Ar atmosphere in a high-frequency melting furnace.
The obtained sample was heated at 1100 ° C. for 10 hours to perform a solution treatment, and then pulverized to a particle size of 3 μm or less. Add 15 more of this powder
Pressure 0.7ton / cm while orienting in the direction of the magnetic field in the kOe magnetic field
Press-molded in 2 . The molded body is heated at 1100 ℃ in Ar atmosphere.
After sintering for 1 hour and cooling to room temperature, aging treatment was performed at 600 ° C for 1 hour. Table 1 also shows the magnetic properties of the manufactured sintered magnet.

【0027】[0027]

【発明の効果】本発明によれば、最大エネルギー積BH
max が大きく、磁気的異方性を持つNd-Fe-B系希土類
永久磁石が得られ、かつ還元拡散剤に金属Ca を使用す
るので原料コストの低減が図れる等、産業上その利用価
値は極めて高い。
According to the present invention, the maximum energy product BH
Nd-Fe-B rare earth permanent magnets with large max and magnetic anisotropy can be obtained, and the use of metal Ca as a reducing and diffusing agent can reduce raw material costs. high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 勝志 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 (72)発明者 伊藤 卓 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsushi Tokunaga 3-2-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture Inside the Corporate Research Center Shin-Etsu Chemical Co., Ltd. (72) Inventor Taku Ito 2-chome Kitafu, Takefu City, Fukui Prefecture No. 1-5 Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Nd、Fe、Bの元素から成り、かつその主相
であるNd2Fe14 B相中にFe またはFe を含む合金も
しくは金属間化合物が微細に分散した組織から成る希土
類永久磁石の製造方法において、式 Nd2Fe17 で表さ
れる金属間化合物を原料とし、該金属間化合物相にB元
素を拡散させて、磁気的異方性および前記微細分散組織
を有する主相Nd2Fe14 Bを得ることを特徴とする希土
類永久磁石の製造方法。
1. A rare earth permanent magnet composed of elements of Nd, Fe, and B and having a structure in which Fe or an alloy or intermetallic compound containing Fe is finely dispersed in a main phase of Nd 2 Fe 14 B phase. In the production method, the intermetallic compound represented by the formula Nd 2 Fe 17 is used as a raw material, and element B is diffused into the intermetallic compound phase to form a main phase Nd 2 having magnetic anisotropy and the finely dispersed structure. A method for producing a rare earth permanent magnet, wherein Fe 14 B is obtained.
【請求項2】B、B23 または硼酸の内の1種以上、
金属間化合物Nd2Fe17 および金属Ca から成る混合粉
体を熱処理して、BをNd-Fe 金属間化合物中に拡散さ
せることを特徴とする請求項1に記載の希土類永久磁石
の製造方法。
2. One or more of B, B 2 O 3 or boric acid,
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the mixed powder composed of the intermetallic compound Nd 2 Fe 17 and the metal Ca is heat-treated to diffuse B into the Nd-Fe intermetallic compound.
【請求項3】請求項1または2に記載の製造方法により
作製したNd2Fe14 B主相中にFe またはFe を含む合
金もしくは金属間化合物が微細に分散した組織を主相と
する磁石が、磁気的異方性を有していることを特徴とす
る希土類永久磁石の製造方法。
3. A magnet whose main phase is a structure in which Fe or an alloy or an intermetallic compound containing Fe is finely dispersed in the Nd 2 Fe 14 B main phase produced by the production method according to claim 1 or 2. And a method of manufacturing a rare earth permanent magnet having magnetic anisotropy.
【請求項4】希土類元素R(RはYを含む希土類元素の
内1種以上4種以下)、元素M(MはR、Bを除くCo、
Ni、Al、Si、Ga、Ag、Au、Cu、V、 Cr、Mn、Sc 、 Mo、
W、 Ti、Hf、Ta、Nb、Zr、Pd、Pt、Zn、Ge、Sb、Sn お
よびIn から選択される1種以上5種以下の元素で、少
なくともFe を含む)およびBを含む3種以上の元素か
ら成り、かつその主相であるR214B相中にFe また
はFe を含む合金もしくは金属間化合物が微細に分散し
た組織から成る希土類永久磁石の製造方法において、式
m Fen で表される金属間化合物(ここにm、n は正
の整数で、原子比 n/m>7.0 とする)を原料とし、該金
属間化合物相にB元素を拡散させて、磁気的異方性およ
び前記微細分散組織を有する主相R214Bを得ること
を特徴とする希土類永久磁石の製造方法。
4. A rare earth element R (R is one or more and four or less rare earth elements including Y), an element M (M is R, Co other than B,
Ni, Al, Si, Ga, Ag, Au, Cu, V, Cr, Mn, Sc, Mo,
And at least one element selected from W, Ti, Hf, Ta, Nb, Zr, Pd, Pt, Zn, Ge, Sb, Sn and In, including at least Fe, and B In a method for manufacturing a rare-earth permanent magnet composed of the above elements and having a structure in which Fe or an alloy or an intermetallic compound containing Fe is finely dispersed in the main phase of the R 2 M 14 B phase, the formula R m Fe Using an intermetallic compound represented by n (where m and n are positive integers and an atomic ratio of n / m> 7.0) as a raw material, element B is diffused into the intermetallic compound phase, and the A method for producing a rare earth permanent magnet, comprising obtaining a main phase R 2 M 14 B having anisotropy and the finely dispersed structure.
【請求項5】B、B23 または硼酸の内1種以上、金
属間化合物Rmn (ここにm、n は正の整数で、原子比
n/m>7.0 とする)および金属Ca から成る混合粉体を
熱処理して、BをRとMから成る金属間化合物中に拡散
させることを特徴とする請求項4に記載の希土類永久磁
石の製造方法。
5. B, B 2 O 3 or one or more of boric acid, the intermetallic compound R m M n (here m, n are positive integers, the atomic ratio
5. The rare-earth permanent magnet according to claim 4, wherein the mixed powder composed of n / m> 7.0) and metal Ca is heat-treated to diffuse B into the intermetallic compound composed of R and M. Production method.
【請求項6】請求項4または5に記載の製造方法により
作製したR214B主相中にFe またはFe を含む合金
もしくは金属間化合物が微細に分散した組織を主相とす
る磁石が、磁気的異方性を有していることを特徴とする
希土類永久磁石の製造方法。
6. A magnet mainly composed of a structure in which Fe or an alloy or an intermetallic compound containing Fe is finely dispersed in an R 2 M 14 B main phase produced by the production method according to claim 4 or 5. And a method of manufacturing a rare earth permanent magnet having magnetic anisotropy.
JP24610496A 1996-09-18 1996-09-18 Manufacturing method of rare earth permanent magnet Expired - Fee Related JP3247839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24610496A JP3247839B2 (en) 1996-09-18 1996-09-18 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24610496A JP3247839B2 (en) 1996-09-18 1996-09-18 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH1092616A true JPH1092616A (en) 1998-04-10
JP3247839B2 JP3247839B2 (en) 2002-01-21

Family

ID=17143550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24610496A Expired - Fee Related JP3247839B2 (en) 1996-09-18 1996-09-18 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3247839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191552A2 (en) * 2000-09-26 2002-03-27 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
CN102310196A (en) * 2011-01-23 2012-01-11 四川大学 Method for manufacturing micro parts by sintering under electric field action
KR101354138B1 (en) * 2013-07-30 2014-01-27 한국기계연구원 A manufacturing method of powder of nd-fe-b alloy
CN105081338A (en) * 2014-05-08 2015-11-25 中国科学院宁波材料技术与工程研究所 Method for preparing mono-dispersed NdFeB nano particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191552A2 (en) * 2000-09-26 2002-03-27 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
EP1191552A3 (en) * 2000-09-26 2003-02-26 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
US6736909B2 (en) 2000-09-26 2004-05-18 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
CN102310196A (en) * 2011-01-23 2012-01-11 四川大学 Method for manufacturing micro parts by sintering under electric field action
KR101354138B1 (en) * 2013-07-30 2014-01-27 한국기계연구원 A manufacturing method of powder of nd-fe-b alloy
CN105081338A (en) * 2014-05-08 2015-11-25 中国科学院宁波材料技术与工程研究所 Method for preparing mono-dispersed NdFeB nano particles

Also Published As

Publication number Publication date
JP3247839B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
CN100414650C (en) Rare earth magnet and method for production thereof
CN101425355B (en) Pr/Nd based biphase composite permanent magnetic material and block body preparing method thereof
JP3549382B2 (en) Rare earth element / iron / boron permanent magnet and method for producing the same
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JPH03236202A (en) Sintered permanent magnet
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3247839B2 (en) Manufacturing method of rare earth permanent magnet
JP3260087B2 (en) Manufacturing method of rare earth permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPH06330252A (en) Rare earth metal magnet material and rare earth metal bonded magnet
CN1061163C (en) Double-phase rare-earth-iron-boron magnetic powder and its prepn. method
JP2001123201A (en) Method for producing sinetred permanent magnet
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JPH0146575B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH10312918A (en) Magnet and bonded magnet
JPH0549737B2 (en)
JPH0660367B2 (en) Method of manufacturing permanent magnet material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees