JP5535997B2 - Seal structure and temperature expansion valve - Google Patents

Seal structure and temperature expansion valve Download PDF

Info

Publication number
JP5535997B2
JP5535997B2 JP2011171640A JP2011171640A JP5535997B2 JP 5535997 B2 JP5535997 B2 JP 5535997B2 JP 2011171640 A JP2011171640 A JP 2011171640A JP 2011171640 A JP2011171640 A JP 2011171640A JP 5535997 B2 JP5535997 B2 JP 5535997B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
cylindrical
seal surface
seal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011171640A
Other languages
Japanese (ja)
Other versions
JP2013036505A (en
Inventor
裕正 高田
直登 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2011171640A priority Critical patent/JP5535997B2/en
Priority to CN201210284399.1A priority patent/CN102913656B/en
Publication of JP2013036505A publication Critical patent/JP2013036505A/en
Application granted granted Critical
Publication of JP5535997B2 publication Critical patent/JP5535997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Valve Housings (AREA)
  • Gasket Seals (AREA)

Description

本発明は、2つの円筒部のうち一方の円筒部の外周に雄ねじが形成され、他方の円筒部の内周に雌ねじが形成され、この雄ねじと雌ねじを螺合して両円筒部を結合し、該円筒部内に流体が充填される装置要素において、2つの円筒部の結合部分を封止するシール構造、該シール構造を適用した温度膨張弁に関する。   In the present invention, a male screw is formed on the outer periphery of one of the two cylindrical portions, and a female screw is formed on the inner periphery of the other cylindrical portion. The male screw and the female screw are screwed together to connect both cylindrical portions. The present invention relates to a seal structure that seals a joint portion of two cylindrical portions in a device element that is filled with fluid in the cylindrical portion, and a temperature expansion valve to which the seal structure is applied.

従来、温度膨張弁として、例えば特開平9−79703号公報(特許文献1)に開示されたものがある。特許文献1の温度膨張弁(温度式膨張弁)は、蒸発器の出口配管に取り付けられた感温筒を備え、この感温筒に連通されたダイヤフラム装置(エレメント部4′)が弁本体の弁ハウジング(ハウジング部材40)に取り付けられている。ダイヤフラム装置はステンレス等でプレス成形された蓋部材(56)と受け部材(55)によりケース体を構成し、このケース体内にダイヤフラムで区画された感圧室(第1の圧力室50)と均圧室(第2の圧力室51)を設けている。感圧室には感温筒の封入ガスの圧力が導入され、均圧室には冷媒圧力が導入される。   Conventionally, as a temperature expansion valve, for example, there is one disclosed in JP-A-9-79703 (Patent Document 1). The temperature expansion valve (temperature type expansion valve) of Patent Document 1 includes a temperature sensing cylinder attached to an outlet pipe of an evaporator, and a diaphragm device (element part 4 ') communicated with the temperature sensing cylinder is a valve body. It is attached to the valve housing (housing member 40). In the diaphragm device, a case body is constituted by a lid member (56) and a receiving member (55) that are press-molded with stainless steel or the like, and a pressure sensing chamber (first pressure chamber 50) partitioned by a diaphragm in the case body. A pressure chamber (second pressure chamber 51) is provided. The pressure in the temperature sensing cylinder is introduced into the pressure sensing chamber, and the refrigerant pressure is introduced into the pressure equalizing chamber.

ダイヤフラム装置のケース体の受け部材(下蓋)は、その下端に均圧室に連通する円筒部を有し、弁ハウジングはダイヤフラム装置側から弁体に通じる円筒部を有している。そして、受け部材の円筒部に雌ねじ部と弁ハウジングの円筒部の雄ねじ部を螺合させることで、ケース体が弁ハウジングに結合されている。この結合部分のシール構造は、受け部材の円筒部の下端部を弁ハウジングの円筒部の段部に当接し、この下端部と段部との面接触により結合部分を封止する構造となっている。   The receiving member (lower lid) of the case body of the diaphragm device has a cylindrical portion communicating with the pressure equalizing chamber at the lower end thereof, and the valve housing has a cylindrical portion communicating with the valve body from the diaphragm device side. And the case body is couple | bonded with the valve housing by screwing together the external thread part and the external thread part of the cylindrical part of a valve housing to the cylindrical part of a receiving member. The sealing structure of the coupling portion is a structure in which the lower end portion of the cylindrical portion of the receiving member is brought into contact with the step portion of the cylindrical portion of the valve housing, and the coupling portion is sealed by surface contact between the lower end portion and the step portion. Yes.

しかしながら、このような温度膨張弁において、ダイヤフラム装置のケース体内の圧力は高圧になるので、ケース体の円筒部と弁本体の円筒部との結合部分に高いシール性が要求される。   However, in such a temperature expansion valve, since the pressure in the case body of the diaphragm device becomes high, a high sealing performance is required for the joint portion between the cylindrical portion of the case body and the cylindrical portion of the valve body.

なお、2つの円筒部を結合するものにおいて、この円筒部両者間を封止するシール構造として、例えば特表平4−503559号公報(特許文献2)に開示されたものがある。この特許文献2の技術は、雌ねじ部が形成された外側の円筒部(62)内に閉塞用円盤(69)を内挿し、雄ねじ部が形成された内側の円筒部(71)を外側の円筒部内に螺合して結合している。外側の円筒部(62)の内部と内側の円筒部(71)との間は、閉塞用円盤(69)の端部に形成した当接部(66)のテーパ面と外側の円筒部(62)の内周に形成したテーパ面(支持面65)との面接触により封止されている。   In addition, in what joins two cylindrical parts, as a sealing structure which seals between both of these cylindrical parts, there exists what was disclosed by Japanese translations of PCT publication No. 4-503559 (patent document 2), for example. In the technique of Patent Document 2, a closing disk (69) is inserted into an outer cylindrical portion (62) in which a female screw portion is formed, and an inner cylindrical portion (71) in which a male screw portion is formed is inserted into an outer cylinder. It is screwed into the part and connected. Between the inside of the outer cylindrical portion (62) and the inner cylindrical portion (71), the tapered surface of the contact portion (66) formed at the end of the closing disk (69) and the outer cylindrical portion (62). ) Is sealed by surface contact with a tapered surface (support surface 65) formed on the inner periphery.

特開平9−79703号公報JP-A-9-79703 特表平4−503559号公報JP-T-4-503559

特許文献1のように、温度膨張弁では、ダイヤフラム装置のケース体と弁ハウジングとを雄ねじ部及び雌ねじ部によりねじ込むことで互いの気密を確保しているだけであるので、均圧室の圧力上昇によりケース体側の円筒部(受け部材の円筒部)が変形すると、円筒部下端部と段部との接触面(シール面)がずれてしまい、シール性が保てないという問題がある。なお、特許文献2のように両方のシール面をテーパ面とすると、一方の円筒部が変形するとシール面がずれるという同様の問題がある。   As in Patent Document 1, in the temperature expansion valve, the case body of the diaphragm device and the valve housing are only screwed together by the male screw portion and the female screw portion, so that the airtightness of each other is ensured. When the cylindrical part on the case body side (cylindrical part of the receiving member) is deformed by this, the contact surface (seal surface) between the lower end part of the cylindrical part and the step part is displaced, and there is a problem that the sealing performance cannot be maintained. In addition, when both sealing surfaces are made into a taper surface like patent document 2, there exists the same problem that a sealing surface will shift | deviate if one cylindrical part deform | transforms.

本発明は、雄ねじと雌ねじを螺合して2つの円筒部を結合し、この円筒部内に流体が充填される装置要素において、2つの円筒部の結合部分のシール性を高めることを課題とする。   It is an object of the present invention to improve the sealing performance of a connecting portion of two cylindrical portions in an apparatus element in which two cylindrical portions are coupled by screwing a male screw and a female screw and fluid is filled in the cylindrical portion. .

請求項1のシール構造は、第1円筒部と第2円筒部を結合し、該第1円筒部及び第2円筒部内に流体が充填される装置要素の第1円筒部と第2円筒部の結合部分を封止するシール構造であって、前記第1円筒部の外周には該第1円筒部の開口端部から雄ねじ部が形成されるとともに、前記第2円筒部の内周には雌ねじ部が形成され、前記第1円筒部の外周には、前記雄ねじ部の前記開口端部とは反対側の位置に該第1円筒部の軸線を中心とする環状の第1シール面が形成され、前記第2円筒部の開口端部には、該第2円筒部の軸線を回転中心とする環状の第2シール面であって前記第1シール面内に収まるような該第1シール面より面積の小さな第2シール面が形成され、前記雄ねじ部と前記雌ねじ部を螺合して前記第1シール面と前記第2シール面を圧着することで第1円筒部と第2円筒部を結合するよう構成され、前記雄ねじ部と雌ねじ部の締付けにより発生する推力により、前記第2円筒部の開口端部に内向きの応力を発生させるように、前記第1シール面が、前記第2円筒部のねじ込み方向の移動により前記第2シール面の外縁部が当該第1シール面に最初に当接するようなテーパ面であることを特徴とする。 The seal structure according to claim 1 connects the first cylindrical portion and the second cylindrical portion, and the first cylindrical portion and the second cylindrical portion of the device element in which fluid is filled in the first cylindrical portion and the second cylindrical portion. A sealing structure for sealing a coupling portion, wherein a male screw portion is formed on an outer periphery of the first cylindrical portion from an opening end portion of the first cylindrical portion, and a female screw is provided on an inner periphery of the second cylindrical portion. An annular first seal surface centering on the axis of the first cylindrical portion is formed on the outer periphery of the first cylindrical portion at a position opposite to the opening end of the male screw portion. The opening end portion of the second cylindrical portion has an annular second seal surface with the axis of the second cylindrical portion as a center of rotation, and the first seal surface fits within the first seal surface. A second seal surface having a small area is formed, and the male screw portion and the female screw portion are screwed together to form the first seal surface and the second seal surface. The first cylindrical portion and the second cylindrical portion are coupled by crimping the control surface, and the thrust generated by tightening the male screw portion and the female screw portion is directed inward to the opening end portion of the second cylindrical portion. The first seal surface is a tapered surface such that the outer edge portion of the second seal surface first comes into contact with the first seal surface due to the movement of the second cylindrical portion in the screwing direction. characterized in that there.

請求項2のシール構造は、請求項1に記載のシール構造であって、記第2シール面が前記軸線に直角なフラット面であることを特徴とする。 Seal structure according to claim 2, a seal structure according to claim 1, wherein the pre-Symbol second sealing surface is perpendicular flat surface to the axis.

請求項3のシール構造は、請求項1に記載のシール構造であって、記第2シール面テーパ面であることを特徴とする。 Seal structure of claim 3 is a seal structure according to claim 1, before Symbol second sealing surface is characterized by a tapered surface.

請求項4のシール構造は、請求項1乃至3のいずれか一項に記載のシール構造であって、前記第1円筒部が真鍮であり、前記第2円筒部がステンレスであることを特徴とする。   The seal structure according to claim 4 is the seal structure according to any one of claims 1 to 3, wherein the first cylindrical portion is brass and the second cylindrical portion is stainless steel. To do.

請求項5の温度膨張弁は、弁ハウジングに形成された弁ポートを弁体により開閉して冷媒の流れを制御する弁本体と、ケース体内をダイヤフラムにより区画して受圧室と均圧室とを形成したダイヤフラム装置とを備え、前記受圧室の圧力と前記均圧室の圧力との差圧に応じて作動する前記ダイヤフラム及び前記弁体により前記弁ポートの弁開度を制御するようにした温度膨張弁において、前記請求項1乃至4のいずれか一項に記載のシール構造を備え、前記弁ハウジングは、前記弁体を収容する円筒状の前記第1円筒部を有するとともに、前記ダイヤフラム装置のケース体は前記均圧室に連通する円筒状の前記第2円筒部を有し、前記雄ねじ部と前記雌ねじ部を螺合して前記第1シール面と前記第2シール面を圧着することで前記弁ハウジングに対して前記ケース体を結合するよう構成されていることを特徴とする。   According to a fifth aspect of the present invention, there is provided a temperature expansion valve comprising: a valve body for controlling a refrigerant flow by opening and closing a valve port formed in a valve housing; and a pressure receiving chamber and a pressure equalizing chamber divided by a diaphragm in the case body. A temperature of which the valve opening degree of the valve port is controlled by the diaphragm and the valve body that operate according to a differential pressure between the pressure of the pressure receiving chamber and the pressure equalizing chamber. The expansion valve includes the seal structure according to any one of claims 1 to 4, wherein the valve housing includes the cylindrical first cylindrical portion that accommodates the valve body, and the diaphragm device includes: The case body has the cylindrical second cylindrical portion communicating with the pressure equalizing chamber, and the male screw portion and the female screw portion are screwed together to crimp the first seal surface and the second seal surface. The valve housing Characterized in that it is configured to couple the casing body against.

請求項1のシール構造によれば、雄ねじ部と雌ねじ部を螺合して第2円筒部の第2シール面を第1円筒部の第1シール面に圧着することで第1円筒部と第2円筒部が結合され、第1シール面のテーパ面により、雄ねじ部と雌ねじ部の締付けにより発生する推力により、第2円筒部の開口端部に内向きの応力が発生するので、第1円筒部及び第2円筒部内の流体の圧力上昇により第1シール面と第2シール面からなるシール面が動いてしまうのを防止でき、流体が高圧となった時にもシール性を確保することができる。第2円筒部が第1円筒部よりも硬質な材質であれば、第2シール面の少なくとも一部が第1シール面に食い込み、第2円筒部の開口端部が外側に動くのをさらに防止することができる。 According to the seal structure of the first aspect, the male screw portion and the female screw portion are screwed together, and the second seal surface of the second cylindrical portion is pressure-bonded to the first seal surface of the first cylindrical portion, thereby the first cylindrical portion and the first cylindrical portion. Since the two cylindrical portions are coupled and the taper surface of the first seal surface causes an inward stress to be generated at the opening end portion of the second cylindrical portion due to the thrust generated by tightening the male screw portion and the female screw portion, the first cylinder It is possible to prevent the seal surface composed of the first seal surface and the second seal surface from moving due to an increase in the pressure of the fluid in the part and the second cylindrical part, and to ensure a sealing property even when the fluid becomes a high pressure. . If the second cylindrical portion is made of a material harder than the first cylindrical portion, at least part of the second sealing surface bites into the first sealing surface, and further prevents the opening end of the second cylindrical portion from moving outward. can do.

請求項2のシール構造によれば、第2シール面が軸線に直角なフラット面であり、前記第1円筒部の前記第1シール面が、ねじ込み方向の移動時に前記第2シール面の外縁部が第1シール面に最初に当接する構造であり、第2シール面の外縁部よりも外側に第1シール面のテーパ面の一部が存在するので、第2円筒部の開口端部が外側に動くのを機械的にさらに防止することができ、シール性を確保することができる。   According to the seal structure of claim 2, the second seal surface is a flat surface perpendicular to the axis, and the first seal surface of the first cylindrical portion is an outer edge portion of the second seal surface when moving in the screwing direction. Is a structure that first contacts the first seal surface, and since a part of the tapered surface of the first seal surface exists outside the outer edge portion of the second seal surface, the opening end portion of the second cylindrical portion is the outer side. Can be further prevented mechanically, and sealing performance can be secured.

請求項3のシール構造によれば、請求項1と同様な効果が得られる。   According to the seal structure of claim 3, the same effect as that of claim 1 can be obtained.

請求項4のシール構造によれば、第1円筒部が真鍮、第2円筒部がステンレスであり、第2シール面の内縁部または外縁部が第1シール面に当接しても、内縁部あるいは外縁部が変形し難くなる分、この第2シール面を第1シール面に確実に食い込ませることができ、第2円筒部の開口端部が外側に動くのを確実に防止することができ、シール性を確保することができる。   According to the seal structure of claim 4, even if the first cylindrical portion is brass and the second cylindrical portion is stainless steel, and the inner edge portion or the outer edge portion of the second seal surface is in contact with the first seal surface, the inner edge portion or Since the outer edge portion is less likely to be deformed, the second sealing surface can be surely bited into the first sealing surface, and the opening end of the second cylindrical portion can be reliably prevented from moving outward, Sealability can be secured.

請求項5の温度膨張弁によれば、請求項1乃至4のいずれか一項の作用効果により、弁ハウジングとダイヤフラム装置との間のシール性を確保することができる。   According to the temperature expansion valve of the fifth aspect, the sealing property between the valve housing and the diaphragm device can be ensured by the action and effect of any one of the first to fourth aspects.

本発明の実施形態の温度膨張弁の一部拡大断面図である。It is a partial expanded sectional view of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁のシール構造の第1実施を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the 1st Example of the seal structure of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁のシール構造の参考例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the reference example of the seal structure of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁のシール構造の第実施を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the 2nd Example of the seal structure of the temperature expansion valve of embodiment of this invention. 本発明の実施形態の温度膨張弁の縦断面図である。It is a longitudinal cross-sectional view of the temperature expansion valve of embodiment of this invention.

次に、本発明のシール構造及び温度膨張弁の実施形態を図面を参照して説明する。図1は実施形態の温度膨張弁の一部拡大断面図、図2は実施形態の温度膨張弁のシール構造の第1実施を示す要部拡大断面図、図3は実施形態の温度膨張弁のシール構造の参考例を示す要部拡大断面図、図4は実施形態の温度膨張弁のシール構造の第2実施を示す要部拡大断面図、図5は実施形態の温度膨張弁の縦断面図である。 Next, embodiments of a seal structure and a temperature expansion valve of the present invention will be described with reference to the drawings. FIG. 1 is a partially enlarged sectional view of a temperature expansion valve of the embodiment, FIG. 2 is an enlarged sectional view of a main part showing a first example of the seal structure of the temperature expansion valve of the embodiment, and FIG. 3 is a temperature expansion valve of the embodiment. enlarged sectional view showing a reference example of the seal structure, FIG. 4 is a fragmentary enlarged sectional view showing a second embodiment of the sealing arrangement of the temperature expansion valve embodiment, FIG 5 is a longitudinal temperature expansion valve embodiments FIG.

この実施形態の温度膨張弁は、弁本体を構成する真鍮製の弁ハウジング10とダイヤフラム装置20とを有している。弁ハウジング10には、一次側継手管10a1が接続された第1ポート10aと二次側継手管10b1が接続された第2ポート10bが形成され、第1ポート10aと第2ポート10bとの間に弁ポート10cが形成されている。また、弁ハウジング10には、均圧管10d1が接続された均圧路10dが形成されている。一次側継手管10a1は凝縮器の出口側配管に接続され、二次側継手管10b1は蒸発器の入口側配管に接続される。また、均圧管10d1は蒸発器の出口側配管に接続される。 The temperature expansion valve of this embodiment has a brass valve housing 10 and a diaphragm device 20 that constitute a valve body. The valve housing 10 is formed with a first port 10a to which the primary side joint pipe 10a1 is connected and a second port 10b to which the secondary side joint pipe 10b1 is connected, between the first port 10a and the second port 10b. A valve port 10c is formed at the end. The valve housing 10 is formed with a pressure equalizing path 10d to which a pressure equalizing pipe 10d1 is connected. The primary side joint pipe 10a1 is connected to the outlet side pipe of the condenser, and the secondary side joint pipe 10b1 is connected to the inlet side pipe of the evaporator. The pressure equalizing pipe 10d1 is connected to the outlet side piping of the evaporator.

弁ハウジング10のダイヤフラム装置20側には円筒形状の第1円筒部1が形成され、この第1円筒部1には、第1ポート10aが側部に開口されるガイド孔1aが形成されている。このガイド孔1aは、弁ポート10c側を一端にして弁ポート10cの中心軸を軸線Lとする円筒状の形状をしており、弁ポート10cと反対側はダイヤフラム装置20内に開口している。ガイド孔1a内には弁体30が配設されている。弁体30は、弁ポート10cに対して第2ポート10b側に位置する弁部30aと、ガイド孔1aの内周面に対してクリアランスを有し、ガイド孔1a内に嵌挿される円柱状のニードル部30bとを有している。これにより、弁体30はガイド孔1a内に軸線L方向に移動自在に収容され、軸線L方向の移動により弁部30aが弁ポート10cを開閉する。   A cylindrical first cylindrical portion 1 is formed on the diaphragm housing 20 side of the valve housing 10, and the first cylindrical portion 1 is formed with a guide hole 1 a in which the first port 10 a is opened to the side. . The guide hole 1a has a cylindrical shape with the valve port 10c side as one end and the central axis of the valve port 10c as the axis L, and the side opposite to the valve port 10c opens into the diaphragm device 20. . A valve body 30 is disposed in the guide hole 1a. The valve body 30 has a clearance with respect to the valve portion 30a located on the second port 10b side with respect to the valve port 10c and the inner peripheral surface of the guide hole 1a, and is a cylindrical shape that is inserted into the guide hole 1a. Needle portion 30b. Thereby, the valve body 30 is accommodated in the guide hole 1a so as to be movable in the axis L direction, and the valve portion 30a opens and closes the valve port 10c by the movement in the axis L direction.

ニードル部30bの上部には押え部材40aによりシール部材40が取り付けられており、さらに、このニードル部30bの端部には、当金50が装着され、弁体30は当金50を介してダイヤフラム装置20のダイヤフラム20cに連結されている。なお、弁ポート10cの下部には軸線Lを軸とする略円筒形状の取付け孔10eが形成されており、取付け孔10eには調整スピンドル10fが取り付けられている。そして、調整スピンドル10fを回すことにより、調整ばね10gによる弁体30への付勢力が調整される。これにより、過熱度設定が調整される。   A seal member 40 is attached to the upper portion of the needle portion 30b by a presser member 40a. Further, an abutment 50 is attached to an end of the needle portion 30b, and the valve body 30 is a diaphragm through the abutment 50. The diaphragm 20c of the device 20 is connected. A substantially cylindrical mounting hole 10e with the axis L as an axis is formed in the lower part of the valve port 10c, and an adjusting spindle 10f is mounted in the mounting hole 10e. And the urging | biasing force to the valve body 30 by the adjustment spring 10g is adjusted by rotating the adjustment spindle 10f. Thereby, the superheat degree setting is adjusted.

ダイヤフラム装置20は、いずれもステンレス製の上蓋20aと下蓋20bにより「ケース体」を構成している。上蓋20aと下蓋20bの間にはダイヤフラム20cを備えており、上蓋20aと下蓋20bとからなるケース体内部は、このダイヤフラム20cによって受圧室20Aと均圧室20Bとして区画されている。均圧室20Bは、弁ハウジング10の前記均圧路10dを介して蒸発器の出口側配管に導通され、この均圧室20Bには蒸発圧力が導入される。   In the diaphragm device 20, a “case body” is constituted by an upper lid 20 a and a lower lid 20 b made of stainless steel. A diaphragm 20c is provided between the upper lid 20a and the lower lid 20b, and the inside of the case body composed of the upper lid 20a and the lower lid 20b is partitioned as a pressure receiving chamber 20A and a pressure equalizing chamber 20B by the diaphragm 20c. The pressure equalizing chamber 20B is connected to the outlet side piping of the evaporator via the pressure equalizing passage 10d of the valve housing 10, and the evaporation pressure is introduced into the pressure equalizing chamber 20B.

受圧室20Aは、キャピラリチューブ20dを介して感温筒20eに連結されている。なお、感温筒20e、キャピラリチューブ20d及び受圧室20A内には、例えば冷凍サイクルの冷媒と同じガス(及び液)が封入されており、この感温筒20eは、蒸発器の出口側配管に取り付けられる。これにより、受圧室20Aの内圧は、感温筒20eによる感知温度に応じて変化する。そして、ダイヤフラム20cは、受圧室20Aと均圧室20Bの圧力差に応じて変位し、この変位は、当金50によって弁体30に伝達される。この構成により、感温筒20eの感知温度と蒸発圧力との差圧に応じて、凝縮器側の一次配管から蒸発器側の二次配管に冷媒を流す弁ポート10cの開度を制御し、冷凍サイクルの過熱度制御を行う。   The pressure receiving chamber 20A is connected to the temperature sensing cylinder 20e through the capillary tube 20d. The temperature sensing cylinder 20e, the capillary tube 20d, and the pressure receiving chamber 20A are filled with, for example, the same gas (and liquid) as the refrigerant of the refrigeration cycle, and the temperature sensing cylinder 20e is connected to the outlet side piping of the evaporator. It is attached. Thereby, the internal pressure of the pressure receiving chamber 20A changes according to the temperature sensed by the temperature sensing cylinder 20e. The diaphragm 20c is displaced according to the pressure difference between the pressure receiving chamber 20A and the pressure equalizing chamber 20B, and this displacement is transmitted to the valve body 30 by the metal 50. With this configuration, the opening degree of the valve port 10c for flowing the refrigerant from the condenser-side primary pipe to the evaporator-side secondary pipe is controlled in accordance with the pressure difference between the temperature sensed by the temperature sensing cylinder 20e and the evaporation pressure. Perform superheat control of the refrigeration cycle.

下蓋20bの下部には円筒状の第2円筒部2が形成されている。弁ハウジング10の前記第1円筒部1の外周には雄ねじ部11が形成されている。第2円筒部2の内周には雌ねじ部21が形成されている。そして、第2円筒部2の雌ねじ部21と第1円筒部1の雄ねじ部11を螺合することにより、ダイヤフラム装置20は弁ハウジング10に取り付けられている。   A cylindrical second cylindrical portion 2 is formed at the lower portion of the lower lid 20b. A male screw portion 11 is formed on the outer periphery of the first cylindrical portion 1 of the valve housing 10. A female screw portion 21 is formed on the inner periphery of the second cylindrical portion 2. The diaphragm device 20 is attached to the valve housing 10 by screwing the female screw portion 21 of the second cylindrical portion 2 and the male screw portion 11 of the first cylindrical portion 1 together.

また、第1円筒部1の外周には、雄ねじ部11の開口端部1Aとは反対側の位置に雄ねじ部11より径の大きな段部12が形成されている。そして、この段部12の第2円筒部2と対向する面は、第1円筒部1の軸線Lを回転中心とする環状の第1シール面12Aとなっている。第2円筒部2の開口端部2Aには、リング状の突条22が形成されている。そして、この突条22の第1シール面12A側の対向面は、第2円筒部2の軸線Lを回転中心とする環状の第2シール面22Aとなっている。なお、図2及び図3に示すように、第1シール面12Aの半径方向の幅D1は第2シール面22Aの半径方向の幅D2より大きくなっており、且つ第2シール面22Aは第1シール面12A内に収まる位置にある。これにより、第2シール面22Aの面積は第1シール面12Aの面積より小さくなっている。なお、軸線Lは、第1円筒部1及び第2円筒部2で共通である。   Further, on the outer periphery of the first cylindrical portion 1, a step portion 12 having a diameter larger than that of the male screw portion 11 is formed at a position opposite to the opening end portion 1 </ b> A of the male screw portion 11. The surface of the step portion 12 that faces the second cylindrical portion 2 is an annular first seal surface 12A that has the axis L of the first cylindrical portion 1 as the center of rotation. A ring-shaped protrusion 22 is formed at the opening end 2 </ b> A of the second cylindrical portion 2. And the opposing surface by the side of the 1st seal surface 12A of this protrusion 22 becomes the cyclic | annular 2nd seal surface 22A which makes the axis line L of the 2nd cylindrical part 2 the rotation center. 2 and 3, the radial width D1 of the first seal surface 12A is larger than the radial width D2 of the second seal surface 22A, and the second seal surface 22A is the first seal surface 22A. It is located within the seal surface 12A. As a result, the area of the second seal surface 22A is smaller than the area of the first seal surface 12A. The axis L is common to the first cylindrical portion 1 and the second cylindrical portion 2.

次に、第1シール面12Aと第2シール面22Aによるシール構造の各実施例を説明する。なお、図2〜図4は図1における左側の一点鎖線の部分の拡大図であるが、全体の構造は、図2〜図4の断面を軸線Lを回転軸として回転させた回転体の構造となっている。図2は第1実施例を示す図であり、図2(A) 、図2(B) 、図2(C) の順に第1円筒部1に対して第2円筒部2が次第にねじ込まれていく状態を示している。第1実施例は、第2円筒部2の第2シール面22Aが軸線Lに直角なフラット面である。そして、第1シール面12Aが、第2円筒部2のねじ込み方向(矢印R方向)の移動により第2シール面22Aの外縁部22A2(図2(B) )が第1シール面12Aに最初に当接するようなテーパ面である。   Next, each embodiment of the seal structure by the first seal surface 12A and the second seal surface 22A will be described. 2 to 4 are enlarged views of the portion of the dashed line on the left side in FIG. 1, but the entire structure is a structure of a rotating body in which the cross section of FIGS. 2 to 4 is rotated about the axis L as a rotation axis. It has become. FIG. 2 is a view showing the first embodiment. The second cylindrical portion 2 is gradually screwed into the first cylindrical portion 1 in the order of FIGS. 2 (A), 2 (B), and 2 (C). It shows the state to go. In the first embodiment, the second sealing surface 22A of the second cylindrical portion 2 is a flat surface perpendicular to the axis L. Then, the first seal surface 12A is moved in the screwing direction (arrow R direction) of the second cylindrical portion 2 so that the outer edge portion 22A2 (FIG. 2 (B)) of the second seal surface 22A first contacts the first seal surface 12A. It is a tapered surface that comes into contact.

第2シール面22Aの外縁部22A2が第1シール面12Aに最初に当接したときから、ねじ込み方向に進むと、第1シール面12Aがテーパ面になっていることから、突条22(開口端部2A)には内向きに応力が発生し、第2シール面22Aの少なくとも外縁部22A2が第1シール面12Aに食い込んでいるので、第2円筒部2の開口端部2Aが外側に動くのを防止することができる。これにより、シール性を確保することができる。また、図2(C) のように、第1シール面12Aに対して第2シール面22Aを完全に食い込ませると、さらに第2円筒部2の開口端部2Aが外側に動くのを確実に防止することができ、シール性を確保することができる。   When the outer edge portion 22A2 of the second seal surface 22A first contacts the first seal surface 12A and then proceeds in the screwing direction, the first seal surface 12A becomes a tapered surface, and thus the ridge 22 (opening) The end portion 2A) is stressed inward, and at least the outer edge portion 22A2 of the second seal surface 22A bites into the first seal surface 12A, so that the open end portion 2A of the second cylindrical portion 2 moves outward. Can be prevented. Thereby, sealing performance can be secured. Further, as shown in FIG. 2 (C), when the second seal surface 22A is completely bited into the first seal surface 12A, the opening end portion 2A of the second cylindrical portion 2 is reliably moved outward. Can be prevented, and sealing performance can be secured.

図3は参考例を示す図であり、図3(A) 、図3(B) 、図3(C) の順に第1円筒部1に対して第2円筒部2が次第にねじ込まれていく状態を示している。第2実施例は、第1円筒部1の第1シール面12Aが軸線Lに直角なフラット面である。そして、第2シール面22Aが、第2円筒部2のねじ込み方向(矢印R方向)の移動により第2シール面22Aの内縁部22A1(図3(B) )が第1シール面12Aに最初に当接するようなテーパ面である。 FIG. 3 is a diagram showing a reference example, in which the second cylindrical portion 2 is gradually screwed into the first cylindrical portion 1 in the order of FIGS. 3 (A), 3 (B), and 3 (C). Is shown. In the second embodiment, the first sealing surface 12A of the first cylindrical portion 1 is a flat surface perpendicular to the axis L. When the second seal surface 22A is moved in the screwing direction (arrow R direction) of the second cylindrical portion 2, the inner edge portion 22A1 (FIG. 3B) of the second seal surface 22A is first placed on the first seal surface 12A. It is a tapered surface that comes into contact.

第2シール面22Aの内縁部22A1が第1シール面12Aに最初に当接したときから、ねじ込み方向に進むと、図3(B) の状態のように第2シール面22Aがテーパ面になっていることから、突条22(開口端部2A)には内向きに応力が発生し、第2シール面22Aの少なくとも一部が第1シール面12Aに食い込んでいるので、第2円筒部2の開口端部2Aが外側に動くのを防止することができる。これにより、シール性を確保することができる。また、図3(C) のように、第1シール面12Aに対して第2シール面22Aを完全に食い込ませると、さらに第2円筒部2の開口端部2Aが外側に動くのを確実に防止することができ、シール性を確保することができる。   When the inner edge portion 22A1 of the second seal surface 22A first contacts the first seal surface 12A and then proceeds in the screwing direction, the second seal surface 22A becomes a tapered surface as shown in FIG. 3B. Therefore, the inward stress is generated in the protrusion 22 (opening end 2A), and at least a part of the second seal surface 22A bites into the first seal surface 12A. It is possible to prevent the open end portion 2A of the outer side from moving outward. Thereby, sealing performance can be secured. Further, as shown in FIG. 3 (C), when the second seal surface 22A is completely bited into the first seal surface 12A, the opening end portion 2A of the second cylindrical portion 2 is reliably moved outward. Can be prevented, and sealing performance can be secured.

以上の第1実施例及び参考例では、第1シール面12Aと第2シール面22Aの何れか一方が軸線Lに直角なフラット面の例を示したが、例えば図4に示す第実施例のように、第1シール面12Aと第2シール面22Aの両方がテーパ面であってもよい。この場合は、第2円筒部2の第2シール面22Aが僅かにテーパ面となっており、第1シール面12Aが、第2円筒部2のねじ込み方向(矢印R方向)の移動により第2シール面22Aの外縁部22A2(図4(B) )が第1シール面12Aに最初に当接するようなテーパ面である。 In the first embodiment and the reference example described above, an example in which one of the first seal surface 12A and the second seal surface 22A is a flat surface perpendicular to the axis L is shown. For example, the second embodiment shown in FIG. As described above, both the first seal surface 12A and the second seal surface 22A may be tapered surfaces. In this case, the second seal surface 22A of the second cylindrical portion 2 is slightly tapered, and the first seal surface 12A is moved in the second direction by the movement of the second cylindrical portion 2 in the screwing direction (arrow R direction). The outer peripheral portion 22A2 (FIG. 4B) of the seal surface 22A is a tapered surface that first comes into contact with the first seal surface 12A.

以上の実施形態では本発明のシール構造を温度膨張弁の弁ハウジングとダイヤフラム装置との間を封止する場合について説明したが、2つの円筒部材をねじ込んで結合する場合にその結合部分に、実施形態の第1円筒部と第2円筒部の構造を適用してもよい。   In the above embodiment, the seal structure of the present invention has been described for sealing between the valve housing of the temperature expansion valve and the diaphragm device. However, when two cylindrical members are screwed together, the joint portion is implemented. You may apply the structure of the 1st cylindrical part of a form, and a 2nd cylindrical part.

1 第1円筒部
11 雄ねじ部
12 段部
12A 第1シール面
2 第2円筒部
21 雌ねじ部
22 突条
22A 第2シール面
22A1 内縁部
22A2 外縁部
10 弁ハウジング
10c 弁ポート
20 ダイヤフラム装置
20a 上蓋
20b 下蓋
20c ダイヤフラム
30 弁体
DESCRIPTION OF SYMBOLS 1 1st cylindrical part 11 Male thread part 12 Step part 12A 1st sealing surface 2 2nd cylindrical part 21 Female thread part 22 Projection 22A 2nd sealing surface 22A1 Inner edge part 22A2 Outer edge part 10 Valve housing 10c Valve port 20 Diaphragm apparatus 20a Upper cover 20b Lower lid 20c Diaphragm 30 Valve body

Claims (5)

第1円筒部と第2円筒部を結合し、該第1円筒部及び第2円筒部内に流体が充填される装置要素の第1円筒部と第2円筒部の結合部分を封止するシール構造であって、
前記第1円筒部の外周には該第1円筒部の開口端部から雄ねじ部が形成されるとともに、前記第2円筒部の内周には雌ねじ部が形成され、
前記第1円筒部の外周には、前記雄ねじ部の前記開口端部とは反対側の位置に該第1円筒部の軸線を中心とする環状の第1シール面が形成され、
前記第2円筒部の開口端部には、該第2円筒部の軸線を回転中心とする環状の第2シール面であって前記第1シール面内に収まるような該第1シール面より面積の小さな第2シール面が形成され、
前記雄ねじ部と前記雌ねじ部を螺合して前記第1シール面と前記第2シール面を圧着することで第1円筒部と第2円筒部を結合するよう構成され、
前記雄ねじ部と雌ねじ部の締付けにより発生する推力により、前記第2円筒部の開口端部に内向きの応力を発生させるように、前記第1シール面が、前記第2円筒部のねじ込み方向の移動により前記第2シール面の外縁部が当該第1シール面に最初に当接するようなテーパ面であることを特徴とするシール構造。
A seal structure for connecting the first cylindrical portion and the second cylindrical portion, and sealing the connecting portion between the first cylindrical portion and the second cylindrical portion of the device element in which fluid is filled in the first cylindrical portion and the second cylindrical portion. Because
A male screw part is formed on the outer periphery of the first cylindrical part from the opening end of the first cylindrical part, and a female screw part is formed on the inner periphery of the second cylindrical part,
On the outer periphery of the first cylindrical portion, an annular first sealing surface centering on the axis of the first cylindrical portion is formed at a position opposite to the opening end portion of the male screw portion,
An opening end portion of the second cylindrical portion is an annular second seal surface whose center of rotation is the axis of the second cylindrical portion, and has an area larger than that of the first seal surface that fits within the first seal surface. A small second sealing surface is formed,
The male screw part and the female screw part are screwed together, and the first cylindrical surface and the second cylindrical part are joined by crimping the first seal surface and the second seal surface,
The first seal surface is formed in the screwing direction of the second cylindrical portion so as to generate an inward stress at the opening end portion of the second cylindrical portion by a thrust generated by tightening the male screw portion and the female screw portion . A seal structure, wherein the outer edge of the second seal surface is a tapered surface that first contacts the first seal surface by movement .
記第2シール面が前記軸線に直角なフラット面であることを特徴とする請求項1に記載のシール構造。 The seal structure of claim 1, prior Symbol second sealing surface is characterized by a perpendicular flat surface to the axis. 記第2シール面テーパ面であることを特徴とする請求項1に記載のシール構造。 The seal structure of claim 1 prior Symbol second sealing surfaces, characterized in that a tapered surface. 前記第1円筒部が真鍮であり、前記第2円筒部がステンレスであることを特徴とする請求項1乃至3のいずれか一項に記載のシール構造。   The seal structure according to any one of claims 1 to 3, wherein the first cylindrical portion is brass, and the second cylindrical portion is stainless steel. 弁ハウジングに形成された弁ポートを弁体により開閉して冷媒の流れを制御する弁本体と、ケース体内をダイヤフラムにより区画して受圧室と均圧室とを形成したダイヤフラム装置とを備え、前記受圧室の圧力と前記均圧室の圧力との差圧に応じて作動する前記ダイヤフラム及び前記弁体により前記弁ポートの弁開度を制御するようにした温度膨張弁において、前記請求項1乃至4のいずれか一項に記載のシール構造を備え、
前記弁ハウジングは、前記弁体を収容する円筒状の前記第1円筒部を有するとともに、前記ダイヤフラム装置のケース体は前記均圧室に連通する円筒状の前記第2円筒部を有し、
前記雄ねじ部と前記雌ねじ部を螺合して前記第1シール面と前記第2シール面を圧着することで前記弁ハウジングに対して前記ケース体を結合するよう構成されていることを特徴とする温度膨張弁。
A valve body for controlling the flow of refrigerant by opening and closing a valve port formed in the valve housing by a valve body, and a diaphragm device in which a case body is partitioned by a diaphragm to form a pressure receiving chamber and a pressure equalizing chamber, In the temperature expansion valve in which the valve opening degree of the valve port is controlled by the diaphragm and the valve body that operate in accordance with a differential pressure between the pressure in the pressure receiving chamber and the pressure in the pressure equalizing chamber, Comprising the seal structure according to any one of 4;
The valve housing has the cylindrical first cylindrical portion that houses the valve body, and the case body of the diaphragm device has the cylindrical second cylindrical portion that communicates with the pressure equalizing chamber,
The case body is coupled to the valve housing by screwing the male screw portion and the female screw portion and crimping the first seal surface and the second seal surface. Temperature expansion valve.
JP2011171640A 2011-08-05 2011-08-05 Seal structure and temperature expansion valve Active JP5535997B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011171640A JP5535997B2 (en) 2011-08-05 2011-08-05 Seal structure and temperature expansion valve
CN201210284399.1A CN102913656B (en) 2011-08-05 2012-08-06 Seal structure and a temperature expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171640A JP5535997B2 (en) 2011-08-05 2011-08-05 Seal structure and temperature expansion valve

Publications (2)

Publication Number Publication Date
JP2013036505A JP2013036505A (en) 2013-02-21
JP5535997B2 true JP5535997B2 (en) 2014-07-02

Family

ID=47612154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171640A Active JP5535997B2 (en) 2011-08-05 2011-08-05 Seal structure and temperature expansion valve

Country Status (2)

Country Link
JP (1) JP5535997B2 (en)
CN (1) CN102913656B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543199B2 (en) * 2016-01-15 2019-07-10 株式会社リメディオ Nozzle, dry spinning apparatus, nozzle set, and nozzle mounting method
JP6516696B2 (en) * 2016-03-01 2019-05-22 株式会社鷺宮製作所 Volume adjustment valve
JP2017156964A (en) * 2016-03-01 2017-09-07 株式会社鷺宮製作所 Capacity control valve
GB2549486B (en) * 2016-04-18 2020-12-02 Ford Global Tech Llc Improvements in or relating to metal-to-metal sealing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241437Y2 (en) * 1985-06-24 1990-11-05
JPH02166367A (en) * 1988-12-19 1990-06-27 Fuji Koki Seisakusho:Kk Temperature expansion valve
JPH0460280A (en) * 1990-06-27 1992-02-26 Japan Atom Energy Res Inst Metallic gasket
JPH0979703A (en) * 1995-09-08 1997-03-28 Denso Corp Thermo-sensitive expansion valve
JPH10253199A (en) * 1997-03-11 1998-09-25 Fuji Koki Corp Thermal expansion valve
FR2823826B1 (en) * 2001-04-23 2003-07-25 Commissariat Energie Atomique FLEXIBLE ELASTIC METALLIC SEAL WITH HIGH-SPEED PARTS
JP4498661B2 (en) * 2001-07-11 2010-07-07 株式会社バックス・エスイーブイ Metal gasket for vacuum apparatus and method for manufacturing the same
JP2004308791A (en) * 2003-04-07 2004-11-04 Nasco Fitting Kk Joint structure, plug, and pipe joint
JP4484656B2 (en) * 2004-10-01 2010-06-16 株式会社鷺宮製作所 Temperature-sensitive control valve and refrigeration cycle device
JP2007327672A (en) * 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve

Also Published As

Publication number Publication date
JP2013036505A (en) 2013-02-21
CN102913656A (en) 2013-02-06
CN102913656B (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN102939486B (en) There is the ball valve seal of dynamic C type Sealing and static C type Sealing
JP5535997B2 (en) Seal structure and temperature expansion valve
JP5550601B2 (en) Temperature expansion valve
JP2015055388A (en) Expansion valve
US6889909B2 (en) Expansion valve
JP5743744B2 (en) Diaphragm type fluid control valve
JP7014749B2 (en) Temperature expansion valve and refrigeration cycle system
WO2019181409A1 (en) Power element and expansion valve having same
JP5175135B2 (en) Flow control valve
JP6216551B2 (en) Pressure operated valve
JP2020060356A (en) Temperature type expansion valve, and refrigeration cycle system
JP7429602B2 (en) Thermostatic expansion valve and refrigeration cycle system
JPH02254270A (en) Temperature actuating type expansion valve
JP7378311B2 (en) valve device
JP2006105474A (en) Temperature differential type expansion valve
JP2012229885A (en) Temperature expansion valve
US20240011569A1 (en) Ball valve
CN110553054B (en) Valve member unit, ball valve and method of manufacturing ball valve
JP2017044357A (en) Expansion valve
JP3842354B2 (en) Temperature expansion valve
JP5393386B2 (en) Seal structure and control valve
US20230012455A1 (en) Power element and expansion valve using same
JP2018004234A (en) Expansion valve
JP4415096B2 (en) Expansion valve mounting structure
JP2020034131A (en) valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150