JP2012229886A - Temperature expansion valve - Google Patents

Temperature expansion valve Download PDF

Info

Publication number
JP2012229886A
JP2012229886A JP2011099336A JP2011099336A JP2012229886A JP 2012229886 A JP2012229886 A JP 2012229886A JP 2011099336 A JP2011099336 A JP 2011099336A JP 2011099336 A JP2011099336 A JP 2011099336A JP 2012229886 A JP2012229886 A JP 2012229886A
Authority
JP
Japan
Prior art keywords
valve
port
guide hole
pressure
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011099336A
Other languages
Japanese (ja)
Other versions
JP5550601B2 (en
Inventor
Hiromasa Takada
裕正 高田
Tadaaki Ikeda
忠顕 池田
Naoto Bessho
直登 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2011099336A priority Critical patent/JP5550601B2/en
Priority to KR1020120027219A priority patent/KR101352205B1/en
Priority to CN201210122352.5A priority patent/CN102759234B/en
Publication of JP2012229886A publication Critical patent/JP2012229886A/en
Application granted granted Critical
Publication of JP5550601B2 publication Critical patent/JP5550601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature expansion valve which can be used for a large-capacity refrigeration cycle, and in which pressure balance is not disrupted with a simple structure, and variation in overheat degree setting values is reduced even against variation of primary pressure.SOLUTION: A columnar needle part 15b to be inserted into a guide hole 14 is formed on a valve body 15. The outer diameter of the needle part 15b is made equal to the inner diameter of a valve port 13. The end of the needle part 15b is connected to a diaphragm 23 via a dolly block 17 in the uniform pressure chamber 22a of a diaphragm device 2. A sealing member 6 is attached to the needle part 15b. The sealing member 6 is constituted of a disk shaped packing 61 and a leaf spring 62. A rim part 61a is formed by bending and deforming the outer periphery of the packing 61 to the valve port 13 side. The rim part 61a is pressed to the inner peripheral surface side of the guide hole 14 by the leaf spring 62. By the sealing member 6, a part between the uniform pressure chamber 22a and a first port 11 is sealed.

Description

本発明は、冷凍サイクルにおいて蒸発器の出口側温度に感応して弁開度を自動調整して、冷凍サイクルの過熱度を制御するために用いる温度膨張弁に関する。   The present invention relates to a temperature expansion valve used for controlling the degree of superheat of a refrigeration cycle by automatically adjusting a valve opening degree in response to an outlet side temperature of an evaporator in a refrigeration cycle.

従来、温度膨張弁として、例えば特開平5−340479号公報(特許文献1)に開示されたものがある。この特許文献1の温度膨張弁は、蒸発器の出口側配管の温度を感知する感温筒を備え、この感温筒の圧力をダイヤフラム装置に及ぼしている。この温度膨張弁の凝縮器側の一次側配管からの冷媒を弁ポートを介して二次側配管に流出させるとき、この弁ポートの開度を弁体によって制御する。   Conventionally, as a temperature expansion valve, for example, there is one disclosed in JP-A-5-340479 (Patent Document 1). The temperature expansion valve of Patent Document 1 includes a temperature sensing cylinder that senses the temperature of the outlet side piping of the evaporator, and exerts the pressure of the temperature sensing cylinder on the diaphragm device. When the refrigerant from the primary side pipe on the condenser side of the temperature expansion valve flows out to the secondary side pipe through the valve port, the opening degree of the valve port is controlled by the valve body.

ダイヤフラム装置は、ダイヤフラムによって受圧室と均圧室とを区画し、受圧室に対して感温筒を連通している。また、常時閉方向に付勢された弁体に対してロッドを突き当て、このロッドを当金を介してダイヤフラムに連結している。ロッドはブッシュに支持されており、均圧室に対する一次圧力の影響を防止するために、ブッシュとロッドとの隙間を、スプリングで押圧されるパッキンによりシールするようにしている。   In the diaphragm device, a pressure receiving chamber and a pressure equalizing chamber are partitioned by the diaphragm, and a temperature sensing cylinder is communicated with the pressure receiving chamber. Further, a rod is abutted against the valve element normally biased in the closing direction, and this rod is connected to the diaphragm via a metal abutment. The rod is supported by the bush, and the gap between the bush and the rod is sealed by a packing pressed by a spring in order to prevent the influence of the primary pressure on the pressure equalizing chamber.

特開平5−340479号公報JP-A-5-340479

特許文献1のように、ブッシュとロッドの隙間をパッキンとスプリングでシールする構造では、中能力から大能力の冷凍サイクルに用いられる温度膨張弁に適用するには改良の余地がある。すなわち、ロッドに作用する一次圧の影響をなくす為にはロッドの軸径を弁口径と同等にする必要があり、中能力品以上の場合、弁口径が大きくなるためロッドの軸径も大きくなってしまう。このため、一次圧力と蒸発圧力との差圧に打ち勝つような大きな荷重のバネ(スプリング)が必要となり、バネの線径も太くなり、弁ハウジングを大型化する必要があった。このため、中能力以上の冷凍サイクルでは、弁ハウジングの過度な大型化を避けるため、一次圧力の影響を受けやすい構造であるか、上記のような従来の構造で一次圧力の影響をなくすため、別途、均圧流路を設けるなど、構造が複雑になってしまい高コスト化していた。   As in Patent Document 1, the structure in which the gap between the bush and the rod is sealed with a packing and a spring has room for improvement when applied to a temperature expansion valve used in a refrigeration cycle having a medium capacity to a large capacity. In other words, in order to eliminate the influence of the primary pressure acting on the rod, it is necessary to make the shaft diameter of the rod equal to the valve port diameter. End up. For this reason, a spring (spring) having a large load that can overcome the differential pressure between the primary pressure and the evaporation pressure is required, the wire diameter of the spring is increased, and the valve housing needs to be enlarged. For this reason, in the refrigeration cycle of medium capacity or more, in order to avoid excessive enlargement of the valve housing, it is a structure that is easily influenced by the primary pressure, or in order to eliminate the influence of the primary pressure in the conventional structure as described above, Separately, a pressure equalizing flow path is provided, resulting in a complicated structure and high cost.

本発明は、大能力の冷凍サイクルに用いることができ、簡単な構造で圧力バランスの崩れない、一次圧力の変動に対しても過熱度設定値の変動の少ない温度膨張弁を提供することを課題とする。   It is an object of the present invention to provide a temperature expansion valve that can be used for a large-capacity refrigeration cycle and that does not lose the pressure balance with a simple structure and that has a small change in superheat degree setting value even with respect to a change in primary pressure. And

請求項1の温度膨張弁は、冷凍サイクルの凝縮器と蒸発器との間に配管接続され、前記蒸発器の出口側配管に設けられる感温筒からの圧力と前記蒸発器の蒸発圧力との差圧に応じて、前記凝縮器側の一次配管から前記蒸発器側の二次配管に冷媒を流す弁ポートの開度を制御するダイヤフラム装置を備えた温度膨張弁であって、前記一次配管に接続される第1ポートと前記二次配管に接続される第2ポートとが前記弁ポートを挟んで形成され、前記第1ポートが側部に開口されるガイド孔であって前記弁ポート側を一端にして該弁ポートの中心軸を軸線とする円筒状のガイド孔が形成され、前記蒸発器の出口側配管に連通される均圧路が形成された弁ハウジングと、前記ガイド孔内に前記軸線方向に移動自在に収容され、前記弁ポートに対して前記第2ポート側に位置して前記弁ポートを開閉する弁部と、前記ガイド孔に嵌挿される円柱状のニードル部とを有し、前記ニードル部の前記弁部と反対側が前記ダイヤフラム装置のダイヤフラムに連結される弁体と、前記弁体を前記ダイヤフラム側に付勢する過熱度設定部と、前記弁体のニードル部に設けられて前記ガイド孔の内周面に接触する板状のパッキンと該パッキンを前記ガイド孔の内周面側に付勢する板ばねとからなるシール部材と、を備え、前記ダイヤフラム装置は、前記弁ハウジングの前記ガイド孔の端部に取り付けられるとともに、前記均圧路を介して前記蒸発器の出口側配管の前記蒸発圧力が導入される均圧室を有し、前記シール部材の前記パッキンが、前記ニードル部回りに環状に形成されるとともに、該パッキンは、その外周端を軸線方向に対して前記弁ポート側に屈曲変形してなるリム部を形成し、前記板バネの弾性力により前記パッキンの前記リム部を前記ガイド孔の内周面に押圧することで、該シール部材により前記均圧室と前記第1ポート間を封止するようにしたことを特徴とする。   The temperature expansion valve according to claim 1 is connected between a condenser and an evaporator of a refrigeration cycle, and is connected to a pressure from a temperature sensing cylinder provided in an outlet side pipe of the evaporator and an evaporation pressure of the evaporator. A temperature expansion valve provided with a diaphragm device for controlling an opening degree of a valve port for flowing a refrigerant from a primary pipe on the condenser side to a secondary pipe on the evaporator side according to a differential pressure, A first port to be connected and a second port connected to the secondary pipe are formed across the valve port, and the first port is a guide hole opened on a side portion, and the valve port side is A cylindrical guide hole having an axial line as a central axis of the valve port at one end is formed, a valve housing in which a pressure equalizing passage communicating with an outlet side pipe of the evaporator is formed, and the guide hole in the guide hole It is accommodated so as to be movable in the axial direction, and with respect to the valve port A valve portion that opens and closes the valve port and is located on the second port side, and a cylindrical needle portion that is fitted into the guide hole, and the side of the needle portion that is opposite to the valve portion of the diaphragm device A valve body connected to the diaphragm; a superheat degree setting portion that biases the valve body toward the diaphragm; and a plate-like packing that is provided on the needle portion of the valve body and contacts the inner peripheral surface of the guide hole. And a sealing member comprising a leaf spring that urges the packing toward the inner peripheral surface side of the guide hole, and the diaphragm device is attached to the end of the guide hole of the valve housing, and A pressure equalizing chamber into which the evaporation pressure of the outlet side pipe of the evaporator is introduced via a pressure path, and the packing of the seal member is formed in an annular shape around the needle portion, A rim portion is formed by bending and deforming the outer peripheral end toward the valve port side with respect to the axial direction, and the rim portion of the packing is pressed against the inner peripheral surface of the guide hole by the elastic force of the leaf spring. The sealing member seals the pressure equalizing chamber and the first port.

請求項2の温度膨張弁は、請求項1に記載の温度膨張弁であって、前記ニードル部の外径が前記弁ポートの内径と同寸法であることを特徴とする。   A temperature expansion valve according to a second aspect is the temperature expansion valve according to the first aspect, wherein an outer diameter of the needle portion is the same as an inner diameter of the valve port.

請求項3の温度膨張弁は、請求項1または2に記載の温度膨張弁であって、前記シール部材の前記パッキンが、ポリテトラフルオロエチレン(PTFE)素材であることを特徴とする。   The temperature expansion valve according to claim 3 is the temperature expansion valve according to claim 1 or 2, wherein the packing of the seal member is made of a polytetrafluoroethylene (PTFE) material.

請求項1の温度膨張弁によれば、ダイヤフラム装置に連結する弁体のニードル部をガイド孔内に嵌挿するようにした温度膨張弁において、弁体のニードル部回りに環状に形成したパッキンにより、その外周端を軸線方向に対して弁ポート側に屈曲変形してなるリム部を形成し、板バネの弾性力によりこのリム部をガイド孔の内周面に押圧することで、ダイヤフラム装置側の均圧室と一次圧力側の第1ポート間を封止するようにしたので、簡単な構造で圧力バランスの崩れない、一次圧力の変動に対しても過熱度設定値の変動を少なくすることができる。   According to the temperature expansion valve of claim 1, in the temperature expansion valve in which the needle portion of the valve body connected to the diaphragm device is fitted into the guide hole, the packing is formed in an annular shape around the needle portion of the valve body. The rim portion formed by bending and deforming the outer peripheral end toward the valve port side with respect to the axial direction is formed, and the rim portion is pressed against the inner peripheral surface of the guide hole by the elastic force of the leaf spring, so that the diaphragm device side Since the pressure equalization chamber and the first port on the primary pressure side are sealed, the pressure balance is not disrupted with a simple structure. Can do.

請求項2の温度膨張弁によれば、請求項1の効果に加えて、弁体のニードル部の外径と弁ポートの内径とを同寸法としたので、一次圧力の変動が弁体に与える影響を低減することができる。   According to the temperature expansion valve of the second aspect, in addition to the effect of the first aspect, since the outer diameter of the needle portion of the valve body and the inner diameter of the valve port are made the same size, the fluctuation of the primary pressure is given to the valve body. The influence can be reduced.

請求項3の温度膨張弁によれば、請求項1または2の効果に加えて、パッキンをポリテトラフルオロエチレン素材としたので、過熱度制御時のヒステリシスを押さえることができる。   According to the temperature expansion valve of the third aspect, in addition to the effect of the first or second aspect, since the packing is made of a polytetrafluoroethylene material, it is possible to suppress the hysteresis during the superheat degree control.

本発明の実施形態の温度膨張弁の縦断面図である。It is a longitudinal cross-sectional view of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁の要部拡大断面図である。It is a principal part expanded sectional view of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の実施形態の温度膨張弁のパッキン及び板バネの組み付け前の状態を示す図である。It is a figure which shows the state before the assembly | attachment of the packing and leaf | plate spring of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁のパッキン及び板バネの組み付け状態の形状を示す図である。It is a figure which shows the shape of the assembly state of the packing and leaf | plate spring of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁を適用した冷凍サイクルの要部を示す図である。It is a figure which shows the principal part of the refrigerating cycle to which the temperature expansion valve of embodiment of this invention is applied.

次に、本発明の温度膨張弁の実施形態を図面を参照して説明する。図1は実施形態の温度膨張弁の縦断面図、図2は実施形態の温度膨張弁の要部拡大断面図、図3は実施形態の温度膨張弁のシール用パッキン及び板バネの組み付け前の状態を示す図、図4は実施形態の温度膨張弁のシール用パッキン及び板バネの組み付け状態を示す図、図5は実施形態の温度膨張弁を適用した冷凍サイクルの要部を示す図である。   Next, an embodiment of the temperature expansion valve of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of the temperature expansion valve of the embodiment, FIG. 2 is an enlarged sectional view of a main part of the temperature expansion valve of the embodiment, and FIG. 3 is a state before assembly of the seal packing and leaf spring of the temperature expansion valve of the embodiment FIG. 4 is a view showing an assembled state of the seal packing and leaf spring of the temperature expansion valve of the embodiment, and FIG. 5 is a view showing a main part of a refrigeration cycle to which the temperature expansion valve of the embodiment is applied. .

図5において、10は実施形態の温度膨張弁、20は圧縮機、30は凝縮器、40は蒸発器であり、これらは配管で環状に接続することにより冷凍サイクルを構成している。温度膨張弁10の一次側継手管1aは凝縮器30側の一次配管aに接続され、二次側継手管1bは蒸発器40側の二次配管bに接続されて、均圧管1cは蒸発器40の出口側配管cに接続されている。圧縮機20は冷媒を圧縮し、圧縮された冷媒は凝縮器30で凝縮液化され、一次側継手管1aを通して温度膨張弁10に流入される。温度膨張弁10は流入される冷媒を減圧(膨張)して二次側継手管1bから蒸発器40に流入させる。そして、蒸発器40は冷媒を蒸発気化し、圧縮機20に循環させる。蒸発器40の出口側配管cには温度膨張弁10の感温筒10Aが取り付けられている。この感温筒10Aには、例えば冷凍サイクルの冷媒と同じガス(及び液)が封入されており、この感温筒10Aはキャピラリチューブ10Bにより温度膨張弁10のダイヤフラム装置2に連結されている。   In FIG. 5, 10 is the temperature expansion valve of the embodiment, 20 is a compressor, 30 is a condenser, and 40 is an evaporator. These are connected in a ring shape by piping to constitute a refrigeration cycle. The primary side joint pipe 1a of the temperature expansion valve 10 is connected to the primary pipe a on the condenser 30 side, the secondary side joint pipe 1b is connected to the secondary pipe b on the evaporator 40 side, and the pressure equalizing pipe 1c is the evaporator. It is connected to 40 outlet side pipes c. The compressor 20 compresses the refrigerant, and the compressed refrigerant is condensed and liquefied by the condenser 30 and flows into the temperature expansion valve 10 through the primary side joint pipe 1a. The temperature expansion valve 10 depressurizes (expands) the inflowing refrigerant and causes the refrigerant to flow into the evaporator 40 from the secondary side joint pipe 1b. The evaporator 40 evaporates the refrigerant and circulates it through the compressor 20. A temperature sensing cylinder 10 </ b> A of the temperature expansion valve 10 is attached to the outlet side pipe c of the evaporator 40. The temperature sensing cylinder 10A is filled with, for example, the same gas (and liquid) as the refrigerant in the refrigeration cycle, and the temperature sensing cylinder 10A is connected to the diaphragm device 2 of the temperature expansion valve 10 by a capillary tube 10B.

図1に示すように、温度膨張弁10は、金属製の弁ハウジング1を有し、弁ハウジング1には、前記一次配管aに接続される第1ポート11と前記二次配管bに接続される第2ポート12が形成され、第1ポート11と第2ポート12との間に弁ポート13が形成されている。また、弁ハウジング1には、第1ポート11が側部に開口されるガイド孔14が形成されている。このガイド孔14は、弁ポート13側を一端にして弁ポート13の中心軸を軸線Lとする円筒状の形状をしており、弁ポート13と反対側は開口している。また、弁ハウジング1には、蒸発器40の出口側配管cに連通される均圧路22bが形成されている。さらに、弁ポート13の下部には軸線Lを軸とする略円筒形状の取付け孔16が形成されている。第1ポート11には一次側継手管1aが、第2ポート12には二次側継手管1bが、均圧路22bには均圧管1cがそれぞれ取り付けられている。   As shown in FIG. 1, the temperature expansion valve 10 has a metal valve housing 1, which is connected to the first port 11 connected to the primary pipe a and the secondary pipe b. A second port 12 is formed, and a valve port 13 is formed between the first port 11 and the second port 12. Further, the valve housing 1 is formed with a guide hole 14 in which the first port 11 is opened to the side. The guide hole 14 has a cylindrical shape with the valve port 13 side as one end and the central axis of the valve port 13 as the axis L, and the side opposite to the valve port 13 is open. Further, the valve housing 1 is formed with a pressure equalizing path 22 b communicating with the outlet side pipe c of the evaporator 40. Further, a substantially cylindrical mounting hole 16 having an axis L as an axis is formed in the lower portion of the valve port 13. A primary side joint pipe 1a is attached to the first port 11, a secondary side joint pipe 1b is attached to the second port 12, and a pressure equalization pipe 1c is attached to the pressure equalization path 22b.

弁ハウジング1のガイド孔14内には弁体15が配設されている。弁体15は、弁ポート13に対して第2ポート12側に位置する弁部15aと、ガイド孔14の内周面に対してクリアランスを有し、ガイド孔14内に嵌挿される円柱状のニードル部15bとを有している。これにより、弁体15はガイド孔14内に軸線L方向に移動自在に収容され、軸線L方向の移動により弁部15aが弁ポート13を開閉する。また、ニードル部15bの弁部15aと反対側の端部には、当金17が装着され、弁体15は当金17を介してダイヤフラム装置2のダイヤフラム23に連結されている。   A valve body 15 is disposed in the guide hole 14 of the valve housing 1. The valve body 15 has a clearance with respect to the valve portion 15 a located on the second port 12 side with respect to the valve port 13 and the inner peripheral surface of the guide hole 14, and has a cylindrical shape that is inserted into the guide hole 14. And a needle portion 15b. Accordingly, the valve body 15 is accommodated in the guide hole 14 so as to be movable in the axis L direction, and the valve portion 15a opens and closes the valve port 13 by the movement in the axis L direction. Further, the end of the needle portion 15b opposite to the valve portion 15a is fitted with a metal 17 and the valve body 15 is connected to the diaphragm 23 of the diaphragm device 2 via the metal 17.

弁ポート13の下部の取付け孔16には過熱度設定部3が取り付けられている。この過熱度設定部3は、外周に雄ねじを有する調整スピンドル31と、調整スピンドル31の中孔内に配設された調整ばね32と、調整ばね32の端部に配設されたリテーナ33とを備えている。調整スピンドル31は、雄ねじを取付け孔16の下部に形成された雌ねじに螺合されている。なお、調整スピンドル31はOリングが取り付けられており、弁ポート13と取付け孔16との間の気密性が保たれる。リテーナ33は、弁部15aの下部に形成されたボス部15a1に嵌合されている。そして、調整ばね32のばね力により、弁体15は弁ポート13を閉じる弁閉方向、すなわちダイヤフラム23側に付勢されている。なお、調整スピンドル31を回すことにより、調整ばね32による弁体15への付勢力が調整される。また、取付け孔16には、調整スピンドル31の脱落を防止する止め輪25が取り付けられている。   The superheat degree setting unit 3 is attached to the attachment hole 16 below the valve port 13. The superheat degree setting unit 3 includes an adjustment spindle 31 having an external thread on the outer periphery, an adjustment spring 32 disposed in the inner hole of the adjustment spindle 31, and a retainer 33 disposed at an end of the adjustment spring 32. I have. In the adjustment spindle 31, a male screw is screwed into a female screw formed in the lower portion of the mounting hole 16. Note that an O-ring is attached to the adjustment spindle 31, and the airtightness between the valve port 13 and the attachment hole 16 is maintained. The retainer 33 is fitted to a boss portion 15a1 formed at the lower portion of the valve portion 15a. The valve body 15 is urged toward the valve closing direction for closing the valve port 13, that is, toward the diaphragm 23 by the spring force of the adjustment spring 32. Note that the biasing force applied to the valve body 15 by the adjustment spring 32 is adjusted by turning the adjustment spindle 31. A retaining ring 25 that prevents the adjustment spindle 31 from falling off is attached to the attachment hole 16.

取付け孔16の下端部の開口周辺にはリング状の凹部161が形成され、さらにこの凹部161よりも軸線L方向の内側周囲には雌ねじ162が形成されている。凹部161内には、ポリテトラフルオロエチレン(PTFE)製のリング状の封止部材4が配設されており、取付け孔16の下端部内には蓋部材5が、その雄ねじを雌ねじに螺合することにより取り付けられている。なお、封止部材4の厚みは、取り付け前の部品としては凹部161の深さより厚く形成されており、蓋部材5を螺合することにより、封止部材4は僅かに押しつぶされて塑性変形し、凹部161内に固着される。   A ring-shaped recess 161 is formed around the opening at the lower end of the mounting hole 16, and a female screw 162 is formed around the inner side of the recess 161 in the axis L direction. A ring-shaped sealing member 4 made of polytetrafluoroethylene (PTFE) is disposed in the recess 161, and the lid member 5 is screwed into the female screw in the lower end portion of the mounting hole 16. It is attached by. In addition, the thickness of the sealing member 4 is formed to be thicker than the depth of the concave portion 161 as a component before attachment. By screwing the lid member 5, the sealing member 4 is slightly crushed and plastically deformed. , Fixed in the recess 161.

弁ハウジング1の上部にはダイヤフラム装置2が取り付けられている。ダイヤフラム装置2は、上蓋21と下蓋22によりケース体を構成しており、下蓋22の下部を弁ハウジング1の上端に螺合することにより、このダイヤフラム装置2はガイド孔14の端部に取り付けられている。また、上蓋21と下蓋22の間にはダイヤフラム23を備えており、上蓋21と下蓋22とからなるケース体内部は、このダイヤフラム23によって受圧室21aと均圧室22aとして区画されている。均圧室22aは、弁ハウジング1の前記均圧路22bを介して蒸発器40の出口側配管cに導通され、この均圧室22aには出口側配管cの蒸発圧力が導入される。   A diaphragm device 2 is attached to the upper portion of the valve housing 1. The diaphragm device 2 has a case body constituted by an upper lid 21 and a lower lid 22, and the diaphragm device 2 is fitted to the end of the guide hole 14 by screwing the lower portion of the lower lid 22 to the upper end of the valve housing 1. It is attached. Further, a diaphragm 23 is provided between the upper lid 21 and the lower lid 22, and the inside of the case body composed of the upper lid 21 and the lower lid 22 is partitioned by the diaphragm 23 as a pressure receiving chamber 21a and a pressure equalizing chamber 22a. . The pressure equalizing chamber 22a is electrically connected to the outlet side pipe c of the evaporator 40 via the pressure equalizing path 22b of the valve housing 1, and the evaporation pressure of the outlet side pipe c is introduced into the pressure equalizing chamber 22a.

受圧室21aは、キャピラリチューブ10Bによって感温筒10Aと接続されている。これにより、受圧室21aの内圧は、感温筒10Aによる感知温度に応じて変化する。そして、ダイヤフラム23は、受圧室21aと均圧室22aの圧力差に応じて変位し、この変位は、当金17によって弁体15に伝達される。   The pressure receiving chamber 21a is connected to the temperature sensing cylinder 10A by a capillary tube 10B. Thereby, the internal pressure of the pressure receiving chamber 21a changes according to the temperature sensed by the temperature sensing cylinder 10A. The diaphragm 23 is displaced according to the pressure difference between the pressure receiving chamber 21 a and the pressure equalizing chamber 22 a, and this displacement is transmitted to the valve body 15 by the metal 17.

すなわち、この温度膨張弁10は、蒸発器40の出口側配管cの感知温度が高くなると弁体部15aが弁ポート13を開くように作用し、出口側配管cの感知温度が低くなると弁ポート13を閉じるように作用する。また、蒸発器40における蒸発圧力が低くなると弁体部15aが弁ポート13を開くように作用し、蒸発圧力が高くなると弁体部15aが弁ポート13を閉じるように作用する。このようにして、感温筒10Aの感知温度と蒸発圧力との差圧に応じて、凝縮器側の一次配管aから蒸発器側の二次配管bに冷媒を流す弁ポート13の開度を制御し、冷凍サイクルの過熱度制御を行う。   That is, the temperature expansion valve 10 acts so that the valve body 15a opens the valve port 13 when the detected temperature of the outlet side pipe c of the evaporator 40 becomes higher, and when the detected temperature of the outlet side pipe c becomes lower. Acts to close 13. Further, when the evaporation pressure in the evaporator 40 becomes low, the valve body 15a acts to open the valve port 13, and when the evaporation pressure becomes high, the valve body 15a acts to close the valve port 13. In this way, the opening degree of the valve port 13 through which the refrigerant flows from the condenser-side primary pipe a to the evaporator-side secondary pipe b in accordance with the pressure difference between the temperature sensed by the temperature sensing cylinder 10A and the evaporation pressure. To control the degree of superheat of the refrigeration cycle.

図2に示すように、弁体15のニードル部15bの端部には、それぞれ円柱状の大径ボス部15b1、中径ボス部15b2及び小径ボス部15b3が形成されている。小径ボス部15b3が当金17の中央孔17aに嵌合することにより当金17がニードル部15bの端部に装着されている。   As shown in FIG. 2, a cylindrical large-diameter boss portion 15b1, a medium-diameter boss portion 15b2, and a small-diameter boss portion 15b3 are formed at the end of the needle portion 15b of the valve body 15, respectively. The small-diameter boss portion 15b3 is fitted into the central hole 17a of the gold 17 so that the gold 17 is attached to the end of the needle portion 15b.

ニードル部15bの中径ボス部15b2の周囲にはシール部材6が設けられている。シール部材6はポリテトラフルオロエチレン(PTFE)素材の円盤状(ドーナツ盤状)のパッキン61と、金属素材の円盤状(ドーナツ盤状)の板バネ62とで構成されており、パッキン61と板バネ62は、板バネ62を大径ボス部15b1側にして中径ボス部15b2に嵌め込まれている。   A seal member 6 is provided around the middle diameter boss portion 15b2 of the needle portion 15b. The seal member 6 includes a disc-like (donut disc-like) packing 61 made of polytetrafluoroethylene (PTFE) and a disc-like (donut disc-like) leaf spring 62 made of a metal material. The spring 62 is fitted in the medium diameter boss portion 15b2 with the leaf spring 62 facing the large diameter boss portion 15b1.

図3(A) に示すように、パッキン61は組み付け前の部品の状態では平板状である。また、板バネ62は、外周部が凹凸歯形状をしており多数の凸歯形状部62aを有している。この板バネ62は図3(B) に示すように組み付け前の部品の状態では、凸歯形状部62aの部分が僅かに屈曲した状態である。   As shown in FIG. 3A, the packing 61 has a flat plate shape in the state of the parts before assembly. Further, the leaf spring 62 has an uneven outer peripheral portion and a large number of convex tooth-shaped portions 62a. As shown in FIG. 3 (B), the leaf spring 62 is in a state where the convex tooth-shaped portion 62a is slightly bent in the state of the parts before assembly.

ニードル部15bの中径ボス部15b2には押え部材7が嵌合されている。押え部材7の大径ボス15b1側の端面には、リング状の突条7aが形成されている。また、大径ボス部15b1の端面には、上記突条7aに対向する位置に円状の凹部15b1−1が形成されている。そして、押え部材7の突条7aをパッキン61に押し当てた状態で、押え部材7の当金17側端部とニードル部15bの中径ボス15b2の端部とを溶接し、押え部材7がニードル部15bに固着されている。このように、シール部材6のパッキン61は、ニードル部15b回りに環状に形成されている。   The presser member 7 is fitted to the medium diameter boss portion 15b2 of the needle portion 15b. A ring-shaped protrusion 7a is formed on the end face of the holding member 7 on the large-diameter boss 15b1 side. Moreover, the circular recessed part 15b1-1 is formed in the end surface of the large diameter boss | hub part 15b1 in the position facing the said protrusion 7a. And in the state which pressed the protrusion 7a of the pressing member 7 against the packing 61, the end part of the holding member 7 side and the end part of the medium diameter boss | hub 15b2 of the needle part 15b are welded, and the pressing member 7 It is fixed to the needle portion 15b. Thus, the packing 61 of the seal member 6 is formed in an annular shape around the needle portion 15b.

上記のようにシール部材6をニードル部15bに取り付けた状態で、これらのアセンブリをガイド孔14内に嵌挿した組み付け状態では、図4に示すように、パッキン61は、その外周端をパッキン61の軸線L方向に対して弁ポート13側に屈曲変形してなるリム部61aを形成している。また、板バネ62は外周の凸歯形状部62aの部分がパッキン61のリム部61の内側で屈曲した状態となる。そして、板バネ62はその凸歯形状部62aの弾性力により、リム部61aをガイド孔14の内周面に押圧している。したがって、ニードル部15bとガイド孔14の内周面との間にクリアランスがあるが、均圧室22aと第1ポート1a間はシール部材6のパッキン61により完全に封止される。このように、シール部材6により、均圧管1cに導入される蒸発圧力と第1ポート11の一次圧力との差圧に対して、均圧室22aと第1ポート1a間で高いシール性が得られる。また、一次圧力が高くなっても、その圧力はパッキン61のリム部61aをガイド孔14の内周面側に押すように作用するので、高いシール性を保持できる。   With the seal member 6 attached to the needle portion 15b as described above, in the assembled state in which these assemblies are fitted and inserted into the guide holes 14, as shown in FIG. A rim portion 61a is formed by bending and deforming toward the valve port 13 with respect to the axis L direction. In addition, the leaf spring 62 is in a state where the outer peripheral convex-tooth shaped portion 62 a is bent inside the rim portion 61 of the packing 61. The leaf spring 62 presses the rim portion 61a against the inner peripheral surface of the guide hole 14 by the elastic force of the convex tooth-shaped portion 62a. Therefore, although there is a clearance between the needle portion 15b and the inner peripheral surface of the guide hole 14, the space between the pressure equalizing chamber 22a and the first port 1a is completely sealed by the packing 61 of the seal member 6. Thus, the sealing member 6 provides a high sealing performance between the pressure equalizing chamber 22a and the first port 1a with respect to the differential pressure between the evaporation pressure introduced into the pressure equalizing pipe 1c and the primary pressure of the first port 11. It is done. Even if the primary pressure increases, the pressure acts to push the rim portion 61a of the packing 61 toward the inner peripheral surface of the guide hole 14, so that high sealing performance can be maintained.

なお、板バネ62の多数の凸歯形状部62aは、パッキン61のリム部61aの内側から離間した位置で押圧するので、リム部61aが多角形形状とならないようにするためには、パッキン61は肉厚が0.3mm〜0.5mm程度が適している。なお、この厚みでポリ
テトラフルオロエチレン素材のパッキンを使用しているので、過熱度制御時のヒステリシスを、最大差圧が3.0MPaでも2℃以下に保つことができた。
In addition, since many convex-tooth shaped parts 62a of the leaf | plate spring 62 press in the position spaced apart from the inner side of the rim | limb part 61a of the packing 61, in order to prevent the rim | limb part 61a from becoming polygonal shape, it is packing 61. A thickness of about 0.3 mm to 0.5 mm is suitable. In addition, since the packing of the polytetrafluoroethylene material was used with this thickness, the hysteresis at the time of superheat degree control was able to be kept at 2 degrees C or less even if the maximum differential pressure was 3.0 MPa.

また、実施形態では、弁体15のニードル部15bの外径が弁ポート13の内径と同程度の寸法となっているので、一次圧力が変動しても弁体15に係る圧力による力が弁部15a側とニードル部15b側とで相殺され、一次圧力の変動が弁体15に影響しない。このように、シール部材6でシールする簡単な構造となっているので、弁ポート13を流れる冷媒の流量を大きくする大能力の冷凍サイクルにおいてもニードル部15bの外径をその弁ポート13の内径と同等に大きくできる。したがって、一次圧力の変動に対して、過熱度の設定値変動を少なくすることができる。   Further, in the embodiment, since the outer diameter of the needle portion 15b of the valve body 15 is approximately the same as the inner diameter of the valve port 13, even if the primary pressure varies, the force due to the pressure on the valve body 15 The portion 15a side and the needle portion 15b side cancel each other, and the fluctuation of the primary pressure does not affect the valve body 15. Thus, since it has a simple structure for sealing with the seal member 6, the outer diameter of the needle portion 15 b is set to the inner diameter of the valve port 13 even in a large-capacity refrigeration cycle for increasing the flow rate of the refrigerant flowing through the valve port 13. Can be as large as Therefore, the set value fluctuation of the superheat degree can be reduced with respect to the fluctuation of the primary pressure.

このように、弁ポート13の内径とニードル部15bの外径を同一にして、大能力の冷凍サイクルに対応できるとともに、従来のように大型のバネが不要となり、小型・軽量化を図ることができる。   As described above, the inner diameter of the valve port 13 and the outer diameter of the needle portion 15b can be made the same, so that it can be used for a large-capacity refrigeration cycle, and a large spring is not required as in the prior art, thereby reducing the size and weight. it can.

例えば、従来はR22を冷媒とした時に30kW前後の能力が限界であったが、弁ハウジングが従来と同一(共通)でも20kW〜50kWの能力に適用することができる。   For example, in the past, when R22 was used as the refrigerant, the capacity of around 30 kW was the limit, but even if the valve housing is the same (common) as before, it can be applied to the capacity of 20 kW to 50 kW.

1 弁ハウジング
11 第1ポート
12 第2ポート
13 弁ポート
14 ガイド孔
15 弁体
15a 弁部
15b ニードル部
2 ダイヤフラム装置
21 上蓋
21a 受圧室
22 下蓋
22a 均圧室
3 過熱度設定部
6 シール部材
61 パッキン
61a リム部
62 板バネ
62a 凸歯形状部
7 押え部材
10 温度膨張弁
10A 感温筒
20 圧縮機
30 凝縮器
40 蒸発器
DESCRIPTION OF SYMBOLS 1 Valve housing 11 1st port 12 2nd port 13 Valve port 14 Guide hole 15 Valve body 15a Valve part 15b Needle part 2 Diaphragm device 21 Upper lid 21a Pressure receiving chamber 22 Lower lid 22a Pressure equalizing chamber 3 Superheat degree setting part 6 Seal member 61 Packing 61a Rim part 62 Leaf spring 62a Convex tooth shaped part 7 Presser member 10 Temperature expansion valve 10A Temperature sensitive cylinder 20 Compressor 30 Condenser 40 Evaporator

Claims (3)

冷凍サイクルの凝縮器と蒸発器との間に配管接続され、前記蒸発器の出口側配管に設けられる感温筒からの圧力と前記蒸発器の蒸発圧力との差圧に応じて、前記凝縮器側の一次配管から前記蒸発器側の二次配管に冷媒を流す弁ポートの開度を制御するダイヤフラム装置を備えた温度膨張弁であって、
前記一次配管に接続される第1ポートと前記二次配管に接続される第2ポートとが前記弁ポートを挟んで形成され、前記第1ポートが側部に開口されるガイド孔であって前記弁ポート側を一端にして該弁ポートの中心軸を軸線とする円筒状のガイド孔が形成され、前記蒸発器の出口側配管に連通される均圧路が形成された弁ハウジングと、
前記ガイド孔内に前記軸線方向に移動自在に収容され、前記弁ポートに対して前記第2ポート側に位置して前記弁ポートを開閉する弁部と、前記ガイド孔に嵌挿される円柱状のニードル部とを有し、前記ニードル部の前記弁部と反対側が前記ダイヤフラム装置のダイヤフラムに連結される弁体と、
前記弁体を前記ダイヤフラム側に付勢する過熱度設定部と、
前記弁体のニードル部に設けられて前記ガイド孔の内周面に接触する板状のパッキンと該パッキンを前記ガイド孔の内周面側に付勢する板ばねとからなるシール部材と、
を備え、
前記ダイヤフラム装置は、前記弁ハウジングの前記ガイド孔の端部に取り付けられるとともに、前記均圧路を介して前記蒸発器の出口側配管の前記蒸発圧力が導入される均圧室を有し、
前記シール部材の前記パッキンが、前記ニードル部回りに環状に形成されるとともに、該パッキンは、その外周端を軸線方向に対して前記弁ポート側に屈曲変形してなるリム部を形成し、前記板バネの弾性力により前記パッキンの前記リム部を前記ガイド孔の内周面に押圧することで、該シール部材により前記均圧室と前記第1ポート間を封止するようにしたことを特徴とする温度膨張弁。
The condenser is connected between a condenser and an evaporator of a refrigeration cycle, and the condenser is in accordance with a differential pressure between a pressure from a temperature sensing cylinder provided in an outlet side pipe of the evaporator and an evaporation pressure of the evaporator. A temperature expansion valve provided with a diaphragm device for controlling an opening degree of a valve port for flowing a refrigerant from a primary pipe on the side to a secondary pipe on the evaporator side,
A first port connected to the primary pipe and a second port connected to the secondary pipe are formed across the valve port, and the first port is a guide hole opened on a side, A valve housing in which a cylindrical guide hole having the valve port side as one end and an axis of the central axis of the valve port is formed, and a pressure equalizing path communicating with the outlet side pipe of the evaporator is formed;
A valve portion that is accommodated in the guide hole so as to be movable in the axial direction, is positioned on the second port side with respect to the valve port, and opens and closes the valve port, and a columnar shape that is inserted into the guide hole A valve body having a needle portion, and a side opposite to the valve portion of the needle portion is connected to the diaphragm of the diaphragm device;
A superheat degree setting section for urging the valve body toward the diaphragm;
A seal member comprising a plate-like packing provided on the needle portion of the valve body and contacting the inner peripheral surface of the guide hole, and a plate spring for biasing the packing toward the inner peripheral surface side of the guide hole;
With
The diaphragm device is attached to an end portion of the guide hole of the valve housing, and has a pressure equalization chamber into which the evaporation pressure of the outlet side pipe of the evaporator is introduced through the pressure equalization path,
The packing of the seal member is formed in an annular shape around the needle portion, and the packing forms a rim portion formed by bending and deforming an outer peripheral end thereof toward the valve port with respect to the axial direction, The pressure equalizing chamber and the first port are sealed by the seal member by pressing the rim portion of the packing against the inner peripheral surface of the guide hole by the elastic force of a leaf spring. A temperature expansion valve.
前記ニードル部の外径が前記弁ポートの内径と同寸法であることを特徴とする請求項1に記載の温度膨張弁。   The temperature expansion valve according to claim 1, wherein an outer diameter of the needle portion is the same as an inner diameter of the valve port. 前記シール部材の前記パッキンが、ポリテトラフルオロエチレン(PTFE)素材であることを特徴とする請求項1または2に記載の温度膨張弁。   The temperature expansion valve according to claim 1 or 2, wherein the packing of the seal member is made of a polytetrafluoroethylene (PTFE) material.
JP2011099336A 2011-04-27 2011-04-27 Temperature expansion valve Active JP5550601B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011099336A JP5550601B2 (en) 2011-04-27 2011-04-27 Temperature expansion valve
KR1020120027219A KR101352205B1 (en) 2011-04-27 2012-03-16 Temperature expansion valve
CN201210122352.5A CN102759234B (en) 2011-04-27 2012-04-24 Thermostatic expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099336A JP5550601B2 (en) 2011-04-27 2011-04-27 Temperature expansion valve

Publications (2)

Publication Number Publication Date
JP2012229886A true JP2012229886A (en) 2012-11-22
JP5550601B2 JP5550601B2 (en) 2014-07-16

Family

ID=47053785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099336A Active JP5550601B2 (en) 2011-04-27 2011-04-27 Temperature expansion valve

Country Status (3)

Country Link
JP (1) JP5550601B2 (en)
KR (1) KR101352205B1 (en)
CN (1) CN102759234B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047667A (en) * 2014-08-27 2016-04-07 豊田合成株式会社 Airbag device
JP2017180638A (en) * 2016-03-30 2017-10-05 株式会社鷺宮製作所 Motor valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475197B2 (en) * 2016-06-15 2019-02-27 株式会社鷺宮製作所 Valve device
CN108253157B (en) * 2016-12-29 2020-05-22 比亚迪股份有限公司 Expansion switch valve
JP7262261B2 (en) * 2019-03-22 2023-04-21 株式会社鷺宮製作所 THERMAL EXPANSION VALVE AND REFRIGERATION CYCLE SYSTEM USING THERMAL EXPANSION VALVE
JP7014749B2 (en) * 2019-03-28 2022-02-01 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264959U (en) * 1975-11-10 1977-05-13
JPH05231753A (en) * 1992-02-21 1993-09-07 T G K:Kk Expansion valve
JP2000320711A (en) * 1999-03-08 2000-11-24 Saginomiya Seisakusho Inc Electric control valve
JP2004324886A (en) * 2003-04-21 2004-11-18 Lg Electron Inc Flow control valve device and its manufacturing method, and heat exchanging device using the same
JP2007327672A (en) * 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve
JP2009144880A (en) * 2007-12-18 2009-07-02 Fuji Koki Corp Piston device for four-way switching valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819443A (en) * 1987-06-30 1989-04-11 Fujikoki America, Inc. Expansion valve
US5044170A (en) * 1988-03-10 1991-09-03 Fujikoki Mfg. Co., Ltd. Refrigeration system and a thermostatic expansion valve best suited for the same
US5675982A (en) * 1996-04-26 1997-10-14 Rocky Research Pulsed operation control valve
JP3815978B2 (en) * 2001-04-13 2006-08-30 株式会社不二工機 Thermal expansion valve
JP4706372B2 (en) * 2005-07-28 2011-06-22 株式会社デンソー Thermal expansion valve
CN100552328C (en) * 2008-06-26 2009-10-21 上海交通大学 The R410A refrigeration system self-adapting adjustment type expansion valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264959U (en) * 1975-11-10 1977-05-13
JPH05231753A (en) * 1992-02-21 1993-09-07 T G K:Kk Expansion valve
JP2000320711A (en) * 1999-03-08 2000-11-24 Saginomiya Seisakusho Inc Electric control valve
JP2004324886A (en) * 2003-04-21 2004-11-18 Lg Electron Inc Flow control valve device and its manufacturing method, and heat exchanging device using the same
JP2007327672A (en) * 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve
JP2009144880A (en) * 2007-12-18 2009-07-02 Fuji Koki Corp Piston device for four-way switching valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047667A (en) * 2014-08-27 2016-04-07 豊田合成株式会社 Airbag device
JP2017180638A (en) * 2016-03-30 2017-10-05 株式会社鷺宮製作所 Motor valve

Also Published As

Publication number Publication date
CN102759234A (en) 2012-10-31
KR101352205B1 (en) 2014-01-15
CN102759234B (en) 2014-06-25
KR20120121829A (en) 2012-11-06
JP5550601B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5550601B2 (en) Temperature expansion valve
JP5246736B2 (en) Temperature expansion valve
JPH0571860B2 (en)
JP2010031998A (en) Expansion valve
JP2008138812A (en) Differential pressure valve
JP7014749B2 (en) Temperature expansion valve and refrigeration cycle system
US20040036044A1 (en) Differential pressure control valve
JP5535997B2 (en) Seal structure and temperature expansion valve
JP2024026258A (en) Power element and expansion valve using the same
JP2015532480A (en) Self-aligning disc
JP4484656B2 (en) Temperature-sensitive control valve and refrigeration cycle device
JP2002071037A (en) Relief valve, high pressure control valve with relief valve and super critical vapor refrigerating cycle device
JP2007322058A (en) Pressure control valve
JP2020060356A (en) Temperature type expansion valve, and refrigeration cycle system
JP2012229885A (en) Temperature expansion valve
JP7390699B2 (en) expansion valve
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP3987983B2 (en) Thermal expansion valve
JP6846875B2 (en) Expansion valve
JP5393386B2 (en) Seal structure and control valve
CN218063546U (en) Pressure control valve
JP2018004234A (en) Expansion valve
JP7429602B2 (en) Thermostatic expansion valve and refrigeration cycle system
JP4415096B2 (en) Expansion valve mounting structure
JPS61262569A (en) Expansion valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5550601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150