JPH09159324A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH09159324A
JPH09159324A JP7325357A JP32535795A JPH09159324A JP H09159324 A JPH09159324 A JP H09159324A JP 7325357 A JP7325357 A JP 7325357A JP 32535795 A JP32535795 A JP 32535795A JP H09159324 A JPH09159324 A JP H09159324A
Authority
JP
Japan
Prior art keywords
resin
expansion valve
passage
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7325357A
Other languages
Japanese (ja)
Inventor
Kazuhiko Watanabe
和彦 渡辺
Kimimichi Yano
公道 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP7325357A priority Critical patent/JPH09159324A/en
Publication of JPH09159324A publication Critical patent/JPH09159324A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent hunting relating to the expansion valve in an air- conditioning apparatus. SOLUTION: An expansion valve 10 has a temperature-sensitive rod 100 which constitutes a valve-driving aluminum rod and on which a resin 101 with a low thermal conductivity, formed by insert molding, is placed in tight contact and integrally in one piece with the temperature-sensitive rod 100. For this low thermal-conductivity resin 101 use is made of, for example, PPS which is not susceptible to a aging caused by a refrigerant, etc. The resin 101 is provided on the temperature-sensitive rod 100, besides the part which is exposed in a second passageway 34 for the passage of a gas-phase refrigerant, up to the part located inside a pressure-acting chamber 36c positioned lower. The resin 101 is formed in a thickness of, for example, about 1mm. By providing such a resin 101, even when, for example, refrigerant from an evaporator which has not yet vaporized flows into the second passageway 36 and sticks to the resin 101, although the heat load of the evaporator may vary, that is, the heat load of the evaporator may increase, the fact that the resin 101 is of material of low thermal conductivity makes the response characteristic of the expansion valve 10 dull and enables avoiding hunting in the refrigeration system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置、冷凍
装置等の冷凍サイクルに用いられる冷媒用の膨張弁に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve for a refrigerant used in a refrigeration cycle of an air conditioner, a refrigeration apparatus, and the like.

【0002】[0002]

【従来の技術】この種の膨張弁は、自動車等の空気調和
装置の冷凍サイクルにおいて用いられており、図3は、
従来の膨張弁の縦断面図を冷凍サイクルの概略と共に示
している。膨張弁10は、角柱状のアルミ製の弁本体3
0には、冷凍サイクルの冷媒管路11においてコンデン
サ5の冷媒出口からレシーバ6を介してエバポレータ8
の冷媒入口へと向かう部分に介在される液相冷媒が通過
する第1の通路32と冷媒管路11においてエバポレ−
タ8の冷媒出口からコンプレッサ4の冷媒入口へと向か
う部分に介在される気相冷媒が通過する第2の通路34
とが上下に相互に離間して形成されている。
2. Description of the Related Art This type of expansion valve is used in a refrigeration cycle of an air conditioner for automobiles and the like.
1 shows a longitudinal sectional view of a conventional expansion valve together with an outline of a refrigeration cycle. The expansion valve 10 is a prismatic aluminum valve body 3.
In the refrigerant line 11 of the refrigeration cycle, the evaporator 8 is connected to the refrigerant outlet of the condenser 5 via the receiver 6.
In the first passage 32 and the refrigerant pipe 11 through which the liquid-phase refrigerant interposed at the portion toward the refrigerant inlet passes, an evaporator is provided.
Second passage 34 through which a gas-phase refrigerant interposed at a portion from the refrigerant outlet of the compressor 8 to the refrigerant inlet of the compressor 4 passes.
Are formed vertically separated from each other.

【0003】第1の通路32にはレシ−バ6の冷媒出口
から供給された液体冷媒を断熱膨張させるためのオリフ
ィス32aが形成されている。オリフィス32aは弁本
体30の長手方向に沿った中心線を有している。オリフ
ィス32aの入口には弁座が形成されていて、弁座には
弁部材32cにより支持された弁体32bが存在し、弁
体32bと弁部材32cとは溶接により固定されてい
る。弁部材32cは、弁体と溶接により固着されると共
に圧縮コイルばねの如き付勢手段32dにより付勢され
ている。レシ−バ6からの液冷媒が導入される第1の通
路32は液冷媒の通路となり、入口ポ−ト321と、こ
の入口ポ−ト321に連続する弁室35を有する。弁室
35は、オリフィス32aの中心線と同軸に形成される
有底の室であり、プラグ39によって密閉されている。
In the first passage 32, an orifice 32a for adiabatically expanding the liquid refrigerant supplied from the refrigerant outlet of the receiver 6 is formed. The orifice 32a has a center line along the longitudinal direction of the valve body 30. A valve seat is formed at an inlet of the orifice 32a, and a valve body 32b supported by a valve member 32c is present at the valve seat, and the valve body 32b and the valve member 32c are fixed by welding. The valve member 32c is fixed to the valve body by welding and is urged by urging means 32d such as a compression coil spring. The first passage 32 into which the liquid refrigerant from the receiver 6 is introduced serves as a passage for the liquid refrigerant, and has an inlet port 321 and a valve chamber 35 continuous with the inlet port 321. The valve chamber 35 is a chamber with a bottom formed coaxially with the center line of the orifice 32 a, and is closed by a plug 39.

【0004】さらに、弁本体30にはエバポレータ8の
出口温度に応じて弁体32bに対して駆動力を与えてオ
リフィス32aの開閉を行うために、小径の孔37とこ
の孔37より径が大径の孔38が第2の通路34を貫通
して上記中心線の延長線上に形成され、弁本体30の上
端には感熱部となるパワーエレメント部36が固定され
るねじ孔361が形成されている。
Further, in order to apply a driving force to the valve body 32b in accordance with the outlet temperature of the evaporator 8 to open and close the orifice 32a, the valve body 30 has a small diameter hole 37 and a diameter larger than the hole 37. A hole 38 having a diameter is formed through the second passage 34 on an extension of the center line, and a screw hole 361 is formed at an upper end of the valve body 30 to which a power element portion 36 serving as a heat sensitive portion is fixed. I have.

【0005】パワーエレメント部36は、ステンレス製
のダイヤフラム36aと、このダイヤフラム36aを挾
んで互いに密着して設けられ、その上下に二つの気密室
を形成する上部圧力作動室36b及び下部圧力作動室3
6cをそれぞれ形成する上カバー36dと下カバー36
hと、上部圧力作動室36bにダイヤフラム駆動流体と
なる所定冷媒を封入するための封切管36iとを備え、
下部圧力作動室36cは、オリフィス32aの中心線に
対して同心的に形成された均圧孔36eを介して第2の
通路34に連通されている。第2の通路34には、エバ
ポレータ8からの冷媒蒸気が流れ、通路34は気相冷媒
の通路となり、その冷媒蒸気の圧力が均圧孔36eを介
して下部圧力作動室36cに負荷されている。
The power element portion 36 is provided with a stainless steel diaphragm 36a and the diaphragm 36a so as to be in close contact with each other. The upper pressure working chamber 36b and the lower pressure working chamber 3 form two airtight chambers above and below the diaphragm 36a.
6c and upper cover 36d and lower cover 36, respectively.
h, and a shutoff tube 36i for enclosing a predetermined refrigerant serving as a diaphragm driving fluid in the upper pressure working chamber 36b,
The lower pressure working chamber 36c communicates with the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the orifice 32a. Refrigerant vapor from the evaporator 8 flows through the second passage 34, the passage 34 serves as a vapor-phase refrigerant passage, and the pressure of the refrigerant vapor is applied to the lower pressure working chamber 36c through the pressure equalizing hole 36e. .

【0006】さらに下部圧力作動室36c内にダイヤフ
ラム36aと当接し、かつ第2の通路34を貫通して大
径の孔38内に摺動可能に配置されて、エバポレータ8
の冷媒出口温度を下部圧力作動室36cへ伝達すると共
に、上部圧力作動室36b及び下部圧力作動室36cの
圧力差に伴うダイヤフラム36aの変位に応じて大径3
8内を摺動して駆動力を与えるアルミ製の感温棒36f
と、小径の孔37内に摺動可能に配されて感温棒36f
の変位に応じて弁体32bを付勢手段32dの弾性力に
抗して押圧するステンレス製の作動棒37fからなり、
感温棒36fには第1の通路32と、第2の通路34と
の気密性を確保するための密封部材、例えばOリング3
6gが備えられており、感温棒36fと作動棒37fと
は当接し、作動棒37fは弁体32bと当接しており、
感温棒36fと作動棒37fとで弁体駆動棒が構成され
ている。したがって、均圧孔36eには、ダイヤフラム
36aの下面から第1の通路32のオリフィス32aま
で延出した弁体駆動棒が同心的に配置されていることに
なる。
Further, the evaporator 8 abuts on the diaphragm 36a in the lower pressure working chamber 36c and is slidably disposed in the large-diameter hole 38 through the second passage 34.
Is transmitted to the lower pressure working chamber 36c, and the large diameter 3 according to the displacement of the diaphragm 36a due to the pressure difference between the upper pressure working chamber 36b and the lower pressure working chamber 36c.
Aluminum temperature sensing rod 36f which gives a driving force by sliding in the inside 8
And a temperature sensing rod 36f slidably disposed in the small diameter hole 37.
A stainless steel operating rod 37f which presses the valve body 32b against the elastic force of the urging means 32d in accordance with the displacement of
A sealing member for ensuring airtightness between the first passage 32 and the second passage 34, for example, an O-ring 3
6g is provided, the temperature sensing rod 36f and the operating rod 37f are in contact with each other, and the operating rod 37f is in contact with the valve body 32b,
The valve element driving rod is constituted by the temperature sensing rod 36f and the operating rod 37f. Accordingly, the valve drive rod extending from the lower surface of the diaphragm 36a to the orifice 32a of the first passage 32 is concentrically arranged in the pressure equalizing hole 36e.

【0007】圧力作動ハウジング36dの上方の圧力作
動室36b中には公知のダイヤフラム駆動流体が充填さ
れていて、ダイヤフラム駆動流体には第2の通路34や
第2の通路34に連通されている均圧孔36eに露出さ
れた弁体駆動棒及びダイヤフラム36aを介して第2の
通路34を流れているエバポレ−タ8の冷媒出口からの
冷媒蒸気の熱が伝達される。
The pressure actuating chamber 36b above the pressure actuating housing 36d is filled with a known diaphragm driving fluid, and the diaphragm driving fluid is communicated with the second passage 34 and the second passage 34. The heat of the refrigerant vapor from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 is transferred via the valve body drive rod exposed to the pressure hole 36e and the diaphragm 36a.

【0008】上方の圧力作動室36b中のダイヤフラム
駆動流体は上記伝達された熱に対応してガス化し圧力を
ダイヤフラム36aの上面に負荷する。ダイヤフラム3
6aは上記上面に負荷されたダイヤフラム駆動ガスの圧
力とダイヤフラム36aの下面に負荷された圧力との差
により上下に変位する。ダイヤフラム36aの中心部の
上下への変位は弁体駆動棒を介して弁体32bに伝達さ
れ弁体32bをオリフィス32aの弁座に対して接近ま
たは離間させる。この結果、冷媒流量が制御されること
となる。
[0008] The diaphragm driving fluid in the upper pressure working chamber 36b is gasified in response to the transferred heat and applies pressure to the upper surface of the diaphragm 36a. Diaphragm 3
6a is displaced up and down by the difference between the pressure of the diaphragm driving gas applied to the upper surface and the pressure applied to the lower surface of the diaphragm 36a. The displacement of the center of the diaphragm 36a in the vertical direction is transmitted to the valve body 32b via the valve body drive rod, and moves the valve body 32b toward or away from the valve seat of the orifice 32a. As a result, the flow rate of the refrigerant is controlled.

【0009】即ち、エバポレータ8の出口側の気相冷媒
温度が上部圧力作動室36bに伝達されるため、その温
度に応じて上部圧力作動室36bの圧力が変化し、エバ
ポレータ8の出口温度が上昇する。つまりエバポレータ
の熱負荷が増加すると、上部圧力作動室36bの圧力が
高くなり、それに応じて感温棒36fつまり弁部材駆動
棒が下方へ駆動されて弁体32bを下げるため、オリフ
ィス32aの開度が大きくなる。これによりエバポレー
タ8への冷媒の供給量が多くなり、エバポレータ8の温
度を低下させる。逆に、エバポレータ8の出口温度が低
下する、つまりエバポレータの熱負荷が減少すると、弁
体32bが上記と逆方向に駆動され、オリフィス32a
の開度が小さくなり、エバポレータへの冷媒の供給量が
少なくなり、エバポレータ8の温度を上昇させるのであ
る。
That is, since the temperature of the gas-phase refrigerant at the outlet side of the evaporator 8 is transmitted to the upper pressure working chamber 36b, the pressure in the upper pressure working chamber 36b changes according to the temperature, and the outlet temperature of the evaporator 8 rises. I do. In other words, when the heat load of the evaporator increases, the pressure in the upper pressure working chamber 36b increases, and accordingly, the temperature sensing rod 36f, that is, the valve member drive rod is driven downward to lower the valve body 32b, so that the opening degree of the orifice 32a is increased. Becomes larger. Thus, the supply amount of the refrigerant to the evaporator 8 increases, and the temperature of the evaporator 8 decreases. Conversely, when the outlet temperature of the evaporator 8 decreases, that is, when the heat load on the evaporator decreases, the valve body 32b is driven in the opposite direction to the above, and the orifice 32a
Is small, the supply amount of the refrigerant to the evaporator is reduced, and the temperature of the evaporator 8 is increased.

【0010】[0010]

【発明が解決しようとする課題】かかる膨張弁の用いら
れる冷凍システムにおいては、蒸発器への冷媒供給が過
剰・不足・過剰・不足を短い周期で繰り返す所謂ハンチ
ング現象が知られている。これは膨張弁が環境温度の影
響を受けた場合、例えば膨張弁の感温棒に未蒸発の液冷
媒が付着して、これを温度変化と感知してエバポレータ
の熱負荷の変動が生じ、過敏な弁開閉応答に基づくこと
を原因としている。
In a refrigeration system using such an expansion valve, there is known a so-called hunting phenomenon in which the supply of refrigerant to an evaporator repeats in a short cycle of excess, shortage, excess, and shortage. This is because when the expansion valve is affected by the environmental temperature, for example, the unevaporated liquid refrigerant adheres to the temperature sensing rod of the expansion valve and senses this as a temperature change, causing a change in the heat load of the evaporator, resulting in hypersensitivity. It is based on a simple valve opening / closing response.

【0011】このようなハンチング現象が生じると冷凍
システム全体の能力を減ずると共に、圧縮機への液戻り
が生じ圧縮機に悪影響を生じるという問題がある。本発
明は、このような問題に鑑みてなされたものであって、
その目的とするところは、簡単な構成の変更で、冷凍シ
ステムにハンチング現象が生じるのを防止する膨張弁を
提供することにある。
When such a hunting phenomenon occurs, there is a problem that the capacity of the entire refrigeration system is reduced, and a liquid is returned to the compressor, which adversely affects the compressor. The present invention has been made in view of such a problem,
It is an object of the present invention to provide an expansion valve that can prevent a hunting phenomenon from occurring in a refrigeration system with a simple configuration change.

【0012】[0012]

【課題を解決するための手段】前記目的を達成すべく、
本発明に係る膨張弁は、液冷媒の通る第1の通路とエバ
ポレータからコンプレッサに向かう気相冷媒の通る第2
の通路を有する弁本体を備え、上記液冷媒の通路中に設
けられるオリフィスと、上記オリフィスを通過する冷媒
量を調節する弁体と、上記弁本体に設けられその上下の
圧力差により作動するダイヤフラムを有するパワーエレ
メント部と、このダイヤフラムの変位により上記弁体を
駆動する一端にて上記ダイヤフラムに接し、他端にて上
記弁体を駆動する感温棒とからなり、上記感温棒の少な
くとも上記第2の通路内の露出部表面に熱伝導率の低い
材料を設けたことを特徴とする。
[Means for Solving the Problems] To achieve the above object,
The expansion valve according to the present invention includes a first passage through which the liquid refrigerant passes and a second passage through which the gas-phase refrigerant passes from the evaporator to the compressor.
An orifice provided in the passage of the liquid refrigerant, a valve body for adjusting the amount of the refrigerant passing through the orifice, and a diaphragm provided in the valve body and operated by a pressure difference above and below the valve body. And a temperature-sensitive rod that is in contact with the diaphragm at one end that drives the valve element by the displacement of the diaphragm and that drives the valve element at the other end, and at least the temperature-sensitive rod of the temperature-sensitive rod It is characterized in that a material having a low thermal conductivity is provided on the surface of the exposed portion in the second passage.

【0013】また、本発明の膨張弁の他の態様として
は、上記材料として樹脂を用い、樹脂を上記表面にイン
サート成形により設けたことを特徴とする。更に、本発
明の膨張弁の他の態様としては、上記材料を上記弁体駆
動棒に設けた凹部に圧入して設けたことを特徴とする。
前述の如く構成された本発明に係る膨張弁は、冷凍シス
テムのハンチング現象の原因となる膨張弁の過敏な弁開
閉応答が生じる環境温度の一過性的な変化があっても、
弁体駆動棒に熱伝導率の低い材料を設けているので、上
記過敏な弁開閉応答を避けることができる。
Another aspect of the expansion valve of the present invention is characterized in that a resin is used as the material and the resin is provided on the surface by insert molding. Further, another aspect of the expansion valve of the present invention is characterized in that the material is press-fitted into a recess provided in the valve body drive rod.
The expansion valve according to the present invention configured as described above, even if there is a transient change in the environmental temperature that causes a hypersensitive valve opening / closing response of the expansion valve, which causes the hunting phenomenon of the refrigeration system,
Since the valve body drive rod is made of a material having a low thermal conductivity, the above-mentioned sensitive valve opening / closing response can be avoided.

【0014】[0014]

【発明の実施の形態】以下、図面により本発明の一実施
の形態を詳細に説明する。図1は本実施の形態の膨張弁
10の縦断面図であり、冷凍サイクルを省略して示し図
3と同一符号は、同一又は均等部分を示し、冷媒供給量
を制御する。膨張弁10は、アルミ製の弁体駆動棒を構
成する感温棒100に低熱伝導率の樹脂101がインサ
ート形成されて感温棒100に密着する状態に一体化さ
れている。低熱伝導率の樹脂101としては、例えば冷
媒等の影響による経時的変化のないPPS樹脂が用いら
れる。上記樹脂101は、感温棒100の気相冷媒が通
過する第2の通路34中に露出している部分以外に下方
の圧力作動室36c中に存在する感温部にまで設けられ
ている。樹脂101の厚さとしては、例えば1mm程度
の厚さに設けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a vertical cross-sectional view of an expansion valve 10 according to the present embodiment, in which the refrigeration cycle is omitted and the same reference numerals as those in FIG. 3 indicate the same or equivalent portions and control the refrigerant supply amount. The expansion valve 10 is integrated so that a resin 101 having a low thermal conductivity is insert-formed into a temperature sensing rod 100 constituting an aluminum valve body driving rod, and is closely attached to the temperature sensing rod 100. As the low thermal conductivity resin 101, for example, a PPS resin that does not change with time due to the influence of a refrigerant or the like is used. The resin 101 is provided not only at the portion of the temperature sensing rod 100 exposed in the second passage 34 through which the gas-phase refrigerant passes but also at the temperature sensing portion existing in the lower pressure working chamber 36c. The thickness of the resin 101 is, for example, about 1 mm.

【0015】また、樹脂101は少なくとも感温棒10
0の第2の通路34中に露出する部分にのみ設けてよい
のは勿論である。かかる樹脂101を設けることによ
り、例えばエバポレータからの未蒸発の冷媒が第2の通
路34中に流れ、樹脂101に付着しても樹脂101は
低熱伝導率の材料であるため、エバポレータの熱負荷の
変動即ちエバポレータの熱負荷の増加が生じても、膨張
弁10の応答特性は鈍感になり、冷凍システムにハンチ
ング現象が生じるのを避けることができる。
Further, the resin 101 is at least the temperature sensitive rod 10.
Of course, it may be provided only in a portion exposed in the second passage 34 of the zero. By providing such a resin 101, for example, the unevaporated refrigerant from the evaporator flows into the second passage 34, and even if it adheres to the resin 101, the resin 101 is a material having a low thermal conductivity. Even if the fluctuation, that is, the increase of the heat load of the evaporator, occurs, the response characteristic of the expansion valve 10 becomes insensitive, and the occurrence of the hunting phenomenon in the refrigeration system can be avoided.

【0016】図2は本実施の他の形態の膨張弁10の縦
断面図であり、図1と同一符号は同一又は均等部分を示
し、感温棒100に溝102を成形し、この溝102中
に耐冷媒性のゴム材103として例えばOリング36g
と同一材料を用い、ゴム材103を溝102中に圧入し
たものである。かかる構成により、図1の膨張弁と同一
の作用を奏するのは勿論である。
FIG. 2 is a longitudinal sectional view of an expansion valve 10 according to another embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same or equivalent portions, and a groove 102 is formed in a temperature sensitive rod 100. As the rubber material 103 having refrigerant resistance, for example, 36 g of O-ring
The rubber material 103 is press-fitted into the groove 102 by using the same material as the above. With this configuration, it is needless to say that the same operation as that of the expansion valve of FIG. 1 is achieved.

【0017】[0017]

【発明の効果】以上の説明から理解されるように、本発
明による膨張弁は、膨張弁の過敏な弁開閉応答を防止
し、冷凍サイクルに生じるハンチング現象を避けること
ができる。
As will be understood from the above description, the expansion valve according to the present invention can prevent an excessive valve opening / closing response of the expansion valve, and can avoid a hunting phenomenon that occurs in a refrigeration cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の膨張弁の縦断面図。FIG. 1 is a longitudinal sectional view of an expansion valve according to an embodiment of the present invention.

【図2】本発明の他の実施の形態の膨張弁の縦断面図。FIG. 2 is a longitudinal sectional view of an expansion valve according to another embodiment of the present invention.

【図3】従来の膨張弁の縦断面図と冷凍サイクルの概略
を示す図。
FIG. 3 is a vertical cross-sectional view of a conventional expansion valve and a schematic view of a refrigeration cycle.

【符号の説明】 10 膨張弁 30 弁本体 32a オリフィス 32b 弁体 36 パワーエレメント 36a ダイヤフラム 100 感温棒 101 樹脂[Explanation of reference numerals] 10 expansion valve 30 valve body 32a orifice 32b valve body 36 power element 36a diaphragm 100 temperature sensitive rod 101 resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒の通る第1の通路とエバポレータ
からコンプレッサに向う気相冷媒の通る第2の通路を有
する弁本体と、上記第1の通路中に設けられるオリフィ
スと、オリフィスを通過する冷媒量を調節する弁体と、
上記弁本体に設けられるその上下の圧力差により作動す
るダイヤフラムを有するパワーエレメント部と、このダ
イヤフラムの変位により上記弁体を駆動する一端にて上
記ダイヤフラムに接し、他端にて上記弁体を駆動する感
温棒とからなり、上記感温棒の少なくとも上記第2の通
路内の露出部表面に熱伝導率の低い材料を設けたことを
特徴とする膨張弁。
1. A valve body having a first passage through which a liquid refrigerant passes and a second passage through which a gas-phase refrigerant passes from an evaporator to a compressor, an orifice provided in the first passage, and a passage through the orifice. A valve body for adjusting the amount of refrigerant,
A power element portion provided on the valve body, which has a diaphragm that operates by a pressure difference between the upper and lower sides, and a displacement of the diaphragm drives the valve element. One end of the valve element contacts the diaphragm and the other end drives the valve element. An expansion valve comprising a temperature-sensitive rod that has a low thermal conductivity provided on at least the exposed surface of the temperature-sensitive rod in the second passage.
【請求項2】 上記熱伝導率の低い材料がインサート成
形された樹脂であることを特徴とする請求項1記載の膨
張弁。
2. The expansion valve according to claim 1, wherein the material having a low thermal conductivity is insert molded resin.
【請求項3】 上記熱伝導率の低い材料がゴム材である
ことを特徴とする請求項1記載の膨張弁。
3. The expansion valve according to claim 1, wherein the material having a low thermal conductivity is a rubber material.
JP7325357A 1995-12-14 1995-12-14 Expansion valve Pending JPH09159324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7325357A JPH09159324A (en) 1995-12-14 1995-12-14 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7325357A JPH09159324A (en) 1995-12-14 1995-12-14 Expansion valve

Publications (1)

Publication Number Publication Date
JPH09159324A true JPH09159324A (en) 1997-06-20

Family

ID=18175925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7325357A Pending JPH09159324A (en) 1995-12-14 1995-12-14 Expansion valve

Country Status (1)

Country Link
JP (1) JPH09159324A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829690A1 (en) * 1996-09-12 1998-03-18 Fujikoki Corporation Expansion valve
EP0836061A1 (en) * 1996-10-11 1998-04-15 Fujikoki Corporation Expansion valve
US6848624B2 (en) 2002-10-18 2005-02-01 Parker-Hannifin Corporation Refrigeration expansion valve with thermal mass power element
JP2010031998A (en) * 2008-07-30 2010-02-12 Denso Corp Expansion valve
DE102009056281A1 (en) 2008-12-02 2010-09-16 Denso Corporation, Kariya-City Expansion valve and method for its production
CN102252469A (en) * 2010-05-20 2011-11-23 浙江三花汽车零部件有限公司 Thermal expansion valve
US9726407B2 (en) 2012-02-20 2017-08-08 Denso Corporation Expansion valve for a refrigeration cycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829690A1 (en) * 1996-09-12 1998-03-18 Fujikoki Corporation Expansion valve
US6206294B1 (en) 1996-09-12 2001-03-27 Fujikoki Corporation Expansion valve
EP0836061A1 (en) * 1996-10-11 1998-04-15 Fujikoki Corporation Expansion valve
US5957376A (en) * 1996-10-11 1999-09-28 Fujikori Corporation Expansion valve
US6189800B1 (en) * 1996-10-11 2001-02-20 Fujikoki Corporation Expansion valve
US6848624B2 (en) 2002-10-18 2005-02-01 Parker-Hannifin Corporation Refrigeration expansion valve with thermal mass power element
JP2010031998A (en) * 2008-07-30 2010-02-12 Denso Corp Expansion valve
DE102009056281A1 (en) 2008-12-02 2010-09-16 Denso Corporation, Kariya-City Expansion valve and method for its production
US8851394B2 (en) 2008-12-02 2014-10-07 Denso Corporation Expansion valve and method of producing the same
CN102252469A (en) * 2010-05-20 2011-11-23 浙江三花汽车零部件有限公司 Thermal expansion valve
US9726407B2 (en) 2012-02-20 2017-08-08 Denso Corporation Expansion valve for a refrigeration cycle

Similar Documents

Publication Publication Date Title
US6145753A (en) Expansion valve
JP3785229B2 (en) Expansion valve
JP3372439B2 (en) Expansion valve
JPH08145505A (en) Expansion valve
US4032070A (en) Thermostatic expansion valve for refrigeration installations
US6612503B2 (en) Expansion valve
KR20010076283A (en) Temperature expansion valve
KR100496203B1 (en) Thermal expansion valve
JPH11287536A (en) Expansion valve
JPH09159324A (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JPH10122706A (en) Expansion valve
JP3942848B2 (en) Expansion valve unit
JPH09273835A (en) Expansion valve
JPH1089811A (en) Expansion valve
JP4743926B2 (en) Expansion valve
JP3476619B2 (en) Expansion valve
JPH02254270A (en) Temperature actuating type expansion valve
JP4081295B2 (en) Expansion valve
JP2000346494A (en) Temperature type expansion valve
JPH11325661A (en) Expansion valve
JPH10170105A (en) Expansion valve
JPH11325307A (en) Temperature expansion valve
JP2000097522A (en) Expansion valve
JP2002350015A (en) Expansion valve and fitting structure thereof