JPH1089811A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH1089811A
JPH1089811A JP8238947A JP23894796A JPH1089811A JP H1089811 A JPH1089811 A JP H1089811A JP 8238947 A JP8238947 A JP 8238947A JP 23894796 A JP23894796 A JP 23894796A JP H1089811 A JPH1089811 A JP H1089811A
Authority
JP
Japan
Prior art keywords
passage
diaphragm
expansion valve
valve body
resin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8238947A
Other languages
Japanese (ja)
Inventor
Mitsuya Fujimoto
美津也 藤本
Kazuhiko Watanabe
和彦 渡辺
Kimimichi Yano
公道 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP8238947A priority Critical patent/JPH1089811A/en
Publication of JPH1089811A publication Critical patent/JPH1089811A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a hunting phenomenon from being presented to an expansion valve in an air conditioner. SOLUTION: An expansion valve 10 is provided with a temperature-sensitive bar 300 constituting a valve disc driving bar. The temperature-sensitive bar 300 has a constitution that its main body 310 made of aluminum is partly fitted into a resin member 330. The resin member 330 has an engaging edge 336 and is coupled to the main body 310 by engaging it with a groove 316 of the main body. With this assembling, since the resin member 330 is made of a material having low-thermal conductivity even in the case where, for example, an unevaporated refrigerant from an evaporator flows into a second passage 34 and adheres to the resin member 330, response characteristics of the expansion valve 10 become dull even under the thermal load of the evaporator, and, as a result, a hunting phenomenon to be possibly presented in a refrigerating system can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置、冷凍
装置等の冷凍サイクルに用いられる冷媒用の膨張弁に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve for a refrigerant used in a refrigeration cycle of an air conditioner, a refrigeration apparatus, and the like.

【0002】[0002]

【従来の技術】この種の膨張弁は、自動車等の空気調和
装置の冷凍サイクルにおいて用いられており、図4は、
従来の膨張弁の縦断面図を冷凍サイクルの概略と共に示
している。膨張弁10は、角柱状のアルミ製の弁本体3
0には、冷凍サイクルの冷媒管路11においてコンデン
サ5の冷媒出口からレシーバ6を介してエバポレータ8
の冷媒入口へと向かう部分に介在される液相冷媒が通過
する第1の通路32と冷媒管路11においてエバポレ−
タ8の冷媒出口からコンプレッサ4の冷媒入口へと向か
う部分に介在される気相冷媒が通過する第2の通路34
とが上下に相互に離間して形成されている。
2. Description of the Related Art An expansion valve of this type is used in a refrigeration cycle of an air conditioner of an automobile or the like.
1 shows a longitudinal sectional view of a conventional expansion valve together with an outline of a refrigeration cycle. The expansion valve 10 is a prismatic aluminum valve body 3.
In the refrigerant line 11 of the refrigeration cycle, the evaporator 8 is connected to the refrigerant outlet of the condenser 5 via the receiver 6.
In the first passage 32 and the refrigerant pipe 11 through which the liquid-phase refrigerant interposed at the portion toward the refrigerant inlet passes, an evaporator is provided.
Second passage 34 through which a gas-phase refrigerant interposed at a portion from the refrigerant outlet of the compressor 8 to the refrigerant inlet of the compressor 4 passes.
Are formed vertically separated from each other.

【0003】第1の通路32にはレシ−バ6の冷媒出口
から供給された液体冷媒を断熱膨張させるためのオリフ
ィス32aが形成されている。オリフィス32aは弁本
体30の長手方向に沿った中心線上に位置している。オ
リフィス32aの入口には弁座が形成されていて、弁座
には弁部材32cにより支持された弁体32bが存在
し、弁体32bと弁部材32cとは溶接により固定され
ている。弁部材32cは、弁体と溶接により固着される
と共に圧縮コイルばねの如き付勢手段32dにより付勢
されている。レシ−バ6からの液冷媒が導入される第1
の通路32は液冷媒の通路となり、入口ポ−ト321
と、この入口ポ−ト321に連続する弁室35を有す
る。弁室35は、オリフィス32aの中心線と同軸に形
成される有底の室であり、プラグ39によって密閉され
ている。
In the first passage 32, an orifice 32a for adiabatically expanding the liquid refrigerant supplied from the refrigerant outlet of the receiver 6 is formed. The orifice 32a is located on a center line along the longitudinal direction of the valve body 30. A valve seat is formed at an inlet of the orifice 32a, and a valve body 32b supported by a valve member 32c is present at the valve seat, and the valve body 32b and the valve member 32c are fixed by welding. The valve member 32c is fixed to the valve body by welding and is urged by urging means 32d such as a compression coil spring. The first where the liquid refrigerant from the receiver 6 is introduced
Passage 32 serves as a passage for the liquid refrigerant and has an inlet port 321.
And a valve chamber 35 connected to the inlet port 321. The valve chamber 35 is a chamber with a bottom formed coaxially with the center line of the orifice 32 a, and is closed by a plug 39.

【0004】さらに、弁本体30にはエバポレータ8の
出口温度に応じて弁体32bに対して駆動力を与えてオ
リフィス32aの開閉を行うために、小径の孔37とこ
の孔37より径が大径の孔38が第2の通路34を貫通
して上記中心線の延長線上に形成され、弁本体30の上
端には感熱部となるパワーエレメント部36が固定され
るねじ孔361が形成されている。
Further, in order to apply a driving force to the valve body 32b in accordance with the outlet temperature of the evaporator 8 to open and close the orifice 32a, the valve body 30 has a small diameter hole 37 and a diameter larger than the hole 37. A hole 38 having a diameter is formed through the second passage 34 on an extension of the center line, and a screw hole 361 is formed at an upper end of the valve body 30 to which a power element portion 36 serving as a heat sensitive portion is fixed. I have.

【0005】パワーエレメント部36は、ステンレス製
のダイアフラム36aと、このダイアフラム36aを挾
んで互いに密着して設けられ、その上下に二つの気密室
を形成する上部圧力作動室36b及び下部圧力作動室3
6cをそれぞれ形成する上カバー36dと下カバー36
hと、上部圧力作動室36bにダイアフラム駆動流体と
なる所定冷媒を封入するための封切管36iとを備え、
下部圧力作動室36cは、オリフィス32aの中心線に
対して同心的に形成された均圧孔36eを介して第2の
通路34に連通されている。第2の通路34には、エバ
ポレータ8からの冷媒蒸気が流れ、通路34は気相冷媒
の通路となり、その冷媒蒸気の圧力が均圧孔36eを介
して下部圧力作動室36cに負荷されている。
The power element 36 is provided with a diaphragm 36a made of stainless steel and an upper pressure working chamber 36b and a lower pressure working chamber 3 which are provided in close contact with each other with the diaphragm 36a therebetween and form two airtight chambers above and below the diaphragm 36a.
6c and upper cover 36d and lower cover 36, respectively.
h, and a sealing tube 36i for sealing a predetermined refrigerant serving as a diaphragm driving fluid in the upper pressure working chamber 36b,
The lower pressure working chamber 36c communicates with the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the orifice 32a. Refrigerant vapor from the evaporator 8 flows through the second passage 34, and the passage 34 serves as a passage for a gas-phase refrigerant, and the pressure of the refrigerant vapor is applied to the lower pressure working chamber 36c via the equalizing hole 36e. .

【0006】さらに下部圧力作動室36c内にダイアフ
ラム36aと当接し、かつ第2の通路34を貫通して大
径の孔38内に摺動可能に配置されて、エバポレータ8
の冷媒出口温度を下部圧力作動室36cへ伝達すると共
に、上部圧力作動室36b及び下部圧力作動室36cの
圧力差に伴うダイアフラム36aの変位に応じて大径3
8内を摺動して駆動力を与えるアルミ製の感温棒36f
と、小径の孔37内に摺動可能に配されて感温棒36f
の変位に応じて弁体32bを付勢手段32dの弾性力に
抗して押圧するステンレス製の作動棒37fからなり、
感温棒36fには第1の通路32と、第2の通路34と
の気密性を確保するための密封部材、例えばOリング3
6gが備えられており、感温棒36fと作動棒37fと
は当接し、作動棒37fは弁体32bと当接しており、
感温棒36fと作動棒37fとで弁体駆動棒が構成され
ている。したがって、均圧孔36eには、ダイアフラム
36aの下面から第1の通路32のオリフィス32aま
で延出した弁体駆動棒が同心的に配置されていることに
なる。
Further, the evaporator 8 abuts on the diaphragm 36a in the lower pressure working chamber 36c and is slidably disposed in the large-diameter hole 38 through the second passage 34.
Is transmitted to the lower pressure working chamber 36c, and the large diameter 3 according to the displacement of the diaphragm 36a due to the pressure difference between the upper pressure working chamber 36b and the lower pressure working chamber 36c.
Aluminum temperature sensing rod 36f which gives a driving force by sliding in the inside 8
And a temperature sensing rod 36f slidably disposed in the small diameter hole 37.
A stainless steel operating rod 37f which presses the valve body 32b against the elastic force of the urging means 32d in accordance with the displacement of
A sealing member for ensuring airtightness between the first passage 32 and the second passage 34, for example, an O-ring 3
6g is provided, the temperature sensing rod 36f and the operating rod 37f are in contact with each other, and the operating rod 37f is in contact with the valve body 32b,
The valve element driving rod is constituted by the temperature sensing rod 36f and the operating rod 37f. Therefore, the valve drive rod extending from the lower surface of the diaphragm 36a to the orifice 32a of the first passage 32 is concentrically arranged in the pressure equalizing hole 36e.

【0007】圧力作動ハウジング36dの上方の圧力作
動室36b中には公知のダイアフラム駆動流体が充填さ
れていて、ダイアフラム駆動流体には第2の通路34や
第2の通路34に連通されている均圧孔36eに露出さ
れた弁体駆動棒及びダイアフラム36aを介して第2の
通路34を流れているエバポレ−タ8の冷媒出口からの
冷媒蒸気の熱が伝達される。
A known diaphragm driving fluid is filled in the pressure operating chamber 36b above the pressure operating housing 36d, and the diaphragm driving fluid is uniformly communicated with the second passage 34 and the second passage 34. The heat of the refrigerant vapor from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 is transmitted via the valve body driving rod exposed to the pressure hole 36e and the diaphragm 36a.

【0008】上方の圧力作動室36b中のダイアフラム
駆動流体は上記伝達された熱に対応してガス化し圧力を
ダイアフラム36aの上面に負荷する。ダイアフラム3
6aは上記上面に負荷されたダイアフラム駆動ガスの圧
力とダイアフラム36aの下面に負荷された圧力との差
により上下に変位する。ダイアフラム36aの中心部の
上下への変位は弁体駆動棒を介して弁体32bに伝達さ
れ弁体32bをオリフィス32aの弁座に対して接近ま
たは離間させる。この結果、冷媒流量が制御されること
となる。
[0008] The diaphragm driving fluid in the upper pressure working chamber 36b is gasified in response to the transferred heat and applies pressure to the upper surface of the diaphragm 36a. Diaphragm 3
6a is displaced up and down due to the difference between the pressure of the diaphragm driving gas applied to the upper surface and the pressure applied to the lower surface of the diaphragm 36a. The displacement of the center of the diaphragm 36a in the vertical direction is transmitted to the valve body 32b via the valve body drive rod, and moves the valve body 32b toward or away from the valve seat of the orifice 32a. As a result, the flow rate of the refrigerant is controlled.

【0009】即ち、エバポレータ8の出口側の気相冷媒
温度が上部圧力作動室36bに伝達されるため、その温
度に応じて上部圧力作動室36bの圧力が変化し、エバ
ポレータ8の出口温度が上昇する。つまりエバポレータ
の熱負荷が増加すると、上部圧力作動室36bの圧力が
高くなり、それに応じて感温棒36fつまり弁部材駆動
棒が下方へ駆動されて弁体の作動棒37を介して弁体3
2bを下げるため、オリフィス32aの開度が大きくな
る。これによりエバポレータ8への冷媒の供給量が多く
なり、エバポレータ8の温度を低下させる。逆に、エバ
ポレータ8の出口温度が低下する、つまりエバポレータ
の熱負荷が減少すると、弁体32bが上記と逆方向に駆
動され、オリフィス32aの開度が小さくなり、エバポ
レータへの冷媒の供給量が少なくなり、エバポレータ8
の温度を上昇させるのである。
That is, since the temperature of the gas-phase refrigerant at the outlet side of the evaporator 8 is transmitted to the upper pressure working chamber 36b, the pressure in the upper pressure working chamber 36b changes according to the temperature, and the outlet temperature of the evaporator 8 rises. I do. That is, when the heat load of the evaporator increases, the pressure in the upper pressure working chamber 36b increases, and accordingly, the temperature sensing rod 36f, that is, the valve member drive rod is driven downward, and the valve body 3
2b, the opening of the orifice 32a increases. Thus, the supply amount of the refrigerant to the evaporator 8 increases, and the temperature of the evaporator 8 decreases. Conversely, when the outlet temperature of the evaporator 8 decreases, that is, when the heat load of the evaporator decreases, the valve element 32b is driven in the opposite direction to the above, the opening degree of the orifice 32a decreases, and the supply amount of the refrigerant to the evaporator decreases. Less, evaporator 8
Raises the temperature.

【0010】[0010]

【発明が解決しようとする課題】かかる膨張弁の用いら
れる冷凍システムにおいては、蒸発器への冷媒供給が過
剰・不足・過剰・不足を短い周期で繰り返す所謂ハンチ
ング現象が知られている。これは膨張弁が環境温度の影
響を受けた場合、例えば膨張弁の感温棒に未蒸発の液冷
媒が付着して、これを温度変化と感知してエバポレータ
の熱負荷の変動が生じ、過敏な弁開閉応答に基づくこと
を原因としている。
In a refrigeration system using such an expansion valve, there is known a so-called hunting phenomenon in which the supply of refrigerant to an evaporator repeats in a short cycle of excess, shortage, excess, and shortage. This is because when the expansion valve is affected by the environmental temperature, for example, the unevaporated liquid refrigerant adheres to the temperature sensing rod of the expansion valve and senses this as a temperature change, causing a change in the heat load of the evaporator, resulting in hypersensitivity. It is based on a simple valve opening / closing response.

【0011】このようなハンチング現象が生じると冷凍
システム全体の能力を減ずると共に、圧縮機への液戻り
が生じ圧縮機に悪影響を生じるという問題がある。本出
願人は、特願平7−325357号として、図5に示す
膨張弁を提案した。この膨張弁10は、アルミ製の弁体
駆動棒を構成する感温棒100に低熱伝導率の樹脂10
1がインサート形成されて感温棒100に密着する状態
に一体化されている。低熱伝導率の樹脂101として
は、例えば冷媒等の影響による経時的変化のないPPS
樹脂が用いられる。上記樹脂101は、感温棒100の
気相冷媒が通過する第2の通路34中に露出している部
分以外に下方の圧力作動室36c中に存在する感温部に
まで設けられている。樹脂101の厚さとしては、例え
ば1mm程度の厚さに設けられる。
When such a hunting phenomenon occurs, there is a problem that the capacity of the entire refrigeration system is reduced, and a liquid is returned to the compressor, which adversely affects the compressor. The present applicant has proposed an expansion valve shown in FIG. 5 as Japanese Patent Application No. 7-325357. The expansion valve 10 is provided with a low thermal conductivity resin 10 on a temperature sensing rod 100 constituting an aluminum valve body driving rod.
1 is integrally formed in an insert-formed state so as to be in close contact with the temperature-sensitive stick 100. As the resin 101 having a low thermal conductivity, for example, PPS which does not change over time due to the influence of a refrigerant or the like
Resin is used. The resin 101 is provided not only at the portion of the temperature sensing rod 100 exposed in the second passage 34 through which the gas-phase refrigerant passes but also at the temperature sensing portion existing in the lower pressure working chamber 36c. The thickness of the resin 101 is, for example, about 1 mm.

【0012】また、樹脂101は少なくとも感温棒10
0の第2の通路34中に露出する部分にのみ設けてよい
のは勿論である。かかる樹脂101を設けることによ
り、例えばエバポレータからの未蒸発の冷媒が第2の通
路34中に流れ、樹脂101に付着しても樹脂101は
低熱伝導率の材料であるため、エバポレータの熱負荷の
変動即ちエバポレータの熱負荷の増加が生じても、膨張
弁10の応答特性は鈍感になり、冷凍システムにハンチ
ング現象が生じるのを避けることができる。上述した膨
張弁は、アルミ製の感温棒100に樹脂101をインサ
ートする必要があり、製造工程にコストがかかるといっ
た問題点がある。本発明は、このような問題に鑑みてな
されたものであって、その目的とするところは、簡単な
構成の変更で、冷凍システムにハンチング現象が生じる
のを防止する膨張弁を提供することにある。
In addition, the resin 101 is at least
Of course, it may be provided only in a portion exposed in the second passage 34 of the zero. By providing such a resin 101, for example, the unevaporated refrigerant from the evaporator flows into the second passage 34, and even if it adheres to the resin 101, the resin 101 is a material having a low thermal conductivity. Even if the fluctuation, that is, the increase of the heat load of the evaporator, occurs, the response characteristic of the expansion valve 10 becomes insensitive, and the occurrence of the hunting phenomenon in the refrigeration system can be avoided. The above-mentioned expansion valve has a problem that it is necessary to insert the resin 101 into the aluminum temperature sensing rod 100, and the manufacturing process is costly. The present invention has been made in view of such a problem, and an object of the present invention is to provide an expansion valve that prevents a hunting phenomenon from occurring in a refrigeration system with a simple configuration change. is there.

【0013】[0013]

【課題を解決するための手段】前記目的を達成すべく、
本発明に係る膨張弁は、液冷媒の通る第1の通路とエバ
ポレータからコンプレッサに向う気相冷媒の通る第2の
通路を有する弁本体と、上記第1の通路中に設けられる
オリフィスと、オリフィスを通過する冷媒量を調節する
弁体と、上記弁本体に設けられ、その上下の圧力差によ
り作動するダイヤフラムを有するパワーエレメント部
と、このダイヤフラムの変位により上記弁体を駆動する
一端にて上記ダイヤフラムに接し、他端にて上記弁体を
駆動する感温棒とからなり、上記感温棒は、ダイアフラ
ムに近接する部分に熱伝導率の低い樹脂部材を嵌装した
ことを特徴としている。
In order to achieve the above object,
An expansion valve according to the present invention includes a valve body having a first passage through which a liquid refrigerant passes and a second passage through which a gas-phase refrigerant passes from an evaporator to a compressor; an orifice provided in the first passage; A valve element for adjusting the amount of refrigerant passing therethrough, a power element section provided on the valve body and having a diaphragm operated by a pressure difference between the upper and lower sides thereof, and one end for driving the valve element by displacement of the diaphragm. A temperature sensing rod which contacts the diaphragm and drives the valve body at the other end. The temperature sensing rod is characterized in that a resin member having a low thermal conductivity is fitted to a portion close to the diaphragm.

【0014】また、本発明に係る膨張弁の他の態様とし
ては、液冷媒の通る第1の通路とエバポレータからコン
プレッサに向う気相冷媒の通る第2の通路を有する弁本
体と、上記第1の通路中に設けられるオリフィスと、オ
リフィスを通過する冷媒量を調節する弁体と、上記弁本
体に設けられ、その上下の圧力差により作動するダイヤ
フラムを有するパワーエレメント部と、このダイヤフラ
ムの変位により上記弁体を駆動する一端にて上記ダイヤ
フラムに接し、他端にて上記弁体を駆動する感温棒とか
らなり、上記感温棒は、凹部を有すると共に、上記凹部
にはめ込まれることによって上記感温棒の外周にゆるく
嵌装される樹脂部材を具備することを特徴としている。
In another aspect of the expansion valve according to the present invention, a valve body having a first passage through which a liquid refrigerant passes and a second passage through which a gas-phase refrigerant passes from an evaporator to a compressor is provided. An orifice provided in the passage, a valve element for adjusting the amount of refrigerant passing through the orifice, a power element portion provided on the valve body and having a diaphragm operated by a pressure difference between the upper and lower sides, and a displacement of the diaphragm One end for driving the valve element is in contact with the diaphragm, and the other end includes a temperature-sensitive rod for driving the valve element.The temperature-sensitive rod has a concave portion and is fitted in the concave portion. It is characterized by comprising a resin member loosely fitted around the outer periphery of the temperature sensing rod.

【0015】さらに、本発明の膨張弁の他の態様として
は、上記感温棒は上記樹脂部材をこの部材の弾性によっ
て嵌装したことを特徴としている。そして、本発明の膨
張弁の具体的態様としては、上記凹部は上記気相冷媒の
通る第2の通路内に存在する上記感温棒の部分に形成さ
れていることを特徴としている。また、本発明の膨張弁
の具体的態様としては、上記樹脂部材はポリアセタール
樹脂であることを特徴としている。
In another aspect of the expansion valve of the present invention, the temperature sensing rod is characterized in that the resin member is fitted by the elasticity of the member. In a specific aspect of the expansion valve according to the present invention, the concave portion is formed in a portion of the temperature sensing rod existing in the second passage through which the gaseous refrigerant passes. Further, as a specific mode of the expansion valve of the present invention, the resin member is a polyacetal resin.

【0016】さらにまた、本発明の膨張弁の具体的態様
としては、上記樹脂部材は、上記ダイアフラムに対向す
る側はフランジ状部が形成されると共に、これと反対側
の端部の内側は突出部が形成され、上記突出部は上記凹
部にはめ込まれていることを特徴としている。前述の如
く構成された本発明に係る膨張弁は、冷凍システムのハ
ンチング現象の原因となる膨張弁の過敏な弁開閉応答が
生じる環境温度の一過性的な変化があっても、弁体駆動
棒の感温棒の熱伝導速度を遅くしてあるので、上記過敏
な弁開閉応答を避けることができる。
Further, as a specific embodiment of the expansion valve of the present invention, the resin member has a flange-like portion formed on the side facing the diaphragm, and the inside of an end opposite to the flange protrudes. A part is formed, and the projecting part is fitted in the concave part. The expansion valve according to the present invention configured as described above can operate the valve body even when there is a transient change in the environmental temperature that causes an excessive valve opening / closing response of the expansion valve that causes a hunting phenomenon of the refrigeration system. Since the heat conduction speed of the temperature sensing rod of the rod is reduced, the above-mentioned sensitive valve opening / closing response can be avoided.

【0017】[0017]

【発明の実施の形態】以下、図面により本発明の一実施
形態を詳細に説明する。図1は本実施の形態の膨張弁1
0の縦断面図であり、冷凍サイクルを省略して示し図4
と同一符号は、同一又は均等部分を示し、冷媒供給量を
制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an expansion valve 1 according to the present embodiment.
FIG. 4 is a longitudinal sectional view of FIG.
The same reference numerals indicate the same or equivalent parts, and control the refrigerant supply amount.

【0018】図2は図1に示す感温棒300の本体の正
面図、図3は樹脂部材の断面図である。膨張弁10は、
アルミ製の本体30を備え、本体30は図3で説明した
液相冷媒の第17通路32と気相冷媒の第2の通路34
を有する。弁室35に配設された弁体32bは作動棒3
7を介して感温棒300に連結される。感温棒300
は、アルミ製の円筒部材の本体310と、本体の外側に
嵌装される樹脂部材330を有する。図2に示すよう
に、感温棒本体310は、ダイアフラム36aの受け部
312と、パワーエレメント部36の下カバー36hに
摺動自在に挿入される大径部314と、第2の通路34
内に露出される感温部318と、シール部材が嵌装され
る溝部320を有する。そして、感温棒本体310は、
その途中、例えば大径部314と溝部320との間に凹
部、例えば浅い溝部316を設けてある。
FIG. 2 is a front view of the main body of the temperature sensing rod 300 shown in FIG. 1, and FIG. 3 is a sectional view of the resin member. The expansion valve 10
A main body 30 made of aluminum is provided, and the main body 30 is provided with a seventeenth passage 32 for the liquid-phase refrigerant and a second passage 34 for the gas-phase refrigerant described in FIG.
Having. The valve body 32b disposed in the valve chamber 35 has the operating rod 3
7 is connected to the temperature sensing rod 300. Temperature sensing bar 300
Has a main body 310 of a cylindrical member made of aluminum and a resin member 330 fitted on the outside of the main body. As shown in FIG. 2, the temperature sensing rod main body 310 includes a receiving portion 312 of the diaphragm 36a, a large diameter portion 314 slidably inserted into the lower cover 36h of the power element portion 36, and a second passage 34.
It has a temperature sensing part 318 exposed inside and a groove part 320 in which a seal member is fitted. And the temperature sensing rod body 310
In the middle thereof, for example, a concave portion, for example, a shallow groove portion 316 is provided between the large diameter portion 314 and the groove portion 320.

【0019】図3は樹脂部材330の断面図である。樹
脂部材330は感温棒本体310の感温部318の外周
部にゆるく嵌合される内径寸法を持ち、低熱伝導率の樹
脂材料、例えばポリアセタール樹脂でつくられる樹脂部
材330であって、肉厚寸法は例えば1mm以上とす
る。なお、本実施態様では、例えば感温棒本体318の
外径を5.6mm、樹脂部材の内径を5.8mmとす
る。樹脂部材330のダイアフラムに対向する側は、フ
ランジ部332に形成され、フランジ部332と反対側
の端部の内周部には、内側に向けて突出する係合縁部3
36(例えば0.2mmの高さ)が設けられる。この樹
脂部材330を感温棒本体310に嵌合し、係合縁部3
36を上記気相冷媒の通る第2の通路中の感温棒本体3
10の部分に形成された凹部(例えば0.2mmの深
さ)316にはめ込むことによって、樹脂部材の弾性に
よって嵌着される。
FIG. 3 is a sectional view of the resin member 330. The resin member 330 has an inner diameter that is loosely fitted to the outer peripheral portion of the temperature sensing portion 318 of the temperature sensing rod body 310, and is a resin member 330 made of a resin material having a low thermal conductivity, for example, polyacetal resin. The size is, for example, 1 mm or more. In the present embodiment, for example, the outer diameter of the temperature sensing rod main body 318 is 5.6 mm, and the inner diameter of the resin member is 5.8 mm. The side of the resin member 330 facing the diaphragm is formed on the flange portion 332, and the inner peripheral portion at the end opposite to the flange portion 332 has an engaging edge 3 protruding inward.
36 (for example, a height of 0.2 mm) are provided. The resin member 330 is fitted to the temperature sensing rod main body 310 and the engaging edge 3
36 is the temperature-sensitive rod main body 3 in the second passage through which the gas-phase refrigerant passes.
By fitting into a concave portion (for example, a depth of 0.2 mm) 316 formed in the portion 10, the resin member is fitted by elasticity.

【0020】第2の通路34内の冷媒が樹脂部材330
に付着したときに、樹脂の低熱伝導性により、温度情報
がダイアフラム部に伝達されるのが遅れる。そこで、熱
伝導率の高いアルミ製の感温棒にあって、樹脂部材を使
用し、伝熱速度を低減させることによって、ダイアフラ
ム部に伝達される熱の伝熱速度を遅くすることができ
る。これにより、ハンチング現象の発生を防止すること
ができる。
The refrigerant in the second passage 34 is supplied to the resin member 330.
When it adheres, the transmission of temperature information to the diaphragm is delayed due to the low thermal conductivity of the resin. Therefore, in the temperature sensing rod made of aluminum having a high thermal conductivity, by using a resin member and reducing the heat transfer rate, the heat transfer rate of the heat transferred to the diaphragm can be reduced. Thereby, the occurrence of the hunting phenomenon can be prevented.

【0021】[0021]

【発明の効果】以上の説明から理解されるように、本発
明による膨張弁は、膨張弁の過敏な弁開閉応答を防止
し、冷凍サイクルに生じるハンチング現象を避けること
ができる。
As will be understood from the above description, the expansion valve according to the present invention can prevent an excessive valve opening / closing response of the expansion valve, and can avoid a hunting phenomenon that occurs in a refrigeration cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の膨張弁の縦断面図。FIG. 1 is a longitudinal sectional view of an expansion valve according to an embodiment of the present invention.

【図2】感温棒本体の正面図。FIG. 2 is a front view of a temperature sensing rod main body.

【図3】樹脂部材の断面図。FIG. 3 is a sectional view of a resin member.

【図4】従来の膨張弁の縦断面図と冷凍サイクルの概略
を示す図。
FIG. 4 is a vertical cross-sectional view of a conventional expansion valve and a view schematically showing a refrigeration cycle.

【図5】本出願人が提案した膨張弁の縦断面図。FIG. 5 is a longitudinal sectional view of an expansion valve proposed by the present applicant.

【符号の説明】[Explanation of symbols]

10 膨張弁 30 弁本体 32a オリフィス 32b 弁体 36 パワーエレメント 36a ダイヤフラム 300 感温棒 310 感温棒本体 330 樹脂部材 DESCRIPTION OF SYMBOLS 10 Expansion valve 30 Valve main body 32a Orifice 32b Valve body 36 Power element 36a Diaphragm 300 Temperature sensing rod 310 Temperature sensing rod main body 330 Resin member

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒の通る第1の通路とエバポレータ
からコンプレッサに向う気相冷媒の通る第2の通路を有
する弁本体と、上記第1の通路中に設けられるオリフィ
スと、オリフィスを通過する冷媒量を調節する弁体と、
上記弁本体に設けられ、その上下の圧力差により作動す
るダイヤフラムを有するパワーエレメント部と、このダ
イヤフラムの変位により上記弁体を駆動する一端にて上
記ダイヤフラムに接し、他端にて上記弁体を駆動する感
温棒とからなり、上記感温棒は、ダイアフラムに近接す
る部分に熱伝導率の低い樹脂部材を嵌装したことを特徴
とする膨張弁。
1. A valve body having a first passage through which a liquid refrigerant passes and a second passage through which a gas-phase refrigerant passes from an evaporator to a compressor, an orifice provided in the first passage, and a passage through the orifice. A valve body for adjusting the amount of refrigerant,
A power element portion provided on the valve body and having a diaphragm operated by a pressure difference between the upper and lower sides, and one end driving the valve body by displacement of the diaphragm is in contact with the diaphragm at one end and the valve body at the other end. An expansion valve, comprising a driven temperature sensing rod, wherein the temperature sensing rod has a resin member having low thermal conductivity fitted in a portion close to the diaphragm.
【請求項2】 上記感温棒は、上記樹脂部材をこの部材
の弾性によって嵌装したことを特徴とする請求項1記載
の膨張弁。
2. The expansion valve according to claim 1, wherein the temperature sensing rod is fitted with the resin member by elasticity of the member.
【請求項3】 上記樹脂部材は、ポリアセタール樹脂で
あることを特徴とする請求項1又は2に記載の膨張弁。
3. The expansion valve according to claim 1, wherein the resin member is a polyacetal resin.
【請求項4】 液冷媒の通る第1の通路とエバポレータ
からコンプレッサに向う気相冷媒の通る第2の通路を有
する弁本体と、上記第1の通路中に設けられるオリフィ
スと、オリフィスを通過する冷媒量を調節する弁体と、
上記弁本体に設けられ、その上下の圧力差により作動す
るダイヤフラムを有するパワーエレメント部と、このダ
イヤフラムの変位により上記弁体を駆動する一端にて上
記ダイヤフラムに接し、他端にて上記弁体を駆動する感
温棒とからなり、上記感温棒は、凹部を有すると共に、
上記凹部にはめ込まれることによって上記感温棒の外周
にゆるく嵌装される樹脂部材を具備することを特徴とす
る膨張弁。
4. A valve body having a first passage through which a liquid refrigerant passes and a second passage through which a vapor-phase refrigerant passes from an evaporator to a compressor; an orifice provided in the first passage; and an orifice passing through the orifice. A valve body for adjusting the amount of refrigerant,
A power element portion provided on the valve body and having a diaphragm operated by a pressure difference between the upper and lower sides, and one end driving the valve body by displacement of the diaphragm is in contact with the diaphragm at one end and the valve body at the other end. A temperature-sensitive stick to be driven, the temperature-sensitive stick having a concave portion,
An expansion valve, comprising: a resin member which is fitted into the recess so as to be loosely fitted to the outer periphery of the temperature sensing rod.
【請求項5】 上記樹脂部材は、上記ダイアフラムに対
向する側はフランジ状部が形成されると共に、これと反
対側の端部の内側は突出部が形成され、上記突出部は上
記凹部にはめ込まれることを特徴とする請求項4記載の
膨張弁。
5. The resin member has a flange-like portion formed on the side facing the diaphragm, and a protruding portion formed inside an end opposite to the flange portion, and the protruding portion is fitted into the concave portion. The expansion valve according to claim 4, wherein the expansion valve is provided.
【請求項6】 上記凹部は、上記気相冷媒の通る第2の
通路内に存在する上記感温棒の部分に形成されているこ
とを特徴とする請求項4記載の膨張弁。
6. The expansion valve according to claim 4, wherein the concave portion is formed in a portion of the temperature sensing rod existing in a second passage through which the gas-phase refrigerant passes.
JP8238947A 1996-09-10 1996-09-10 Expansion valve Pending JPH1089811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8238947A JPH1089811A (en) 1996-09-10 1996-09-10 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8238947A JPH1089811A (en) 1996-09-10 1996-09-10 Expansion valve

Publications (1)

Publication Number Publication Date
JPH1089811A true JPH1089811A (en) 1998-04-10

Family

ID=17037659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8238947A Pending JPH1089811A (en) 1996-09-10 1996-09-10 Expansion valve

Country Status (1)

Country Link
JP (1) JPH1089811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179715A2 (en) * 2000-08-10 2002-02-13 Fujikoki Corporation Thermal expansion valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179715A2 (en) * 2000-08-10 2002-02-13 Fujikoki Corporation Thermal expansion valve
EP1179715A3 (en) * 2000-08-10 2002-03-20 Fujikoki Corporation Thermal expansion valve
US6415985B1 (en) 2000-08-10 2002-07-09 Fujikoki Corporation Thermal expansion valve
US6474088B2 (en) 2000-08-10 2002-11-05 Fujikoki Corporation Thermal expansion valve

Similar Documents

Publication Publication Date Title
EP0864826B1 (en) Expansion valve
JP3372439B2 (en) Expansion valve
JP3785229B2 (en) Expansion valve
JPH08145505A (en) Expansion valve
KR100496203B1 (en) Thermal expansion valve
KR20010076283A (en) Temperature expansion valve
US4632305A (en) Expansion valve
JPH11287536A (en) Expansion valve
JP2003121030A (en) Expansion valve
JPH11223425A (en) Expansion valve
JPH09159324A (en) Expansion valve
JPH10122706A (en) Expansion valve
JPH1089811A (en) Expansion valve
JP3942848B2 (en) Expansion valve unit
JP3987983B2 (en) Thermal expansion valve
JP4743926B2 (en) Expansion valve
JP2000304381A (en) Temperature expansion valve
US2558930A (en) Thermostatic expansion valve having pressure responsive means for varying the superheat setting thereof
JP4081295B2 (en) Expansion valve
JPH07218046A (en) Expansion valve
JPH02254270A (en) Temperature actuating type expansion valve
JPH08210734A (en) Temperature type expansion valve
JPH11325661A (en) Expansion valve
JP2018004234A (en) Expansion valve
JP2000097522A (en) Expansion valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704