JP2010031998A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2010031998A
JP2010031998A JP2008196314A JP2008196314A JP2010031998A JP 2010031998 A JP2010031998 A JP 2010031998A JP 2008196314 A JP2008196314 A JP 2008196314A JP 2008196314 A JP2008196314 A JP 2008196314A JP 2010031998 A JP2010031998 A JP 2010031998A
Authority
JP
Japan
Prior art keywords
refrigerant
cylindrical space
temperature sensing
sensing rod
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008196314A
Other languages
Japanese (ja)
Other versions
JP5071295B2 (en
Inventor
Hiromi Ota
宏已 太田
Shin Honda
伸 本田
Hiroshi Oshitani
洋 押谷
Makoto Ikegami
真 池上
Kenichi Fujiwara
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008196314A priority Critical patent/JP5071295B2/en
Publication of JP2010031998A publication Critical patent/JP2010031998A/en
Application granted granted Critical
Publication of JP5071295B2 publication Critical patent/JP5071295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion valve in which there is no error in the detection of a temperature of a low-pressure refrigerant, which has an appropriate time constant, and does not cause hunting without using activated carbon which is costly and takes a lot of man-hours in filling. <P>SOLUTION: The expansion valve includes: an upper pressure working chamber 35 which is formed at an upper part of a diaphragm 32 in a power element 30, and in which the refrigerant is sealed; a lower pressure working chamber 36 formed at a lower part of the diaphragm 32, and communicating with a passage 9 of the low-pressure refrigerant; and a temperature sensitive bar 50 displaced together with the diaphragm 32 to drive a valve element 14, and having a tubular space 55 therein. The tubular space 55 communicates with the upper pressure working chamber 35 by passing through the diaphragm 32, and there is a gas-liquid interface 56 of the sealed refrigerant in the tubular space 55. By the existence of the gas-liquid interface 56, a temperature in the temperature sensitive bar 50 communicating with the upper pressure working chamber 35 is hardly raised, and the detection error is reduced. Furthermore, the time constant of apparent heat transfer becomes large. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は空気調和装置、冷凍装置等の冷凍サイクルに用いられる冷媒用の膨張弁に関するものである。   The present invention relates to a refrigerant expansion valve used in a refrigeration cycle such as an air conditioner or a refrigeration apparatus.

従来、搭載や組付けを容易とするため、パワーエレメント部を固定した角柱状の弁本体を持った膨張弁が用いられている。この膨張弁は、冷媒温度に対する応答が速すぎると、ハンチングが発生するため、適切な熱伝達の時定数を持たせる必要があり内部構造として、下記の2種類がある。   Conventionally, in order to facilitate mounting and assembly, an expansion valve having a prismatic valve body to which a power element portion is fixed has been used. This expansion valve requires hunting if the response to the refrigerant temperature is too fast. Therefore, it is necessary to have an appropriate heat transfer time constant, and there are the following two types of internal structures.

(従来のタイプ1)
図5は、従来のタイプ1(例えば、特許文献1参照)の膨張弁1を示す縦断面図である。膨張弁1は、アルミ製の弁体駆動棒を構成するステムとなる感温棒50の上部50aを有する。この感温棒50の外周に熱伝導率の低い樹脂70がインサート形成されている。そして、樹脂70は、感温棒50に密着する状態に一体化されている。樹脂70としては、例えば冷媒等の影響による経時的変化のないPPS樹脂が用いられる。
(Conventional type 1)
FIG. 5 is a longitudinal sectional view showing an expansion valve 1 of a conventional type 1 (see, for example, Patent Document 1). The expansion valve 1 has an upper portion 50a of a temperature sensing rod 50 that serves as a stem constituting an aluminum valve body drive rod. A resin 70 having a low thermal conductivity is inserted into the outer periphery of the temperature sensing rod 50. The resin 70 is integrated so as to be in close contact with the temperature sensing rod 50. As the resin 70, for example, a PPS resin that does not change over time due to the influence of a refrigerant or the like is used.

上記樹脂70は、気相冷媒が通過する第2の通路9中に露出している感温棒50の部分に設けられており、第2の通路9を流れる蒸発器の出口からの冷媒蒸気の温度をパワーエレメント部30の上部圧力作動室35中の温度対応作動流体となる封入冷媒に伝達し、この温度に対応した圧力の作動ガスを発生させる。   The resin 70 is provided in a portion of the temperature sensing rod 50 exposed in the second passage 9 through which the gas-phase refrigerant passes, and the refrigerant vapor from the outlet of the evaporator flowing through the second passage 9 is provided. The temperature is transmitted to the encapsulated refrigerant that becomes the temperature-responsive working fluid in the upper pressure working chamber 35 of the power element portion 30, and the working gas having a pressure corresponding to this temperature is generated.

これにより、例えば蒸発器からの未蒸発の低圧冷媒が、第2の通路9中に流れ、低圧冷媒が樹脂70に付着しても、樹脂70は低熱伝導率の材料であるため、伝熱の時定数が大きくなり、膨張弁1の応答特性は鈍感になる。よって、蒸発器の熱負荷の急変動即ち蒸発器の熱負荷の急な増加が生じても、膨張弁1の応答特性が鈍感なため、冷凍システムにハンチング現象が生じるのを避けることができる。   Thereby, for example, the non-evaporated low-pressure refrigerant from the evaporator flows into the second passage 9, and even if the low-pressure refrigerant adheres to the resin 70, the resin 70 is a material having low thermal conductivity. The time constant increases and the response characteristic of the expansion valve 1 becomes insensitive. Therefore, even if a sudden change in the heat load of the evaporator, that is, a sudden increase in the heat load of the evaporator occurs, it is possible to avoid the occurrence of a hunting phenomenon in the refrigeration system because the response characteristic of the expansion valve 1 is insensitive.

(従来のタイプ2)
図6のタイプ2(例えば、特許文献2参照)において、弁本体2には第2の通路9に隣接してダイヤフラム32を有したパワーエレメント部30が固定されている。ダイヤフラム32で仕切られたパワーエレメント部30の上部圧力作動室35は気密にされており、温度対応作動流体(封入冷媒)が封入されている。
(Conventional type 2)
In type 2 of FIG. 6 (see, for example, Patent Document 2), a power element portion 30 having a diaphragm 32 is fixed to the valve body 2 adjacent to the second passage 9. The upper pressure working chamber 35 of the power element section 30 partitioned by the diaphragm 32 is hermetically sealed, and a temperature-responsive working fluid (filled refrigerant) is sealed therein.

パワーエレメント部30の下方の下部圧力作動室36では、弁本体2の中を弁体14から第2の通路9を貫通して延びる弁体駆動棒を成す感温棒50の延出端が配置され、ダイヤフラム32に当接している。   In the lower pressure working chamber 36 below the power element portion 30, an extending end of a temperature sensing rod 50 that constitutes a valve body drive rod extending through the second passage 9 from the valve body 14 through the valve body 2 is disposed. And is in contact with the diaphragm 32.

感温棒50は中空状に形成されていて、第2の通路9を流れる蒸発器の出口からの冷媒蒸気の温度を中空状の感温棒50内に封入された温度対応作動流体に伝達し、この温度に対応した圧力をパワーエレメント部30の上部圧力作動室35中の作動流体に伝達させる。そして、下部圧力作動室36は、弁本体2の中で感温棒50の周囲の隙間を介して第2の通路9に連通されている。   The temperature sensing rod 50 is formed in a hollow shape, and transmits the temperature of the refrigerant vapor from the outlet of the evaporator flowing through the second passage 9 to the temperature corresponding working fluid enclosed in the hollow temperature sensing rod 50. Then, the pressure corresponding to this temperature is transmitted to the working fluid in the upper pressure working chamber 35 of the power element unit 30. The lower pressure working chamber 36 is communicated with the second passage 9 through a gap around the temperature sensing rod 50 in the valve body 2.

従って、パワーエレメント部30のダイヤフラム32は、上部圧力作動室35中の温度対応作動流体の作動ガスの圧力と下部圧力作動室36中の蒸発器の出口における冷媒蒸気の圧力との差に従って、弁体14のための付勢手段16の付勢力の影響の下で感温棒50によりオリフィス11に対する弁体14の弁開放度(即ち、蒸発器の入口への液体状の冷媒の流入量)を調整する。   Accordingly, the diaphragm 32 of the power element section 30 is operated according to the difference between the pressure of the working gas of the temperature-responsive working fluid in the upper pressure working chamber 35 and the pressure of the refrigerant vapor at the outlet of the evaporator in the lower pressure working chamber 36. Under the influence of the urging force of the urging means 16 for the body 14, the valve opening degree of the valve body 14 with respect to the orifice 11 by the temperature sensing rod 50 (that is, the amount of liquid refrigerant flowing into the inlet of the evaporator) is adjusted. adjust.

そして、ハンチング現象を防止するため、中空状の感温棒50に活性炭75のような吸着物質を封入している。かかる構成において、活性炭75を用いることにより、活性炭75と温度対応作動流体との温度・圧力平衡が達成される迄に時間がかかり、このことは冷凍サイクルの制御特性を安定させている。そして、活性炭75によって吸着量に差が生じることにより活性炭毎に温度膨張弁の温度−圧力特性が異なることを防止するために、フェノール製活性炭を採用している。
特開平09−159324号公報 特開2001−33123号公報
In order to prevent the hunting phenomenon, an adsorbing substance such as activated carbon 75 is sealed in the hollow temperature sensing rod 50. In such a configuration, by using the activated carbon 75, it takes time until the temperature / pressure equilibrium between the activated carbon 75 and the temperature-responsive working fluid is achieved, which stabilizes the control characteristics of the refrigeration cycle. And in order to prevent that the temperature-pressure characteristic of a temperature expansion valve changes for every activated carbon by the difference in adsorption amount with activated carbon 75, the activated carbon made from phenol is employ | adopted.
JP 09-159324 A JP 2001-33123 A

従来のタイプ1では、感温棒50の外周に樹脂70を設けて、低圧冷媒からの熱伝達を遅らせて時定数を大きくしている。   In the conventional type 1, a resin 70 is provided on the outer periphery of the temperature sensing rod 50 to increase the time constant by delaying heat transfer from the low-pressure refrigerant.

しかし、このタイプ1は、樹脂70により、蒸発器の冷媒出口から圧縮機の冷媒入口へと向かう部分に介在される気相冷媒(低圧冷媒)からダイヤフラム32上部の封入冷媒への熱伝達が極端に悪くなるため、相対的に、封入冷媒への外気やアルミニウム製の弁本体2からの伝熱の影響が大きくなり、感温棒50の温度が上記低圧冷媒の温度より高くなってしまい、冷媒の温度が安定し冷媒の圧力も略一定の定常時の検出温度誤差が大きくなってしまう。   However, in this type 1, heat transfer from the gas-phase refrigerant (low-pressure refrigerant) interposed between the refrigerant outlet of the evaporator and the refrigerant inlet of the compressor to the sealed refrigerant above the diaphragm 32 is extremely high. As a result, the influence of heat from the outside air or the valve body 2 made of aluminum on the enclosed refrigerant becomes relatively large, and the temperature of the temperature sensing rod 50 becomes higher than the temperature of the low-pressure refrigerant. Therefore, the detected temperature error in the steady state becomes large with the temperature of the refrigerant stabilized and the refrigerant pressure constant.

また、ハンチングは、低圧冷媒流量が少なくなるため、低圧冷媒の圧力が低いほど発生しやすいが、この方式では伝熱の時定数を極端に大きくしているため、もっともハンチングの発生し易い低圧冷媒の圧力が低い条件で、時定数を設定すると、クールダウン時等の冷媒圧力が高い条件では弁体14の応答が極度に遅くなり、冷媒が充分に蒸発しない状態(冷房能力が低い状態)で圧縮機に液バックする等の冷房能力が低下する不具合が生じる。   In addition, hunting is more likely to occur as the pressure of the low-pressure refrigerant is lower because the flow rate of the low-pressure refrigerant is lower. However, in this method, the time constant of heat transfer is extremely increased, so that low-pressure refrigerant is most likely to generate hunting. If the time constant is set under a low pressure condition, the response of the valve body 14 becomes extremely slow under a high refrigerant pressure condition such as during cool-down, and the refrigerant does not evaporate sufficiently (the cooling capacity is low). There arises a problem that the cooling capacity is lowered such as liquid back to the compressor.

また、感温棒50内部の温度は、雰囲気温度の影響により加熱されるダイヤフラム32側からの伝熱影響を受ける。   Further, the temperature inside the temperature sensing rod 50 is affected by heat transfer from the side of the diaphragm 32 heated by the influence of the ambient temperature.

ここで、発明者の実験によれば、従来のタイプ1の温度分布は以下のようになる。色表現をJIS規格「物体の色名」Z8102に準じて表現し、温度の高い順に赤、赤紫、薄い赤紫、黄赤、こい黄色、うすい黄色、うすい黄緑、黄緑、うすい緑、こい緑、薄い青緑、こい青緑、青みの灰色、青とすれば、従来のタイプ1では、図7のように、パワーエレメント部30の上カバー33と下カバー34が赤色、上カバー33とダイヤフラム32との間が上から赤紫、薄い赤紫、黄赤、こい黄色、うすい黄色、うすい黄緑、黄緑、ダイヤフラム32と感温棒50の上部及びこれらの周囲がうすい緑、感温棒50の上下中間部がこい緑、感温棒50の下部が薄い青緑と成った。   Here, according to the experiment by the inventors, the temperature distribution of the conventional type 1 is as follows. The color expression is expressed in accordance with JIS standard “object color name” Z8102, and in descending order of temperature, red, magenta, light magenta, yellow-red, light yellow, light yellow, light yellow-green, light green, light green, In the conventional type 1, the upper cover 33 and the lower cover 34 of the power element unit 30 are red and the upper cover 33 is red, as shown in FIG. Between the top and the diaphragm 32 is red purple, light red purple, yellow red, light yellow, light yellow, light yellow green, yellow green, the upper part of the diaphragm 32 and the temperature sensing rod 50 and the surroundings are light green, The upper and lower middle parts of the hot bar 50 are dark green, and the lower part of the hot bar 50 is light blue-green.

この従来のタイプ1の方式では、作動流体(冷媒)は、ダイヤフラムの上部のみに封入されており、気相冷媒に接する下部の薄い青緑の部分から、作動流体に接するうすい緑まで長手(縦)方向に温度差が生じている。   In this conventional type 1 system, the working fluid (refrigerant) is sealed only in the upper part of the diaphragm, and extends from the light blue-green part in the lower part in contact with the gas-phase refrigerant to the light green in contact with the working fluid. ) There is a temperature difference in the direction.

また、ダイヤフラム32を駆動する封入冷媒が、ダイヤフラム32の上部に封入されているため、感温棒50の上記温度分布により、ダイヤフラム32を駆動する上部圧力作動室35の封入冷媒は、実際の第2の通路9に流れ込む低圧冷媒の温度より高くなってしまうので温度の検出誤差を生じる。   In addition, since the sealed refrigerant that drives the diaphragm 32 is sealed in the upper part of the diaphragm 32, the sealed refrigerant in the upper pressure working chamber 35 that drives the diaphragm 32 is actually changed by the temperature distribution of the temperature sensing rod 50. Since the temperature of the low-pressure refrigerant flowing into the second passage 9 is higher than that of the second passage 9, a temperature detection error occurs.

一方、従来のタイプ2では、図6のように、感温棒50内部を中空として、封入ガスに直接伝熱する時定数を持たせるため、感温棒50内に活性炭75を封入している。   On the other hand, in the conventional type 2, as shown in FIG. 6, activated carbon 75 is enclosed in the temperature sensing rod 50 so that the inside of the temperature sensing rod 50 is hollow and has a time constant for direct heat transfer to the sealed gas. .

これは、封入ガスを活性炭75に吸着させて低圧冷媒流路内に導いているため、冷媒検出温度の誤差は小さいが、中空の感温棒50内部に活性炭75を充填する必要があり、コスト、工数がかかる。   This is because the charged gas is adsorbed by the activated carbon 75 and guided into the low-pressure refrigerant flow path, so that the error in the refrigerant detection temperature is small, but the activated carbon 75 needs to be filled in the hollow temperature sensing rod 50, which is costly. , It takes man-hours.

また、封入冷媒は活性炭75に吸着されているため、上部圧力作動室35の圧力は温度の上昇とともに増加してしまい、MOP(maximum operating pressure)特性(密閉空間の封入冷媒が加熱ガスとなることにより、温度の上昇に対して上部圧力作動室35の圧力上昇が緩やかとなり、高負荷時の圧縮機の動力を低減することができる特性)を持たせることができない。   Further, since the enclosed refrigerant is adsorbed by the activated carbon 75, the pressure in the upper pressure working chamber 35 increases as the temperature rises, and MOP (maximum operating pressure) characteristics (the enclosed refrigerant in the sealed space becomes the heating gas). Therefore, the pressure increase in the upper pressure working chamber 35 becomes moderate with respect to the temperature rise, and it is not possible to have the characteristic that the power of the compressor at the time of high load can be reduced.

本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、充填にコスト、工数のかかる活性炭を用いずに、気相冷媒の温度検出誤差がなく、ハンチング防止に有効な適正な時定数をもった膨張弁を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art, and its purpose is to detect the temperature detection error of the gas-phase refrigerant without using activated carbon, which is costly and time-consuming for filling. It is an object of the present invention to provide an expansion valve having an appropriate time constant effective for preventing hunting.

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、圧縮機(8)からの液冷媒が通る第1の通路(7)、及び蒸発器(6)から前記圧縮機(8)に向う気相冷媒が通る第2の通路(9)を有する弁本体(2)と、第1の通路(7)中に設けられるオリフィス(11)と、該オリフィス(11)を通過する冷媒量を調節する弁体(14)と、弁本体(2)に設けられ上下の圧力差により作動するダイヤフラム(32)を有するパワーエレメント部(30)と、該パワーエレメント部(30)内においてダイヤフラム(32)の上部に形成され封入冷媒が封入された上部圧力作動室(35)と、ダイヤフラム(32)の下部に形成され第2の通路(9)と連通する下部圧力作動室(36)と、ダイヤフラム(32)の変位と共に変位し、一端上側がダイヤフラム(32)に接し、他端下側が弁体(14)を駆動し、内部に筒状の空間(55)を有する感温棒(50)を備え、感温棒(50)の筒状の空間(55)はダイヤフラム(32)を貫通して上部圧力作動室(35)と連通しており筒状の空間(55)内に封入冷媒の気液界面(56)が存在することを特徴としている。   In order to achieve the above object, the present invention employs the following technical means. That is, in the first aspect of the present invention, the first passage (7) through which the liquid refrigerant from the compressor (8) passes, and the gas-phase refrigerant from the evaporator (6) toward the compressor (8) pass through. A valve body (2) having a second passage (9), an orifice (11) provided in the first passage (7), and a valve body (14) for adjusting the amount of refrigerant passing through the orifice (11) ), A power element portion (30) provided on the valve body (2) and having a diaphragm (32) that operates by a pressure difference between the upper and lower sides, and the diaphragm (32) is formed in the power element portion (30). Along with the displacement of the upper pressure working chamber (35) filled with the refrigerant, the lower pressure working chamber (36) formed in the lower part of the diaphragm (32) and communicating with the second passage (9), and the diaphragm (32) Displaced, the upper end is a diaphragm A temperature sensing rod (50) having a cylindrical space (55) inside, the lower end of the other end driving the valve element (14) and having a cylindrical space (55) inside, the cylindrical shape of the temperature sensing rod (50) The space (55) penetrates the diaphragm (32) and communicates with the upper pressure working chamber (35), and a gas-liquid interface (56) of the enclosed refrigerant exists in the cylindrical space (55). Yes.

この請求項1に記載の発明によれば、気液界面(56)が存在することにより、気相冷媒の温度検出誤差が少なくなる。また、液冷媒が存在することにより感温棒(50)の温度が上がりにくくなり、見かけ上の熱伝達の時定数を大きくすることが出来るのでハンチングが防止できる。   According to the first aspect of the present invention, the presence of the gas-liquid interface (56) reduces the temperature detection error of the gas-phase refrigerant. In addition, the presence of the liquid refrigerant makes it difficult for the temperature of the temperature sensing rod (50) to rise, and the apparent heat transfer time constant can be increased, thereby preventing hunting.

また、請求項2に記載の発明では、感温棒(50)はアルミニウム及び銅よりも熱伝導率の低い金属製であることを特徴としている。   Further, the invention according to claim 2 is characterized in that the temperature sensing rod (50) is made of a metal having lower thermal conductivity than aluminum and copper.

この請求項2に記載の発明によれば、熱伝導率の低い金属製とすることで、熱伝達の時定数を比較的大きい適度な値にすることが出来、よりハンチングが防止できる。   According to the second aspect of the present invention, by using a metal having low thermal conductivity, the time constant of heat transfer can be set to a relatively large and appropriate value, and hunting can be further prevented.

また、請求項3に記載の発明では、アルミニウム及び銅よりも熱伝導率の低い金属は、ステンレスであることを特徴としている。   In the invention according to claim 3, the metal having a lower thermal conductivity than aluminum and copper is stainless steel.

この請求項3に記載の発明によれば、ステンレスにより容易に構成できる。   According to the third aspect of the present invention, it can be easily constructed of stainless steel.

また、請求項4に記載の発明では、弁本体(2)内の第2の通路(9)の下面から弁本体(2)上面までの範囲を低圧冷媒流路領域としたとき、封入冷媒は、0℃から40℃の範囲にて、気液界面(56)の位置が、好ましくは感温棒(50)の筒状の空間(55)内、または、更に好ましくは低圧冷媒流路領域内となる量の封入冷媒が、筒状の空間(55)内に封入されていることを特徴としている。   In the invention according to claim 4, when the range from the lower surface of the second passage (9) in the valve body (2) to the upper surface of the valve body (2) is a low-pressure refrigerant channel region, the enclosed refrigerant is In the range of 0 ° C. to 40 ° C., the position of the gas-liquid interface (56) is preferably in the cylindrical space (55) of the temperature sensing rod (50), or more preferably in the low-pressure refrigerant channel region. An amount of the encapsulated refrigerant is enclosed in the cylindrical space (55).

この請求項4に記載の発明によれば、冷凍サイクルの使用温度範囲(0℃から40℃)内で封入冷媒の量を最適範囲内に設定できる。なお、量が多すぎると膨張弁の強度を強くしなければならないと共に、弁体の応答特性が変わり、圧縮機に戻る低圧冷媒の圧力が最適範囲から外れる。また量が少ないとハンチング防止効果が損なわれる場合がある。   According to the fourth aspect of the present invention, the amount of the enclosed refrigerant can be set within the optimum range within the operating temperature range (0 ° C. to 40 ° C.) of the refrigeration cycle. If the amount is too large, the strength of the expansion valve must be increased, the response characteristics of the valve body change, and the pressure of the low-pressure refrigerant returning to the compressor deviates from the optimum range. If the amount is small, the anti-hunting effect may be impaired.

また、請求項5に記載の発明では、感温棒(50)の筒状の空間(55)の周囲に、感温棒(50)の壁面が取り巻いており、筒状の空間(55)の内径に比べて、感温棒(50)の壁面の肉厚の方が大きいことを特徴としている。   In the invention according to claim 5, the wall surface of the temperature sensing rod (50) surrounds the cylindrical space (55) of the temperature sensing rod (50), and the cylindrical space (55) It is characterized in that the wall thickness of the temperature sensing rod (50) is larger than the inner diameter.

この請求項5に記載の発明によれば、感温棒(50)の壁面の肉厚が大きいことにより、ハンチング防止に有効な熱伝達の時定数を大きくすることが出来る。   According to the fifth aspect of the present invention, since the wall thickness of the temperature sensing rod (50) is large, the time constant of heat transfer effective for preventing hunting can be increased.

また、請求項6に記載の発明では、感温棒(50)の筒状の空間(55)の内壁に、感温棒(50)の材質より熱伝達率の低い低熱伝達率層(60)を設けたことを特徴としている。   In the invention according to claim 6, a low heat transfer coefficient layer (60) having a lower heat transfer coefficient than the material of the temperature sensitive bar (50) is formed on the inner wall of the cylindrical space (55) of the temperature sensitive bar (50). It is characterized by providing.

この請求項6に記載の発明によれば、熱伝達率の低い低熱伝達率層(60)により、ハンチング防止に有効な熱伝達の時定数を大きくすることが出来る。   According to the sixth aspect of the invention, the heat transfer time constant effective for preventing hunting can be increased by the low heat transfer coefficient layer (60) having a low heat transfer coefficient.

また、請求項7に記載の発明では、低熱伝達率層は、樹脂層(60)からなることを特徴としている。   Further, the invention according to claim 7 is characterized in that the low heat transfer coefficient layer comprises a resin layer (60).

この請求項7に記載の発明によれば、樹脂層(60)により、ハンチング防止に有効な熱伝達の時定数を大きくすることが出来る。   According to the seventh aspect of the present invention, the resin layer (60) can increase the time constant of heat transfer effective for preventing hunting.

また、請求項8に記載の発明では、感温棒(50)の筒状の空間(55)の弁体(14)側である下側に、下側の内径が上側の内径よりも小さくなっている円筒空間底部(55a)を有し、筒状の空間(55)は円筒空間上部(55b)と、円筒空間底部(55a)とからなり、感温棒(50)の壁面の肉厚は、円筒空間底部(55a)の周囲の方が円筒空間上部(55b)の周囲の方よりも大きいことを特徴としている。   In the invention according to claim 8, the lower inner diameter is smaller than the upper inner diameter on the lower side, which is the valve body (14) side, of the cylindrical space (55) of the temperature sensing rod (50). The cylindrical space (55a) has a cylindrical space upper part (55b) and a cylindrical space bottom part (55a), and the wall thickness of the temperature sensing rod (50) is The cylindrical space bottom (55a) is larger in the circumference than the circumference of the cylindrical space upper part (55b).

この請求項8に記載の発明によれば、前記感温棒の壁面の肉厚を大きくすることにより、熱伝達の時定数を大きくすることが出来る。   According to the eighth aspect of the present invention, the time constant of heat transfer can be increased by increasing the wall thickness of the wall of the temperature sensing rod.

また、請求項9に記載の発明では、0℃から、40℃の範囲にて、気液界面(56)の位置が円筒空間底部(55a)内となる量の封入冷媒が、筒状の空間(55)内に封入されていることを特徴としている。   According to the ninth aspect of the present invention, in the range from 0 ° C. to 40 ° C., the amount of the encapsulated refrigerant in which the position of the gas-liquid interface (56) is in the cylindrical space bottom (55a) is a cylindrical space. (55) It is characterized by being enclosed in.

この請求項9に記載の発明によれば、冷凍サイクルの使用温度範囲内で封入冷媒の量を最適範囲内に設定できる。また、気相冷媒から気液界面に熱伝達する部分に時定数の大きい感温棒の壁面の肉厚の厚い部分を介在させることが出来る。   According to the ninth aspect of the present invention, the amount of the enclosed refrigerant can be set within the optimum range within the operating temperature range of the refrigeration cycle. Moreover, the thick part of the wall surface of the temperature sensing rod having a large time constant can be interposed in the part where heat is transferred from the gas-phase refrigerant to the gas-liquid interface.

また、請求項10に記載の発明では、感温棒(50)内側の樹脂層(60)に発泡樹脂を用いたことを特徴としている。   The invention described in claim 10 is characterized in that a foamed resin is used for the resin layer (60) inside the temperature sensitive rod (50).

この請求項10に記載の発明によれば、より少ない樹脂で、ハンチング防止に有効な熱伝達の時定数を大きくすることが出来る。   According to the tenth aspect of the present invention, the time constant of heat transfer effective for preventing hunting can be increased with less resin.

なお、特許請求の範囲および上記各手段に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the parenthesis as described in a claim and said each means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について、図1を用いて詳細に説明する。この膨張弁は、自動車等の空気調和装置の冷凍サイクルにおいて用いられている。図1は、この実施形態の膨張弁の縦断面図を冷凍サイクルの概略と共に示している。膨張弁1は、角柱状のアルミ製の弁本体2を有する。この弁本体2には、冷凍サイクルの冷媒(フロン)が流れる冷媒管路3において、凝縮器4の冷媒出口からレシーバ5を介して蒸発器6の冷媒入口へと向かう部分に介在される液相冷媒が通過する第1の通路7を有する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIG. This expansion valve is used in a refrigeration cycle of an air conditioner such as an automobile. FIG. 1 shows a longitudinal sectional view of an expansion valve of this embodiment together with an outline of a refrigeration cycle. The expansion valve 1 has a prismatic aluminum valve body 2. The valve body 2 includes a liquid phase interposed in a portion of the refrigerant pipe 3 through which the refrigerant (fluorocarbon) of the refrigeration cycle flows from the refrigerant outlet of the condenser 4 to the refrigerant inlet of the evaporator 6 via the receiver 5. The first passage 7 through which the refrigerant passes is provided.

また、弁本体2には、蒸発器6の冷媒出口から圧縮機8の冷媒入口へと向かう部分に介在される気相冷媒(低圧冷媒)が通過する第2の通路9を有する。そして、第1の通路7と第2の通路9が上下に相互に離間して形成されている。   Further, the valve body 2 has a second passage 9 through which a gas phase refrigerant (low-pressure refrigerant) interposed in a portion from the refrigerant outlet of the evaporator 6 toward the refrigerant inlet of the compressor 8 passes. And the 1st channel | path 7 and the 2nd channel | path 9 are formed mutually spaced apart up and down.

第1の通路7には、レシ−バ5の冷媒出口から供給された液体冷媒を断熱膨張させるためのオリフィス11が形成されている。オリフィス11は弁本体2の長手方向に沿った形状を有している。オリフィス11の入口には弁座12が形成されていて、弁座12には弁部材13により支持された弁体14が着座又は離座するように配設されている。   In the first passage 7, an orifice 11 is formed for adiabatic expansion of the liquid refrigerant supplied from the refrigerant outlet of the receiver 5. The orifice 11 has a shape along the longitudinal direction of the valve body 2. A valve seat 12 is formed at the inlet of the orifice 11, and a valve body 14 supported by a valve member 13 is disposed on the valve seat 12 so as to be seated or separated.

そして、弁体14と弁部材13とは溶接により固定されている。弁部材13は、弁体14が弁座12に押し付けられる方向に圧縮コイルばね16からなる付勢手段により付勢されている。圧縮コイルばね16は、弁部材13と弁体14を、弁体14によってオリフィス11を閉じる方向に付勢する。   The valve body 14 and the valve member 13 are fixed by welding. The valve member 13 is biased by a biasing means including a compression coil spring 16 in a direction in which the valve body 14 is pressed against the valve seat 12. The compression coil spring 16 urges the valve member 13 and the valve body 14 in a direction in which the orifice 11 is closed by the valve body 14.

レシ−バ5からの液冷媒が導入される第1の通路7は液冷媒の通路となり、入口ポ−ト17と、この入口ポ−ト17に連続する弁室18を有する。弁室18は、オリフィス11の中心線と同軸に形成される有底の室であり、プラグ19によって密閉されている。   The first passage 7 into which the liquid refrigerant from the receiver 5 is introduced serves as a passage for the liquid refrigerant, and has an inlet port 17 and a valve chamber 18 continuing to the inlet port 17. The valve chamber 18 is a bottomed chamber formed coaxially with the center line of the orifice 11 and is sealed by a plug 19.

さらに、弁本体2には蒸発器6の冷媒出口の冷媒の温度に応じて弁体14に対して駆動力を与えて、オリフィス11の開閉を行うために、小径の孔20と、この小径の孔20より径が大きい大径の孔21が第2の通路9と連通して、オリフィス11中心線の延長線上に形成されている。   Further, in order to open and close the orifice 11 by applying a driving force to the valve body 2 according to the temperature of the refrigerant at the refrigerant outlet of the evaporator 6 to the valve body 2, the small diameter hole 20 and the small diameter hole 20 are provided. A large-diameter hole 21 having a diameter larger than that of the hole 20 communicates with the second passage 9 and is formed on an extension line of the center line of the orifice 11.

また、弁本体2の上端には、感熱部となるパワーエレメント部30が固定されるねじ孔31が形成されている。パワーエレメント部30は、ステンレス製のダイヤフラム32と、このダイヤフラム32を挾んで互いに密着して設けられた上カバー33と下カバー34を有している。   In addition, a screw hole 31 is formed at the upper end of the valve body 2 to which the power element portion 30 serving as a heat sensitive portion is fixed. The power element section 30 includes a stainless steel diaphragm 32 and an upper cover 33 and a lower cover 34 provided in close contact with each other with the diaphragm 32 interposed therebetween.

上カバー33と下カバー34とは、ダイヤフラム32の上下に、二つの気密室を形成する上部圧力作動室35及び下部圧力作動室36をそれぞれ形成する。上部圧力作動室35にダイヤフラム駆動流体となる封入冷媒を封入するための封止プラグ40を備えている。   The upper cover 33 and the lower cover 34 respectively form an upper pressure working chamber 35 and a lower pressure working chamber 36 that form two airtight chambers above and below the diaphragm 32. The upper pressure working chamber 35 is provided with a sealing plug 40 for sealing a sealed refrigerant serving as a diaphragm driving fluid.

そして、下部圧力作動室36は、オリフィス11の中心線に対して同心的に形成された均圧孔42を介して第2の通路9に連通されている。第2の通路9には、蒸発器6からの冷媒蒸気(気相冷媒)が流れ、その冷媒蒸気の圧力が均圧孔42を介して下部圧力作動室36に加わっている。また、下部圧力作動室36と均圧孔42とは感温棒50の傘状部分50bの周囲のクリアランスを介して連通している。   The lower pressure working chamber 36 communicates with the second passage 9 through a pressure equalizing hole 42 formed concentrically with the center line of the orifice 11. Refrigerant vapor (vapor phase refrigerant) from the evaporator 6 flows through the second passage 9, and the pressure of the refrigerant vapor is applied to the lower pressure working chamber 36 via the pressure equalizing hole 42. Further, the lower pressure working chamber 36 and the pressure equalizing hole 42 communicate with each other via a clearance around the umbrella-shaped portion 50 b of the temperature sensing rod 50.

さらに、下部圧力作動室36から第2の通路9と小径の孔20にかけてステンレス製の感温棒50とステンレス製の作動棒51が設けられている。   Further, a stainless steel temperature sensitive rod 50 and a stainless steel working rod 51 are provided from the lower pressure working chamber 36 to the second passage 9 and the small diameter hole 20.

感温棒50は、ステムを構成するものであり、感温棒50の幅広の上部50aがダイヤフラム32と当接し、かつ第2の通路9を貫通して大径の孔21内に摺動可能に配置されている。   The temperature sensing rod 50 constitutes a stem, and the wide upper portion 50a of the temperature sensing rod 50 is in contact with the diaphragm 32 and can pass through the second passage 9 and slide into the large-diameter hole 21. Is arranged.

感温棒50は、第2の通路9を流れる低圧冷媒の温度を感知するものである。つまり、感温棒50は、蒸発器6の冷媒出口の冷媒の温度を上部圧力作動室35伝達すると共に、上部圧力作動室35及び下部圧力作動室36の圧力差に伴うダイヤフラム32の変位に応じて、大径の孔21内を摺動して弁体14に駆動力を与える。   The temperature sensing bar 50 senses the temperature of the low-pressure refrigerant flowing through the second passage 9. That is, the temperature sensing rod 50 transmits the temperature of the refrigerant at the refrigerant outlet of the evaporator 6 to the upper pressure working chamber 35 and responds to the displacement of the diaphragm 32 due to the pressure difference between the upper pressure working chamber 35 and the lower pressure working chamber 36. Thus, the valve body 14 is given a driving force by sliding in the large-diameter hole 21.

また、作動棒51は、小径の孔20内に摺動可能に配されて感温棒50の変位に応じて弁体14を付勢手段16の弾性力に抗して押圧するものである。   The operating rod 51 is slidably disposed in the small-diameter hole 20 and presses the valve element 14 against the elastic force of the biasing means 16 in accordance with the displacement of the temperature sensing rod 50.

感温棒50と作動棒51とは当接し、作動棒51は弁体14と当接しており、感温棒50と作動棒51とで弁体駆動棒(以下、弁体駆動棒50、51と称す)が構成されている。   The temperature sensing rod 50 and the operation rod 51 are in contact with each other, and the operation rod 51 is in contact with the valve body 14, and the temperature sensing rod 50 and the operation rod 51 are connected to a valve body drive rod (hereinafter referred to as valve body drive rods 50, 51). Called).

したがって、均圧孔42には、ダイヤフラム32の下面から第2の通路9を通り、オリフィス11まで延出した弁体駆動棒50、51が同心的に配置されていることになる。また、下部圧力作動室36と均圧孔42と第2の通路9とは連通している。   Therefore, the valve body drive rods 50 and 51 extending from the lower surface of the diaphragm 32 to the orifice 11 through the second passage 9 are concentrically disposed in the pressure equalizing hole 42. Further, the lower pressure working chamber 36, the pressure equalizing hole 42, and the second passage 9 are in communication.

ダイヤフラム32上方の上部圧力作動室35中には、公知のダイヤフラム駆動流体となる封入冷媒が充填されている。この、ダイヤフラム駆動流体には、感温棒50の筒状の空間55と連通しており、第2の通路9を流れている蒸発器6の冷媒出口からの冷媒蒸気の熱が上記空間55内に封入された冷媒に伝達される。   The upper pressure working chamber 35 above the diaphragm 32 is filled with a sealed refrigerant serving as a known diaphragm driving fluid. This diaphragm driving fluid communicates with the cylindrical space 55 of the temperature sensing rod 50, and the heat of the refrigerant vapor from the refrigerant outlet of the evaporator 6 flowing through the second passage 9 is in the space 55. It is transmitted to the refrigerant sealed in.

上部圧力作動室35中のダイヤフラム駆動流体には、上記空間55内の冷媒に伝達された熱に反応して気液界面で発生した圧力が伝達され、この圧力がダイヤフラム32の上面に印加される。ダイヤフラム32は、上記上面に印加されたダイヤフラム駆動ガスの圧力とダイヤフラム32の下面に印加された圧力(つまり蒸発器6の冷媒出口から圧縮機8の冷媒入口へと向かう部分に介在した気相冷媒の圧力)との差により上下に変位する。   Pressure generated at the gas-liquid interface is transmitted to the diaphragm driving fluid in the upper pressure working chamber 35 in response to the heat transmitted to the refrigerant in the space 55, and this pressure is applied to the upper surface of the diaphragm 32. . The diaphragm 32 includes a pressure of the diaphragm driving gas applied to the upper surface and a pressure applied to the lower surface of the diaphragm 32 (that is, a gas phase refrigerant interposed in a portion from the refrigerant outlet of the evaporator 6 to the refrigerant inlet of the compressor 8). It is displaced up and down due to the difference in pressure.

ダイヤフラム32の中心部の上下への変位は、弁体駆動棒50、51を介して、弁体14に伝達され、弁体14をオリフィス11の弁座12に対して接近または離間させる。この結果、冷媒流量が制御されることとなる。   The vertical displacement of the central portion of the diaphragm 32 is transmitted to the valve body 14 via the valve body drive rods 50 and 51, causing the valve body 14 to approach or separate from the valve seat 12 of the orifice 11. As a result, the refrigerant flow rate is controlled.

即ち、蒸発器6の出口側の気相冷媒の温度が、上記空間55内の封入冷媒に伝達され、上記空間55内で発生した圧力が、上部圧力作動室35に伝達されるため、その温度に応じて上部圧力作動室35の圧力が変化する。   That is, the temperature of the gas-phase refrigerant on the outlet side of the evaporator 6 is transmitted to the enclosed refrigerant in the space 55, and the pressure generated in the space 55 is transmitted to the upper pressure working chamber 35. Accordingly, the pressure in the upper pressure working chamber 35 changes.

蒸発器6の出口温度が上昇すると、つまり、蒸発器6の熱負荷が増加すると、上部圧力作動室35の圧力が高くなり、それに応じて弁体駆動棒50、51が、下方へ駆動されて弁体14を下げるため、オリフィス11の開度が大きくなる。   When the outlet temperature of the evaporator 6 rises, that is, when the heat load of the evaporator 6 increases, the pressure in the upper pressure working chamber 35 increases, and the valve body drive rods 50 and 51 are driven downward accordingly. Since the valve body 14 is lowered, the opening of the orifice 11 is increased.

これにより蒸発器6への冷媒の供給量が多くなり、蒸発器6の温度を低下させる。逆に、蒸発器6の出口温度が低下すると、つまり、蒸発器6の熱負荷が減少すると、弁体11が上記と逆方向に駆動され、オリフィス11の開度が小さくなり、蒸発器6への冷媒の供給量が少なくなり、蒸発器6の温度を上昇させるのである。   Thereby, the supply amount of the refrigerant to the evaporator 6 is increased, and the temperature of the evaporator 6 is lowered. On the contrary, when the outlet temperature of the evaporator 6 decreases, that is, when the heat load of the evaporator 6 decreases, the valve body 11 is driven in the reverse direction to the above, and the opening degree of the orifice 11 becomes small. This reduces the amount of refrigerant supplied and raises the temperature of the evaporator 6.

かかる膨張弁1が用いられる冷凍システムにおいては、蒸発器6への冷媒供給が過剰・不足・過剰・不足を短い周期で繰り返す所謂ハンチング現象が知られている。これは、例えば、感温棒50に未蒸発の液冷媒が付着して濡れ、これを温度変化と感知して、過敏な弁体14の開閉応答を行うことを原因としている。   In a refrigeration system in which such an expansion valve 1 is used, a so-called hunting phenomenon is known in which the supply of refrigerant to the evaporator 6 repeats excess, deficiency, excess, and deficiency in a short cycle. This is due to, for example, the fact that unvaporized liquid refrigerant adheres to the temperature sensing rod 50 and gets wet, and this is detected as a temperature change, and a sensitive opening / closing response of the valve body 14 is performed.

このようなハンチング現象が生じると、冷凍システム全体の能力を減ずると共に、圧縮機8への液戻りが生じる。   When such a hunting phenomenon occurs, the capacity of the entire refrigeration system is reduced and liquid return to the compressor 8 occurs.

そのため、この実施形態では、感温棒50は、銅やアルミニウムに比べて比較的熱伝達率の低い金属材料(例えばステンレス)作られており、中心部に有底の筒状の空間55を有している。   Therefore, in this embodiment, the temperature sensing rod 50 is made of a metal material (for example, stainless steel) having a relatively low heat transfer coefficient compared to copper or aluminum, and has a bottomed cylindrical space 55 at the center. is doing.

また、感温棒50とダイヤフラム32は、溶接等により気密に接合され、ダイヤフラム32の上部の上部圧力作動室35と感温棒50の筒状の空間55は連通している。   The temperature sensing rod 50 and the diaphragm 32 are joined airtightly by welding or the like, and the upper pressure working chamber 35 above the diaphragm 32 and the cylindrical space 55 of the temperature sensing rod 50 communicate with each other.

更に、弁本体2内の第2の通路9の下面から弁本体2上面の感温棒50の傘状部分50bまでの範囲(高さH部分)を低圧冷媒流路領域と定義したとき、前記封入冷媒は、0℃から40℃の範囲にて、前記気液界面(56)の位置が、好ましくは前記感温棒(50)の前記筒状の空間(55)内、または、更に好ましくは前記低圧冷媒流路領域内となる量の前記封入冷媒が、前記筒状の空間(55)内に封入される。この封入冷媒は圧縮機で圧縮される冷凍システムの冷媒と同じでも異なるものでも良い。   Furthermore, when the range (height H portion) from the lower surface of the second passage 9 in the valve body 2 to the umbrella-shaped portion 50b of the temperature sensing rod 50 on the upper surface of the valve body 2 is defined as the low-pressure refrigerant channel region, In the range of 0 ° C. to 40 ° C., the position of the gas-liquid interface (56) is preferably within the cylindrical space (55) of the temperature sensing rod (50) or more preferably An amount of the enclosed refrigerant in the low-pressure refrigerant flow path region is enclosed in the cylindrical space (55). This enclosed refrigerant may be the same as or different from the refrigerant in the refrigeration system compressed by the compressor.

なお、温度に対する圧力が所定の関係で決まるため、筒状の空間55内の封入冷媒は使用範囲内の温度では、飽和状態にあることが好ましい。そのためには筒状の空間55内にガスばかりでなく液体が存在し、その結果、気液界面が存在することが必要である。また、上記気液界面が温度を検出する範囲内に存在することが好ましい。   In addition, since the pressure with respect to temperature is determined by the predetermined relationship, it is preferable that the enclosed refrigerant in the cylindrical space 55 is in a saturated state at a temperature within the use range. For this purpose, not only gas but also liquid exists in the cylindrical space 55, and as a result, it is necessary that a gas-liquid interface exists. Moreover, it is preferable that the said gas-liquid interface exists in the range which detects temperature.

前述のように、図5の従来のタイプ1は、雰囲気温度の影響により加熱されるダイヤフラム32側からの伝熱を受けて、感温棒50内部の温度が均一に成らず、感温棒50内部に長手方向の温度差(温度分布)を持つ。加えて、ダイヤフラム32を駆動する封入冷媒は、ダイヤフラム32の上部のみに封入されている。このため、雰囲気温度の影響による感温棒50の温度上昇により、蒸発器6の冷媒出口温度を、より高いものと誤検知して弁体14の開閉応答を行う結果になった。   As described above, the conventional type 1 shown in FIG. 5 receives heat transfer from the side of the diaphragm 32 heated by the influence of the ambient temperature, so that the temperature inside the temperature sensing rod 50 is not uniform, and the temperature sensing rod 50 is not uniform. It has a longitudinal temperature difference (temperature distribution) inside. In addition, the sealed refrigerant that drives the diaphragm 32 is sealed only in the upper part of the diaphragm 32. For this reason, due to the temperature rise of the temperature sensing rod 50 due to the influence of the ambient temperature, the refrigerant outlet temperature of the evaporator 6 is erroneously detected as being higher, and the opening / closing response of the valve body 14 is performed.

これに対して、この実施形態では、図1の感温棒50の外周側に、樹脂よりも熱伝導の良い金属材(ステンレス)を用いているため、冷凍サイクルの冷媒の温度が安定し、低圧冷媒の圧力も略一定の定常時に、蒸発器6からの低圧冷媒と接する感温棒50内部の温度が均一になり、第2の通路9を流れる低圧冷媒と上部圧力作動室35内の封入冷媒の温度差が小さい。   On the other hand, in this embodiment, since the metal material (stainless steel) having better heat conductivity than the resin is used on the outer peripheral side of the temperature sensing rod 50 in FIG. 1, the temperature of the refrigerant in the refrigeration cycle is stabilized, When the pressure of the low-pressure refrigerant is substantially constant, the temperature inside the temperature sensing rod 50 in contact with the low-pressure refrigerant from the evaporator 6 becomes uniform, and the low-pressure refrigerant flowing in the second passage 9 and the enclosure in the upper pressure working chamber 35 are enclosed. The temperature difference of the refrigerant is small.

ここで発明者の実験によれば、温度分布は以下のようになる。色表現をJIS規格「物体の色名」Z8102に準じて表現し、温度の高い順に赤、赤紫、薄い赤紫、黄赤、こい黄色、うすい黄色、うすい黄緑、黄緑、うすい緑、こい緑、薄い青緑、こい青緑、青みの灰色、青とすれば、この実施形態では、図4のように、パワーエレメント部30の上カバー33と下カバー64が赤色となる。   Here, according to the inventor's experiment, the temperature distribution is as follows. The color expression is expressed in accordance with JIS standard “object color name” Z8102, and in descending order of temperature, red, magenta, light magenta, yellow-red, light yellow, light yellow, light yellow-green, light green, light green, In this embodiment, if the green, light blue-green, dark blue-green, bluish gray, and blue are used, the upper cover 33 and the lower cover 64 of the power element unit 30 are red as shown in FIG.

また、上カバー33と下カバー34の中が、上から赤紫、薄い赤紫、黄赤、こい黄色となり、感温棒50の下カバー34と近接する部分が、上からうすい黄色、うすい黄緑、黄緑となり、感温棒50の上下中間部が上から緑、こい青緑、青みの灰色となり、感温棒50の下部が青と成った。   Further, the inside of the upper cover 33 and the lower cover 34 becomes reddish purple, light reddish purple, yellow red and light yellow from the top, and the portion close to the lower cover 34 of the temperature sensing rod 50 is light yellow and light yellow from above. It became green and yellowish green, and the upper and lower middle portions of the temperature sensing rod 50 became green, dark blue-green, and bluish gray from the top, and the lower portion of the temperature sensing rod 50 became blue.

このように、この実施形態では、作動流体は作動棒51内の中空部にも封入されており圧力が決まる気液界面は、小径部内にある。この場合、気相冷媒を検出する部分と内部の気液界面は、どちらも青の部分にあり温度差が実質的に無い。言い換えれば、感温棒の内部の気液界面と低圧冷媒と接する部分とでは、温度分布が出来ない。   Thus, in this embodiment, the working fluid is also sealed in the hollow portion in the working rod 51, and the gas-liquid interface in which the pressure is determined is in the small diameter portion. In this case, the portion for detecting the gas-phase refrigerant and the internal gas-liquid interface are both in the blue portion and there is substantially no temperature difference. In other words, temperature distribution is not possible at the gas-liquid interface inside the temperature sensing rod and the portion in contact with the low-pressure refrigerant.

また、ダイヤフラム32を駆動する気液界面56を持つ封入冷媒の圧力、つまり、上部圧力作動室35の圧力は、気液界面56が存在する感温棒50内部の温度により定まり、蒸発器6の冷媒出口から圧縮機8の冷媒入口へと向かう部分に介在される気相冷媒(低圧冷媒)の温度により、正確に弁体14の開閉応答を行うことが出来る。このため検出誤差が少なくなる。   Further, the pressure of the enclosed refrigerant having the gas-liquid interface 56 for driving the diaphragm 32, that is, the pressure in the upper pressure working chamber 35 is determined by the temperature inside the temperature sensing rod 50 where the gas-liquid interface 56 exists, and the evaporator 6 The opening / closing response of the valve body 14 can be accurately performed by the temperature of the gas-phase refrigerant (low-pressure refrigerant) interposed in the portion from the refrigerant outlet to the refrigerant inlet of the compressor 8. For this reason, detection errors are reduced.

また、感温棒50は、金属材料の中では熱伝達率の低いステンレスにより作られ、感温棒50内部側の気液界面56を持つ封入冷媒を収納する筒状の空間55に比べて、感温棒50の壁面の肉厚を大きくとっている。これにより、上記低圧冷媒の温度変化に対する熱伝達を遅らせるのに必要な時定数を持たせている。   In addition, the temperature sensing rod 50 is made of stainless steel having a low heat transfer coefficient among metal materials, and compared with a cylindrical space 55 that contains an enclosed refrigerant having a gas-liquid interface 56 inside the temperature sensing rod 50. The wall thickness of the temperature sensing rod 50 is increased. Thus, a time constant necessary for delaying heat transfer with respect to the temperature change of the low-pressure refrigerant is provided.

このように、この実施形態では、内部に活性炭等を封入する必要が無く、コスト、工数を削減することができる一方で、感温棒50内に封入冷媒の気液界面56を持たせることで、必要な時定数を確保しても、定常時の温度の誤検知を生じることがない。   As described above, in this embodiment, it is not necessary to enclose activated carbon or the like in the inside, and the cost and man-hour can be reduced. On the other hand, by providing the gas-liquid interface 56 of the encapsulated refrigerant in the temperature sensing rod 50. Even if the necessary time constant is secured, there is no possibility of erroneous detection of temperature during steady state.

また、内部に活性炭などの吸着剤を用いていないため、気液界面56を持つ封入冷媒の量を調整することで、設定温度にて封入冷媒が加熱ガスとなるMOP特性を持たせることができる。   In addition, since no adsorbent such as activated carbon is used inside, by adjusting the amount of the enclosed refrigerant having the gas-liquid interface 56, it is possible to provide MOP characteristics in which the enclosed refrigerant becomes a heated gas at a set temperature. .

(第2実施形態)
次に、本発明の第2実施形態について説明する。図2は、この実施形態の膨張弁1の縦断面図である。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 2 is a longitudinal sectional view of the expansion valve 1 of this embodiment. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof will be omitted, and different configurations and features will be described.

この実施形態は、感温棒50の筒状の空間55の内部に金属より熱伝達率の低い樹脂層60を設けたものである。樹脂層60を設けたことにより、同一の熱伝達における時定数を持たせる感温棒50の肉厚を薄くすることが出来、膨張弁1の重量を軽くすることが出来る。また、同一の感温棒50の外径で、内部の冷媒封入空間となる筒状の空間55の体積を大きく確保することが出来るため、冷媒封入量を多くしても気液界面56が感温棒50内におさまる。よって、設定温度にて封入冷媒が全て加熱ガスとなるMOP特性の設定温度(液が無くなる温度)を高く設定することが出来、制御特性の自由度が増える。   In this embodiment, a resin layer 60 having a heat transfer coefficient lower than that of a metal is provided in the cylindrical space 55 of the temperature sensing rod 50. By providing the resin layer 60, the thickness of the temperature sensing rod 50 that has the same time constant in heat transfer can be reduced, and the weight of the expansion valve 1 can be reduced. Further, since the volume of the cylindrical space 55 serving as an internal refrigerant enclosure space can be secured with the same outer diameter of the temperature sensing rod 50, the gas-liquid interface 56 is felt even if the refrigerant enclosure amount is increased. It fits in the hot rod 50. Therefore, the set temperature of the MOP characteristic (the temperature at which the liquid disappears) in which the sealed refrigerant becomes all the heated gas at the set temperature can be set high, and the degree of freedom of the control characteristics increases.

さらに、ダイヤフラム32上部の封入空間35に対して感温棒50内部の空間が相対的に大きくなるため、ダイヤフラム32の上部からの熱影響も、より少なくすることができる。   Furthermore, since the space inside the temperature sensing rod 50 is relatively large with respect to the enclosed space 35 above the diaphragm 32, the thermal influence from the upper part of the diaphragm 32 can be further reduced.

一方、感温棒50内部に液冷媒量を増やすことが出来るため、ハンチングが発生し易い低圧冷媒の圧力が低い場合は、感温棒50内の液冷媒量も多くなる。これにより、感温棒50内の冷媒の熱容量も増加して、熱伝達の時定数も大きくなるため、低圧冷媒の圧力が低下しても、ハンチングが発生し難くなる。   On the other hand, the amount of liquid refrigerant in the temperature sensing rod 50 can be increased, so that the amount of liquid refrigerant in the temperature sensing rod 50 increases when the pressure of the low-pressure refrigerant that is likely to cause hunting is low. As a result, the heat capacity of the refrigerant in the temperature sensing rod 50 is increased and the time constant of heat transfer is increased, so that hunting is less likely to occur even if the pressure of the low-pressure refrigerant is reduced.

(第3実施形態)
次に、本発明の第3実施形態について説明する。図3は、この実施形態の膨張弁1の縦断面図である。上述した実施形態と異なる特徴部分を説明する。本実施形態は、感温棒50内側の樹脂層60に発泡樹脂を用いたもので、これにより第2実施形態よりさらに樹脂層を薄くすることができるとともに、感温棒50内部を発泡樹脂で直接成形することで、別途成形した樹脂材を挿入する場合に比較して、製造工程を簡略化することができる。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 3 is a longitudinal sectional view of the expansion valve 1 of this embodiment. Features different from the above-described embodiment will be described. In the present embodiment, a foamed resin is used for the resin layer 60 inside the temperature sensing rod 50, whereby the resin layer can be made thinner than in the second embodiment, and the inside of the temperature sensing rod 50 is made of a foamed resin. By directly molding, the manufacturing process can be simplified as compared with the case where a separately molded resin material is inserted.

また、感温棒50内の封入ガスは内部が気液二相状態となるため、液冷媒が有底の筒状の空間55の円筒空間底部55aに貯まる。このため、円筒空間底部55a周囲の壁面のステンレスからなる金属層を厚くすることにより、液冷媒への伝熱を適度に遅くすることができ、同一の時定数を持たせる感温棒50の外径を小さくできる。   Further, since the gas inside the temperature sensing rod 50 is in a gas-liquid two-phase state, the liquid refrigerant is stored in the cylindrical space bottom 55a of the bottomed cylindrical space 55. For this reason, by increasing the thickness of the metal layer made of stainless steel on the wall surface around the cylindrical space bottom 55a, the heat transfer to the liquid refrigerant can be moderately slowed, and the outside of the temperature sensing rod 50 having the same time constant. The diameter can be reduced.

換言すれば、感温棒50の筒状の空間55の前記弁体14側である下側に、下側の内径が上側の内径よりも小さくなっている円筒空間底部55aを有し、筒状の空間55は円筒空間上部55bと、円筒空間底部55aとからなる。そして、感温棒50の壁面の肉厚は、前記円筒空間底部55aの周囲の方が前記円筒空間上部55bの周囲の方よりも大きくなっている。したがって、気液界面56が円筒空間底部55a内に存在することで、感温棒50の壁面の肉厚による熱伝達の時定数を更に大きくすることが出来る。   In other words, the cylindrical space 55 of the temperature sensing rod 50 has a cylindrical space bottom portion 55a whose lower inner diameter is smaller than the upper inner diameter on the lower side, which is the valve body 14 side, and has a cylindrical shape. The space 55 includes a cylindrical space upper portion 55b and a cylindrical space bottom portion 55a. The wall thickness of the temperature sensing rod 50 is greater at the periphery of the cylindrical space bottom 55a than at the periphery of the cylindrical space upper portion 55b. Therefore, since the gas-liquid interface 56 exists in the cylindrical space bottom 55a, the time constant of heat transfer due to the wall thickness of the temperature sensing rod 50 can be further increased.

本発明の第1実施形態における膨張弁の縦断面図。The longitudinal cross-sectional view of the expansion valve in 1st Embodiment of this invention. 本発明の第2実施形態における膨張弁の縦断面図。The longitudinal cross-sectional view of the expansion valve in 2nd Embodiment of this invention. 本発明の第3実施形態における膨張弁の縦断面図。The longitudinal cross-sectional view of the expansion valve in 3rd Embodiment of this invention. 上記第1実施形態における膨張弁の温度分布特性図。The temperature distribution characteristic view of the expansion valve in the said 1st Embodiment. 従来のタイプ1における膨張弁の縦断面図。The longitudinal cross-sectional view of the expansion valve in the conventional type 1. FIG. 従来のタイプ2における膨張弁の縦断面図。The longitudinal cross-sectional view of the expansion valve in the conventional type 2. FIG. 従来のタイプ1における膨張弁の温度分布特性図。The temperature distribution characteristic view of the expansion valve in the conventional type 1. FIG.

符号の説明Explanation of symbols

1…膨張弁
2…弁本体
4…凝縮器
6…蒸発器
7…第1の通路
8…圧縮機
9…第2の通路
11…オリフィス
12…弁座
13…弁部材
14…弁体
30…パワーエレメント部
32…ダイヤフラム
35…上部圧力作動室
36…下部圧力作動室
50…感温棒
51…作動棒
50、51…弁体駆動棒
55…筒状の空間
55a…円筒空間底部
55b…円筒空間上部
56…気液界面
60…樹脂層
DESCRIPTION OF SYMBOLS 1 ... Expansion valve 2 ... Valve body 4 ... Condenser 6 ... Evaporator 7 ... 1st channel | path 8 ... Compressor 9 ... 2nd channel | path 11 ... Orifice 12 ... Valve seat 13 ... Valve member 14 ... Valve body 30 ... Power Element part 32 ... Diaphragm 35 ... Upper pressure working chamber 36 ... Lower pressure working chamber 50 ... Temperature sensing rod 51 ... Actuating rod 50, 51 ... Valve element driving rod 55 ... Cylindrical space 55a ... Cylindrical space bottom 55b ... Cylindrical space upper part 56 ... Gas-liquid interface 60 ... Resin layer

Claims (10)

圧縮機(8)からの液冷媒が通る第1の通路(7)、及び蒸発器(6)から前記圧縮機(8)に向う気相冷媒が通る第2の通路(9)を有する弁本体(2)と、
前記第1の通路(7)中に設けられるオリフィス(11)と、
該オリフィス(11)を通過する冷媒量を調節する弁体(14)と、
前記弁本体(2)に設けられ上下の圧力差により作動するダイヤフラム(32)を有するパワーエレメント部(30)と、
該パワーエレメント部(30)内において前記ダイヤフラム(32)の上部に形成され封入冷媒が封入された上部圧力作動室(35)と、前記ダイヤフラム(32)の下部に形成され前記第2の通路(9)と連通する下部圧力作動室(36)と、
前記ダイヤフラム(32)の変位と共に変位し、一端上側が前記ダイヤフラム(32)に接し、他端下側が前記弁体(14)を駆動し、内部に筒状の空間(55)を有する感温棒(50)を備え、
前記感温棒(50)の前記筒状の空間(55)は前記ダイヤフラム(32)を貫通して前記上部圧力作動室(35)と連通しており前記筒状の空間(55)内に前記封入冷媒の気液界面(56)が存在することを特徴とする膨張弁。
A valve body having a first passage (7) through which liquid refrigerant from the compressor (8) passes, and a second passage (9) through which vapor-phase refrigerant from the evaporator (6) toward the compressor (8) passes. (2) and
An orifice (11) provided in the first passage (7);
A valve body (14) for adjusting the amount of refrigerant passing through the orifice (11);
A power element portion (30) having a diaphragm (32) provided on the valve body (2) and operated by a pressure difference between the upper and lower sides;
In the power element portion (30), an upper pressure working chamber (35) formed at the upper portion of the diaphragm (32) and filled with an enclosed refrigerant, and a second passage (formed at the lower portion of the diaphragm (32)). 9) a lower pressure working chamber (36) in communication with
A temperature sensing rod that is displaced along with the displacement of the diaphragm (32), one end of which is in contact with the diaphragm (32), the other end is driven by the valve body (14), and a cylindrical space (55) is provided inside. (50)
The cylindrical space (55) of the temperature sensing rod (50) passes through the diaphragm (32) and communicates with the upper pressure working chamber (35), and the tubular space (55) An expansion valve characterized by the presence of a gas-liquid interface (56) of the enclosed refrigerant.
前記感温棒(50)はアルミニウム及び銅よりも熱伝導率の低い金属製であることを特徴とする請求項1記載の膨張弁。 The expansion valve according to claim 1, wherein the temperature sensing rod (50) is made of a metal having a lower thermal conductivity than aluminum and copper. 前記アルミニウム及び銅よりも熱伝導率の低い金属は、ステンレスであることを特徴とする請求項2記載の膨張弁。 The expansion valve according to claim 2, wherein the metal having a lower thermal conductivity than aluminum and copper is stainless steel. 前記弁本体(2)内の前記第2の通路(9)の下面から前記弁本体(2)上面までの範囲を低圧冷媒流路領域としたとき、前記封入冷媒は、0℃から40℃の範囲にて、前記気液界面(56)の位置が、好ましくは前記感温棒(50)の前記筒状の空間(55)内、または、更に好ましくは前記低圧冷媒流路領域内となる量の前記封入冷媒が、前記筒状の空間(55)内に封入されていることを特徴とする請求項1ないし3のうちいずれか一項に記載の膨張弁。   When the range from the lower surface of the second passage (9) in the valve main body (2) to the upper surface of the valve main body (2) is a low-pressure refrigerant flow region, the enclosed refrigerant is 0 ° C to 40 ° C. In such a range, the amount of the gas-liquid interface (56) is preferably in the cylindrical space (55) of the temperature sensing rod (50), or more preferably in the low-pressure refrigerant flow path region. The expansion valve according to any one of claims 1 to 3, wherein the sealed refrigerant is sealed in the cylindrical space (55). 前記感温棒(50)の前記筒状の空間(55)の周囲に、前記感温棒(50)の壁面が取り巻いており、前記筒状の空間(55)の内径に比べて、前記感温棒(50)の壁面の肉厚の方が大きいことを特徴とする請求項1ないし4のうちいずれか一項に記載の膨張弁。   A wall surface of the temperature sensing rod (50) is surrounded around the cylindrical space (55) of the temperature sensing rod (50), and the sensitivity is larger than the inner diameter of the cylindrical space (55). The expansion valve according to any one of claims 1 to 4, characterized in that the wall thickness of the warm rod (50) is greater. 前記感温棒(50)の前記筒状の空間(55)の内壁に、前記感温棒(50)の材質より熱伝達率の低い低熱伝達率層(60)を設けたことを特徴とする請求項1ないし5のうちいずれか一項に記載の膨張弁。   A low heat transfer coefficient layer (60) having a heat transfer coefficient lower than that of the material of the temperature sensing rod (50) is provided on the inner wall of the cylindrical space (55) of the temperature sensing rod (50). The expansion valve according to any one of claims 1 to 5. 前記低熱伝達率層は、樹脂層(60)からなることを特徴とする請求項6に記載の膨張弁。   The expansion valve according to claim 6, wherein the low heat transfer coefficient layer comprises a resin layer (60). 前記感温棒(50)の前記筒状の空間(55)の前記弁体(14)側である下側に、下側の内径が上側の内径よりも小さくなっている円筒空間底部(55a)を有し、前記筒状の空間(55)は円筒空間上部(55b)と、前記円筒空間底部(55a)とからなり、前記感温棒(50)の壁面の肉厚は、前記円筒空間底部(55a)の周囲の方が前記円筒空間上部(55b)の周囲の方よりも大きいことを特徴とする請求項1ないし7のうちいずれか一項に記載の膨張弁。   A cylindrical space bottom (55a) having a lower inner diameter smaller than an upper inner diameter on the lower side, which is the valve body (14) side, of the cylindrical space (55) of the temperature sensing rod (50). The cylindrical space (55) includes a cylindrical space upper part (55b) and a cylindrical space bottom part (55a), and the wall thickness of the temperature sensing rod (50) is the bottom part of the cylindrical space. The expansion valve according to any one of claims 1 to 7, wherein the circumference of (55a) is larger than the circumference of the upper cylindrical space (55b). 0℃から、40℃の範囲にて、前記気液界面(56)の位置が前記円筒空間底部(55a)内となる量の前記封入冷媒が、前記筒状の空間(55)内に封入されていることを特徴とする請求項8に記載の膨張弁。   In the range of 0 ° C. to 40 ° C., the amount of the enclosed refrigerant in which the position of the gas-liquid interface (56) is in the cylindrical space bottom (55a) is enclosed in the cylindrical space (55). The expansion valve according to claim 8. 前記感温棒(50)内側の前記樹脂層(60)に発泡樹脂を用いたことを特徴とする請求項7に記載の膨張弁。   The expansion valve according to claim 7, wherein a foamed resin is used for the resin layer (60) inside the temperature sensing rod (50).
JP2008196314A 2008-07-30 2008-07-30 Expansion valve Expired - Fee Related JP5071295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196314A JP5071295B2 (en) 2008-07-30 2008-07-30 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196314A JP5071295B2 (en) 2008-07-30 2008-07-30 Expansion valve

Publications (2)

Publication Number Publication Date
JP2010031998A true JP2010031998A (en) 2010-02-12
JP5071295B2 JP5071295B2 (en) 2012-11-14

Family

ID=41736705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196314A Expired - Fee Related JP5071295B2 (en) 2008-07-30 2008-07-30 Expansion valve

Country Status (1)

Country Link
JP (1) JP5071295B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133577A (en) * 2008-12-02 2010-06-17 Denso Corp Expansion valve
WO2013124936A1 (en) * 2012-02-20 2013-08-29 株式会社デンソー Expansion valve
JP2013185753A (en) * 2012-03-08 2013-09-19 Fuji Koki Corp Expansion valve
JP2013195003A (en) * 2012-03-21 2013-09-30 Fuji Koki Corp Expansion valve
KR101572574B1 (en) 2010-08-12 2015-12-01 한온시스템 주식회사 Expansion valve and air conditioner for vehicle having the same
WO2016143347A1 (en) * 2015-03-11 2016-09-15 株式会社デンソー Expansion valve device
EP3611445A1 (en) * 2017-04-13 2020-02-19 Zhejiang Sanhua Automotive Components Co., Ltd. Thermal expansion valve
JP2020060356A (en) * 2018-10-12 2020-04-16 株式会社鷺宮製作所 Temperature type expansion valve, and refrigeration cycle system
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863934B2 (en) * 2018-07-10 2021-04-21 株式会社鷺宮製作所 Temperature sensitive control valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159324A (en) * 1995-12-14 1997-06-20 Fuji Koki:Kk Expansion valve
JPH1089810A (en) * 1996-09-12 1998-04-10 Fuji Koki:Kk Expansion valve
JP2000203251A (en) * 1999-01-12 2000-07-25 Zexel Corp Installing structure of cooling unit
JP2001033123A (en) * 1999-07-19 2001-02-09 Fuji Koki Corp Thermal expansion valve
JP2002054861A (en) * 2000-08-10 2002-02-20 Fuji Koki Corp Thermostatic expansion valve
JP2005156046A (en) * 2003-11-27 2005-06-16 Fuji Koki Corp Expansion valve
JP2005164208A (en) * 2003-12-05 2005-06-23 Fuji Koki Corp Expansion valve
JP2008101881A (en) * 2006-10-20 2008-05-01 Denso Corp Pressure control valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159324A (en) * 1995-12-14 1997-06-20 Fuji Koki:Kk Expansion valve
JPH1089810A (en) * 1996-09-12 1998-04-10 Fuji Koki:Kk Expansion valve
JP2000203251A (en) * 1999-01-12 2000-07-25 Zexel Corp Installing structure of cooling unit
JP2001033123A (en) * 1999-07-19 2001-02-09 Fuji Koki Corp Thermal expansion valve
JP2002054861A (en) * 2000-08-10 2002-02-20 Fuji Koki Corp Thermostatic expansion valve
JP2005156046A (en) * 2003-11-27 2005-06-16 Fuji Koki Corp Expansion valve
JP2005164208A (en) * 2003-12-05 2005-06-23 Fuji Koki Corp Expansion valve
JP2008101881A (en) * 2006-10-20 2008-05-01 Denso Corp Pressure control valve

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133577A (en) * 2008-12-02 2010-06-17 Denso Corp Expansion valve
JP4678551B2 (en) * 2008-12-02 2011-04-27 株式会社デンソー Expansion valve
KR101572574B1 (en) 2010-08-12 2015-12-01 한온시스템 주식회사 Expansion valve and air conditioner for vehicle having the same
WO2013124936A1 (en) * 2012-02-20 2013-08-29 株式会社デンソー Expansion valve
JP2013170734A (en) * 2012-02-20 2013-09-02 Denso Corp Expansion valve
US9726407B2 (en) 2012-02-20 2017-08-08 Denso Corporation Expansion valve for a refrigeration cycle
JP2013185753A (en) * 2012-03-08 2013-09-19 Fuji Koki Corp Expansion valve
JP2013195003A (en) * 2012-03-21 2013-09-30 Fuji Koki Corp Expansion valve
JP2016169893A (en) * 2015-03-11 2016-09-23 株式会社デンソー Expansion valve device
WO2016143347A1 (en) * 2015-03-11 2016-09-15 株式会社デンソー Expansion valve device
EP3611445A1 (en) * 2017-04-13 2020-02-19 Zhejiang Sanhua Automotive Components Co., Ltd. Thermal expansion valve
EP3611445A4 (en) * 2017-04-13 2021-01-13 Zhejiang Sanhua Automotive Components Co., Ltd. Thermal expansion valve
US11326816B2 (en) 2017-04-13 2022-05-10 Zhejiang Sanhua Automotive Components Co., Ltd. Thermal expansion valve
JP2020060356A (en) * 2018-10-12 2020-04-16 株式会社鷺宮製作所 Temperature type expansion valve, and refrigeration cycle system
JP7015769B2 (en) 2018-10-12 2022-02-03 株式会社鷺宮製作所 Thermal expansion valve and refrigeration cycle system equipped with it
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer
CN115751782B (en) * 2022-12-15 2023-09-12 徐州市三禾自动控制设备有限公司 Refrigerating plant for fungus class freezer

Also Published As

Publication number Publication date
JP5071295B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5071295B2 (en) Expansion valve
US7222502B2 (en) Expansion valve
JP2011032916A (en) Control valve
JP2006266660A (en) Expansion device
JP2008014628A (en) Temperature expansion valve
JPH0571860B2 (en)
JPH06307740A (en) Temperature expansion valve
KR100776049B1 (en) Thermostatic expansion valve
JP3785229B2 (en) Expansion valve
JP3995828B2 (en) Temperature expansion valve
JP2008138812A (en) Differential pressure valve
US6415985B1 (en) Thermal expansion valve
JP4678551B2 (en) Expansion valve
JP2007139209A (en) Pressure control valve for refrigerating cycle
JP2012229886A (en) Temperature expansion valve
JP4484656B2 (en) Temperature-sensitive control valve and refrigeration cycle device
JP2007322058A (en) Pressure control valve
JP5250446B2 (en) Temperature expansion valve
JP2010145027A (en) Expansion valve and refrigerating cycle
JP5499254B2 (en) Control valve for variable capacity compressor
JP5606048B2 (en) Expansion valve
JP5292585B2 (en) Control valve for variable capacity compressor
JP4081295B2 (en) Expansion valve
JPH0979705A (en) Expansion valve
JP6611533B2 (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R151 Written notification of patent or utility model registration

Ref document number: 5071295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees