JP3842354B2 - Temperature expansion valve - Google Patents

Temperature expansion valve Download PDF

Info

Publication number
JP3842354B2
JP3842354B2 JP32858696A JP32858696A JP3842354B2 JP 3842354 B2 JP3842354 B2 JP 3842354B2 JP 32858696 A JP32858696 A JP 32858696A JP 32858696 A JP32858696 A JP 32858696A JP 3842354 B2 JP3842354 B2 JP 3842354B2
Authority
JP
Japan
Prior art keywords
passage
valve
valve body
diameter
temperature expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32858696A
Other languages
Japanese (ja)
Other versions
JPH10197104A (en
Inventor
美津也 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to JP32858696A priority Critical patent/JP3842354B2/en
Publication of JPH10197104A publication Critical patent/JPH10197104A/en
Application granted granted Critical
Publication of JP3842354B2 publication Critical patent/JP3842354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気調和装置、冷凍装置などの冷凍サイクルに用いられ、冷媒の流量を制御する温度膨張弁に関する。
【0002】
【従来の技術】
従来のボックス型温度膨張弁を冷凍サイクル中に配置した状態の縦断面図を図12に、またその弁本体とパワーエレメント部を示す概略斜視図を図13に示す。同図において、温度膨張弁1は角柱の例えばアルミニウム製の弁本体2と、弁本体に設けたコンデンサ41、レシーバ42からエバポレータ43に向かう冷媒の通る第一の通路3及びエバポレータ43からコンプレッサ40に向かう冷媒の通る第二の通路4と、第一の通路3に設けられたオリフィス5及び弁室3cと、このオリフィス5を通過する冷媒量を制御する弁体6と、弁体6をオリフィス5方向に弁部材6aを介して押圧するばね10の調整ねじ11を有する。調整ねじ11は弁本体2の下部の端面より第一の通路3の弁室3cに連通する装着穴2bに進退可能にねじ込まれており、Oリング11aがシール面2cに接して弁本体2と気密状態が確保されている。
【0003】
更に、弁本体2にはその上部端面に設けられ、その上下の圧力差により作動するダイヤフラム7を有するパワーエレメント部8と、その一端にてダイヤフラム7に接し、その他端にて弁体6を駆動する感温棒9とを有する。パワーエレメント部8は上ケース8−1、下ケース8−2と、これらに挾まれたダイヤフラム7とを溶接等により封着して感温室となる上部気密室8−3及び下部気密室8−4を形成し、上部気密室には所定の冷媒が封入管8−5により封入されており、弁本体2に螺着されている。そして上下の気密室の圧力差によりダイヤフラム7が変位し、弁体6を駆動す
【0004】
第一の通路3は、レシーバ42からの配管が接続される入口側通路3aより弁室3c及びオリフィス5を経てエバポレータ43への配管が接続される出口側通路3bに至る。また第二の通路4は、エバポレータ43からの配管が接続される入口側通路4aからコンプレッサ40への配管が接続される出口側通路4bに至る。なお、図13において、幅Wは弁本体2の入口側通路から出口側通路への方向の長さを示し、奥行Tは幅Wと直交する方向の長さを示し、高さHは弁本体2の上下端面間の長さを示す。
【0005】
かかる従来の温度膨張弁を冷凍サイクル中に配置するために温度膨張弁1の各通路3及び4に配管が接続されるのであり、この接続方法の一例を温度膨張弁の縦断面図を示す図9を用いて説明する。なお図9において図12と同一符号は同一又は均等部分を示している。同図において、配管12の先端はOリング13の内周面が対接する円周面12aと、Oリング13の側面が対接する突部12bとが形成してある。そして配管12の先端にOリング13を装着し、弁本体2の各通路3及び4の入口通路3a及び出口側通路4bの円弧断面部14にOリング13を対接させ固定すると、Oリング13は円周面12a、突部12b及び円弧断面部14により圧縮されて密接し、温度膨張弁1に配管12が気密状態で接続され
【0006】
【発明が解決しようとする課題】
かかる従来の温度膨張弁と配管との接続方法においては、Oリングは円周面12a、突部12b及び円弧断面部14により保持されて圧縮されるため変形しやすく、信頼性が劣るという問題が生じることがあった。しかもかかる問題が生じた場合には、冷媒による地球環境への影響という問題が考慮され、特に信頼性の向上は要求されている。
【0007】
そこで信頼性を向上させるために図10に示すような接続方法を採用することが考えられる。なお図10は温度膨張弁の縦断面図であり、図12と同一符号は同一又は均等部分を示す。この方法では出口側通路4bと入口側通路3aとに接続される配管15の先端より距離d又はd1 にわたって形成した円周面15aと、この円周面より立上げた突部15bとを設けてあり、円周面15aにはOリング16が嵌入する凹部15cが形成してある。なお突部15bは配管15を温度膨張弁1に接続するときに押え部材(図示せず)により係止するためのものである。
【0008】
配管15の円周面15aの直径は弁本体2の通路4b,3aよりわずかに小径に形成され、Oリング16が通路4b,3aに密接して配管15は温度膨張弁1に接続されるのである。このように通路に接続される配管の通路接続部分である先端部分に凹部を形成し、この凹部に嵌入されるOリングにより当該通路と配管との両者間のシールを実現する配管の接続方法を以下円筒シール方法と称する。
【0009】
この円筒シール方法においては、Oリングは通路から圧縮されるのみであり、Oリングの変形が少なく信頼性が向上するが、配管15の当該通路に挿入される先端部分に円周面15aを有するため、通路に挿入される深さが長くなるのである。このように通路に挿入される深さd又はd1 が長くなった場合、特に深さd1 が長くなると、装着穴2bと入力側通路3aとが干渉するおそれがある。例えば図12及び図13に示す従来の温度膨張弁において、弁本体の幅Wが29mm程度、高さHが73.5mm程度、奥行きTが26mm程度であり、図10の弁本体の下部のみを示す図11のように、装着穴2bのシール面2cの直径φが13mm程度のとき、配管の深さd1 を8mm程度とした場合に干渉するおそれがあり、d1 を8mm以上とした場合には干渉することにな
【0010】
即ち、図10に示す温度膨張弁1の要部である弁本体2の装着穴2bの拡大部分を図11に示すように、干渉により装着穴2bのシール面2cが入力側通路3aにより一部切削されると、図10に示す調整ねじ11に装着したOリング11aの気密不良等の不具合が生じるのである。また、通路が深くなることにより弁本体の肉厚が薄くなり強度が低下するおそれが生じ、気密不良を生じる場合がある。本発明はかかる点に鑑み、温度膨張弁の大幅な構成の変更をすることなく、気密不良を防止できる冷凍サイクル用の配管の接続が可能な温度膨張弁を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記目的を達成すべく本発明の温度膨張弁は、レシーバからエバポレータに向かう冷媒の通る第一の通路及びエバポレータからコンプレッサに向かう冷媒の通る第二の通路が形成されている弁本体と、上記弁本体の上端部に設けられ上下の圧力差により作動するダイヤフラムを有するパワーエレメント部と、上記ダイヤフラムの変位に応じて上下に駆動され上記第一の通路中に設けられたオリフィスを開閉する弁体と、上記弁体を閉方向に押圧する圧縮コイルばねと、上記弁本体の下端部に形成された装着穴に螺着され、上記圧縮コイルばねの押圧力を調整するための調整ねじと、を備えた温度膨張弁において、上記装着穴には、上記弁本体の下端面から上方に向けて、上記調整ねじが螺合する雌ねじ部と、上記調整ねじの外周に装着されたOリングがシール係合するシール円筒部とが順次形成され ており、上記第一の通路は、上記シール円筒部の上端に連通し上記シール円筒部よりも小径で且つ上端面に上記オリフィスの一端が開口している弁室と、上記弁本体の一方の側面から上記弁室の側面に向けて形成され配管が挿入接続される入口側通路と、を有しており、上記入口側通路は、上記弁本体の上記一方の側面側に形成され上記配管の外周に装着されたOリングが接することにより円筒シールを実現する大径の入口シール円筒部と、上記入口シール円筒部と上記弁室との間に位置するとともにこれらを相互に連通接続し上記入口シール円筒部よりも小径の小径通路部と、を有しており、上記小径通路部は、上記入口シール円筒部と段差を介して接続され、この段差が上記シール円筒部と上記入口シール円筒部との間の壁を提供している、ことを特徴としている。上記弁本体は、上記入口側通路に円筒シール方法により配管を接続するため、この入口側通路には上記弁室と干渉しないような小径通路部の長さが確保されている。
【0012】
上記温度膨張弁において、上記小径通路部の上記入口シール円筒部との接続端が上記入口シール円筒部に対して径方向外側に位置するように上記小径通路部の長さを確保してある。
【0013】
上記温度膨張弁において、上記入口側通路を上記弁室の径方向外側にのみ配置して上記入口シール円筒部の長さを確保してある
【0014】
また本発明による別の温度膨張弁はレシーバからエバポレータに向かう冷媒の通る第一の通路及びエバポレータからコンプレッサに向かう冷媒の通る第二の通路が形成されている弁本体と、上記弁本体の上端部に設けられ上下の圧力差により作動するダイヤフラムを有するパワーエレメント部と、上記ダイヤフラムの変位に応じて上下に駆動され上記第一の通路中に設けられたオリフィスを開閉する弁体と、上記弁体を閉方向に押圧する圧縮コイルばねと、上記弁本体の下端部に形成された装着穴に螺着され、上記圧縮コイルばねの押圧力を調整するための調整ねじと、を備えた温度膨張弁において、上記装着穴には、上記弁本体の下端面から上方に向けて、上記調整ねじが螺合する雌ねじ部と、上記調整ねじの外周に装着されたOリングがシール係合するシール円筒部とが順次形成されており、上記第一の通路は、上記シール円筒部の上端に連通し上記シール円筒部よりも小径で且つ上端面に上記オリフィスの一端が開口している弁室と、上記オリフィスの他端に連通し上記弁本体の一方の側面に向かって延びるとともに外周にOリングが装着された配管を円筒シール方法により挿入接続可能な長さを有する出口シール円筒部を含む出口側通路と、を有しており、上記弁室は、下端側の大径部と、上記大径部の上端から上方に延びる小径部とから成っており、上記弁室の小径部は、上記出口側通路との間に所定の肉厚を確保するように形成されている、ことを特徴としている。上記弁本体の出口側通路に対して所定配管を円筒シール方法により接続するため、上記弁室の小径部と上記出口側通路との間に所定のスペースが確保される。
【0015】
上記出口側通路は、上記弁本体の上記一方の側面側に形成された大径部と、上記大径部に連続して形成され上記オリフィスの他端に連通する小径部と、を有することができる。
また、上記出口側通路の小径部は、上記弁室の上方に位置するとともに上記オリフィスを介して上記弁室に連通させることができる。
また、上記出口側通路の大径部は、上記出口シール円筒部とすることができる。
更にまた、上記出口側通路の大径部は、上記弁室の大径部よりも上方で且つ上記弁室の小径部よりも径方向外側に位置させることができる。
上記スペースは、弁本体の幅を増加させて確保することができる。また上記スペースは、弁本体の高さを増加させて確保することができる更に上記スペースは、弁本体の配管の間隔を変更して確保することができる。そして上記スペースは、高圧冷媒が供給される側の弁本体の幅を増加させて確保することができる。上記の如く構成された本発明の温度膨張弁は、大幅な構成の変更なく配管が円筒シール方法により接続され、気密の信頼性を向上させることができる。
【0016】
【発明の実施の形態】
以下本発明の一実施の形態を詳細に説明する。図1は本実施の形態に係る温度膨張弁の冷凍サイクルにおける縦断面図、図2は図1の弁本体に関する要部の縦断面図を示している。図1において、温度膨張弁20の弁本体21には冷凍サイクルの冷媒管路においてコンデンサ41の冷媒出口からレシーバ42を介してエバポレータ43の冷媒入口へと向かう部分に介在される冷媒が通過する第一の通路22と、冷媒管路においてエバポレータ43の冷媒出口からコンプレッサ40の冷媒入口へと向かう部分に介在される冷媒が通過する第二の通路23とが上下に相互に離間して形成されている。
【0017】
第一の通路22にはレシーバ42の冷媒出口から供給された液相冷媒を断熱膨張させるためのオリフィス22cが形成されており、第一の通路22は、入口側通路22aよりオリフィス22cを介して出口側通路22bに至る。オリフィス22cは弁本体21の長手方向に沿った中心線上に位置している。オリフィス22cの入口には弁座が形成されていて、弁座には弁部材24aにより支持された弁体24が存在し、弁体24と弁部材24aとは溶接により固定されている。弁部材24aは、弁体24と溶接により固着されると共に圧縮コイルばね24bの一端によりオリフィスの方向に押圧されている。なお、弁体24は弁部材24aに当接する構成でもよい。
【0018】
25は調整ねじであり、弁本体21の下端部に設けられ、第一の通路22と連通する装着穴26にねじ込まれており、ばね24bの他端が接している。調整ねじ25は装着穴26に形成されてシール面を提供しているシール円筒部26aにOリング27がシール係合することによりシールされており、下端の六角穴25aにより密封状態で進退可能であり、ばね24bの押圧力を調整し、弁体24の弁開度を調節するものである。
【0019】
弁本体21の上端部にはパワーエレメント部28がパッキン29を介して密封状態に螺着されている。パワーエレメント部28は上カバー28−1と、下カバー28−2と、これらに挾まれたダイヤフラム30とを封着して形成した上部気密室28−3と、下部気密室28−4とを有し、感温室となる上部気密室には所定の冷媒等が封入されている。下部気密室にはその上面がダイヤフラム30と接する感温棒31が位置している。感温棒31の下端は孔32にOリング32aを介して挿入されており、感温棒31は弁本体21に対して摺動自在に取付けられる。
【0020】
33は作動棒であり、上端は感温棒31の下端に接し、下端は弁体24に接している。そして上部気密室に封入された冷媒の圧力と下部気密室の冷媒の圧力との圧力差によりダイヤフラム30が変位し、ダイヤフラムの変位が感温棒31及び作動棒33を介して弁体24を変位させ、第一の通路22のオリフィス22cと弁体24との間隙を制御することにより、第一の通路22における冷媒の流量を制御するものである。
【0021】
温度膨張弁20は上記構成であり、次にこの温度膨張弁と配管との接続について述べる。即ち、本実施の形態では温度膨張弁20の弁本体21の幅Wが、図1及び図2に示すように△Wだけ大きく構成されているので、入口側通路22aにおいて、弁本体21の側面側に形成されている大径の入口シール円筒部22dに対して、上記円筒シール方法により配管を接続した場合であっても、上記△Wだけ入口側通路22aが長く構成されていることとなり、この結果、接続された配管の先端部の先端面と装着穴26までの距離が長くなり、この距離を円筒シールのためのスペースとして確保でき、入口側通路22aと装着穴26とが干渉することが防止できるのである。したがって、調整ねじ25に装着したOリング27の気密不良を避けることが可能となる。而して、本実施の形態では温度膨張弁20の構成は、従来の図12に示す温度膨張弁の全幅Wが29mm程度の場合において、△Wとして1.5mm程度を両側に増加しており、全幅Wは32mm程度となる。これにより、温度膨張弁の構成を殆んど変化させることはないのである。
【0022】
かかる実施の形態の図1に示す温度膨張弁に、上記円筒シール方法による配管を接続した場合の適用例を図14に示す。図14において弁本体21の各通路22及び23には配管34がそれぞれ円筒シール方法により接続されている。即ち、配管34には距離d,d1 の先端部にわたって形成した円周面34aが形成されるとともに、円周面34aより立上げられ弁本体21に取付ける際に係止される突部34bが全周にわたって形成してある。また円周面34aにはOリング35が嵌入される凹部34cが形成されており、Oリング35は、入口側通路22aの入口シール円筒部にシール係合する。図2に示すように、入口側通路22aのうち、弁本体21の側面側には大径の入口シール円筒部22dが形成されている。また、入口側通路22aの入口シール円筒部22dと、第一の通路22の一部として形成されている弁室39とを接続する部分には、入口シール円筒部22dと比較して小径の通路部22eが形成されている。通路部2eは、装着穴26のシール円筒部26bより径方向外側の位置まで延びる軸方向長さに設定されている。通路部2eをそうした軸方向長さに形成することで、入口シール円筒部22dと通路部2eとの形状及び配置が限定され、入口シール円筒部22dの弁本体21内への最奥部と装着穴26との間には間隙37が形成される。こうした間隙37によって、装着穴26のシール円筒部26bと入口側通路22aの入口シール円筒部22dとの間には所定距離確保され、両部の直接の干渉を防止することができる。
【0023】
更に、本実施の形態では、図15に示されるようなプレス成形の配管36にて冷凍サイクルを構成する場合に、配管36を温度膨張弁に接続することもできるのは勿論であり、入口側通路と装着穴との干渉を防止することができる。特に、プレス成形の配管の場合では円周面36a、突部36b、凹部36cを形成する配管であるため上記干渉を生じ易く、本発明によればそれを防止するのに有効である。
【0024】
次に、本発明の第二の実施の形態を図3に基づいて説明する。図3は図1に示す温度膨張弁20の弁本体21の要部構成を示す下部の縦断面図であり、弁本体21の幅Wは一定で高さHに対し△Hだけ増加させて円筒シール方法により接続するスペースを確保している。このため装着穴26の高さLが一定であるので、弁本体21は、装着穴26と通路22aとが干渉しない小径の通路部22eの長さを確保できる。本実施形態では、例えば高さHは73.5mm程度、△Hは1.5mm程度であり、全高は75mm程度の構成としている。
【0025】
本発明の第三の実施の形態を弁本体の縦断面図である図4に基づいて説明する。同図において、弁本体21は幅W、高さHは一定であり、入口側通路22aを上方に△Pだけ変位させ、上部通路23bとの間隔Pを減少させて円筒シール方法により接続するスペースを確保している。このため弁本体21は、装着穴26と入口側通路22aとが干渉しない小径の通路部22eの長さを確保できる。なお間隔Pは例えば40mm程度、△Pは1.5mm程度であり、変更後の間隔は38.5mm程度である。
【0026】
本発明の第四の実施の形態を弁本体の下部の縦断面図である図5に基づいて説明する。同図において、弁本体21は幅Wを片側だけ△Wだけ増加させて円筒シール方法により接続するスペースを確保している。すなわち△Wはレシーバからの高圧液冷媒が供給される入口側通路22a側に設けてあり、高圧側の幅を増加させることにより、高圧側のシールの長期信頼性を向上させるものである。このため、弁本体21は装着穴26と入口側通路22aとが干渉しない小径の通路部22eの長さを確保でき、△Wの増加が片側であるので弁本体21の材料を節約できる。本実施形態では、例えば幅Wは29mm程度、△Wは1.5mm程度であり、全幅30.5mm程度の構成としている。
【0027】
本発明の第五の実施の形態を温度膨張弁の縦断面図である図6に基づいて説明する。なお図6において、図1と同一又は均等部分は同一符号で示す。同図において、温度膨張弁20の弁本体21は、幅W、高さHは一定であり、調整ねじ25の装着穴26の高さEをもとの高さL(図3参照)より減少させ、円筒シール方法により配管を接続する通路長を確保している。即ち、装着穴26の高さLを例えば10mm程度から1〜2mm減少させて、高さEを8〜9mmとして、通路22aと装着穴26とが干渉しない小径の通路部22eの長さを確保している。
【0028】
そして第一の実施形態と同じ寸法の調整ねじ25の調整ストロークを確保するため、高さFの調整ねじ25を△Fだけ突出させて弁本体21に装着している。この突出量△Fは1.5mm程度に設定される。この実施形態では調整ねじ25は変更せず、ばね24bは自由長が1.5mm程度大きく、所定の押圧力の得られるものが採用される。なお、装着穴26は座グリ形状に上端が平坦面に形成され、装着穴26と入口側通路22との接近部分における肉厚を大きく残すようにしている。本実施形態では、弁本体21の装着穴26の高さを減少させ、ばね24bを自由長の大きいものに変更するだけで円筒シール方法による配管が可能となる。
【0029】
本発明の第六の実施の形態を、弁本体の下部の縦断面図である図7に基づいて説明する。なお、図において、図1と同一又は均等部分は同一符号で示す。同図において、弁本体21は幅W、高さHは一定であり、調整ねじ25の装着穴26の高さEをもとの高さL(図3参照)より減少させ、円筒シール方法により配管を接続する通路長を確保している。すなわち、装着穴26の高さLを例えば10mm程度から1〜2mm減少させて、高さEを8〜9mmとして、入口側通路22aと装着穴26とが干渉しない小径の通路部22eの長さを確保している。
【0030】
そして調整ねじ38は、第一の実施形態と同じ寸法の調整ねじ25の高さFより1.5mm程度減少させて高さGとし、調整ねじ38が弁本体21より突出しない状態で装着されている。調整ねじ38のばね受面の座グリ深さは小さく設定されており、ばね24bは第一の実施形態と同じものが採用されている。なお装着穴26の上面は第五の実施形態と同様平坦面となっている。38aは六角穴である。本実施形態では、弁本体21の装着穴26の高さを減少させ、調整ねじ38を高さを減少させたものとするだけで円筒シール方法を適用できる。また、調整ねじ38は弁本体21より突出しないため、組立時等に他の物がぶつかり調整ねじが緩むといった不具合を解消できる。
【0031】
本発明の第七の実施の形態を温度膨張弁の縦断面図である図8に基づいて説明する。なお本実施形態は第一の実施形態において、弁室39と出口側通路22bとの間の肉厚が薄くなる場合を改良するものである。
同図において、温度膨張弁20の弁本体21は、幅Wの両側に△W増加させ、高さはHで第一の実施形態と外形が同一である。第一の通路22は入口側通路22aより弁室39及びオリフィス22cを経て出口側通路22bに至るものである。そして弁室39は直径Iの大径部39aと直径Iより小さい直径Jの小径部39bとを有しており、小径部39bは第一の通路22の出口側通路22bと所定の肉厚kを確保するように設けてある。なお小径部39bは弁体24を上方に押圧するばね24のばね受24bの移動を阻害しない直径に設定してある。なお図8において、図1と同一又は均等部分は同一符号で示す。
【0032】
本実施形態では、例えば大径部39aの直径Iは10mm程度、小径部39bの直径Jは8mm程度、出口側通路22bの奥行は8.5mm程度で肉厚kは2mm程度確保されており、冷媒の高圧にも十分耐える肉厚が確保されている。
【0033】
【発明の効果】
本発明の温度膨張弁は、大幅に構成を変更させることなく、円筒シール方法により配管を接続できるため、温度膨張弁と配管との気密の信頼性を向上させることができ、冷媒の漏洩を防止することができる。また、第一の通路の入口側通路及び出口側通路と、弁室との配置・形状により、入口・出口側通路と弁室との間には、充分な隙間や肉厚を確保することができ、両者の直接の干渉を回避するとともに、強度の確保や設計・製造で余裕を持たせることができるという、温度膨張弁としての格別な作用・効果が得られる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態を示す温度膨張弁の冷凍サイクルにおける縦断面図。
【図2】本発明の第一の実施形態を示す温度膨張弁の弁本体の要部縦断面図。
【図3】本発明の第二の実施形態を示す温度膨張弁の弁本体の要部縦断面図。
【図4】本発明の第三の実施形態を示す温度膨張弁の弁本体の縦断面図。
【図5】本発明の第四の実施形態を示す温度膨張弁の弁本体の要部縦断面図。
【図6】本発明の第五の実施形態を示す温度膨張弁の縦断面図。
【図7】本発明の第六の実施形態を示す温度膨張弁の要部縦断面図。
【図8】本発明の第七の実施形態を示す温度膨張弁の縦断面図。
【図9】従来の接続方法により配管の一部を接続した温度膨張弁の冷凍サイクルにおける縦断面図。
【図10】円筒シール方法により配管の一部を接続した従来の温度膨張弁の縦断面図。
【図11】円筒シール方法により配管を接続する従来の温度膨張弁の干渉部分を説明する弁本体の要部縦断面図。
【図12】従来の温度膨張弁の冷凍サイクルにおける縦断面図。
【図13】従来の温度膨張弁の概略斜視図。
【図14】本発明の第一の実施形態を示す温度膨張弁に配管の一部を接続した冷凍サイクルにおける縦断面図。
【図15】配管の従来の例を示す断面図。
【符号の説明】
20 温度膨張弁
21 弁本体
22 第一の通路
22a 入口側通路
22b 出口側通路
22c オリフィス
22d 入口シール円筒部
22e 小径の通路部
22f 出口シール円筒部
23 第二の通路
24 弁体
24b ばね
25 調整ねじ
26 装着穴
26b シール円筒部
28 パワーエレメント部
30 ダイヤフラム
31 感温棒
34 配管
34c 凹部
35 Oリング
39 弁室
[0001]
BACKGROUND OF THE INVENTION
  The present invention,Air conditioning equipment, refrigeration equipment, etc.Refrigeration cycleAnd relates to a temperature expansion valve that controls the flow rate of the refrigerant.
[0002]
[Prior art]
  FIG. 12 is a longitudinal sectional view showing a state in which a conventional box-type temperature expansion valve is arranged in a refrigeration cycle, and FIG. 13 is a schematic perspective view showing the valve body and a power element portion. In the figure, the temperature expansion valve 1 includes a prism main body 2 made of aluminum, for example, and a valve main body.2The first passage 3 through which the refrigerant from the receiver 41 to the evaporator 43 passes.as well asA second passage 4 through which refrigerant flows from the evaporator 43 to the compressor 40 and an orifice 5 provided in the first passage 3as well asIt has a valve chamber 3c, a valve body 6 that controls the amount of refrigerant that passes through the orifice 5, and an adjustment screw 11 of a spring 10 that presses the valve body 6 in the direction of the orifice 5 through the valve member 6a. The adjusting screw 11 is screwed from the lower end face of the valve body 2 into a mounting hole 2b communicating with the valve chamber 3c of the first passage 3, so that the O-ring 11a contacts the seal surface 2c and the valve body 2 An airtight state is secured.
[0003]
  In addition,The valve body 2 is provided on the upper end surface thereof, and has a power element portion 8 having a diaphragm 7 that operates according to a pressure difference between the upper and lower sides thereof, a feeling of driving the valve body 6 at the other end, contacting the diaphragm 7 at one end. And a hot bar 9. The power element portion 8 includes an upper case 8-1 and a lower case 8-2, and an upper hermetic chamber 8-3 that seals the diaphragm 7 sandwiched between them by welding or the like and serves as a temperature sensing chamber.as well asA lower hermetic chamber 8-4 is formed, and a predetermined refrigerant is sealed in the upper hermetic chamber by a sealing tube 8-5 and screwed to the valve body 2. The diaphragm 7 is displaced by the pressure difference between the upper and lower airtight chambers, and the valve body 6 is driven.Ru.
[0004]
  The first passage 3 has a valve chamber 3c from an inlet side passage 3a to which a pipe from the receiver 42 is connected.as well asIt reaches the outlet side passage 3b through which the pipe to the evaporator 43 is connected via the orifice 5. The second passage 4 extends from the inlet side passage 4a to which the piping from the evaporator 43 is connected to the outlet side passage 4b to which the piping to the compressor 40 is connected. In FIG. 13, the width W indicates the length of the valve body 2 in the direction from the inlet side passage to the outlet side passage, the depth T indicates the length in the direction orthogonal to the width W, and the height H indicates the valve body. 2 shows the length between the upper and lower end surfaces.
[0005]
  In order to place such a conventional temperature expansion valve in the refrigeration cycle, each passage 3 of the temperature expansion valve 1as well asAn example of this connection method will be described with reference to FIG. 9 showing a longitudinal sectional view of the temperature expansion valve. In FIG. 9, the same reference numerals as those in FIG. 12 are the same.OrThe uniform part is shown. In the same figure, the front end of the pipe 12 is formed with a circumferential surface 12a with which the inner peripheral surface of the O-ring 13 contacts and a protrusion 12b with which the side surface of the O-ring 13 contacts. Then, an O-ring 13 is attached to the tip of the pipe 12, and each passage 3 of the valve body 2 isas well as4 entrance passage 3aas well asWhen the O-ring 13 is brought into contact with and fixed to the circular-arc cross-section 14 of the outlet side passage 4b, the O-ring 13 has a circumferential surface 12a and a protrusion 12b.as well asThe pipe 12 is connected to the thermal expansion valve 1 in an airtight state by being compressed and intimately compressed by the arc cross section 14.Ru.
[0006]
[Problems to be solved by the invention]
  In such a conventional method of connecting a temperature expansion valve and piping, the O-ring has a circumferential surface 12a and a protrusion 12b.as well asSince it is held and compressed by the circular arc cross-section portion 14, it may be easily deformed, resulting in a problem of poor reliability. Moreover, when such a problem occurs, the problem of the influence of the refrigerant on the global environment is taken into consideration, and in particular, improvement in reliability is required.
[0007]
  In order to improve the reliability, it is conceivable to employ a connection method as shown in FIG. 10 is a longitudinal sectional view of the temperature expansion valve, and the same reference numerals as those in FIG. 12 denote the same or equivalent parts. In this method, the distance d from the tip of the pipe 15 connected to the outlet side passage 4b and the inlet side passage 3a.OrA circumferential surface 15a formed over d1 and a protrusion 15b raised from the circumferential surface are provided, and a concave portion 15c into which the O-ring 16 is fitted is formed on the circumferential surface 15a. The protrusion 15b is for locking by a pressing member (not shown) when the pipe 15 is connected to the temperature expansion valve 1.
[0008]
  Since the diameter of the circumferential surface 15a of the pipe 15 is slightly smaller than the passages 4b and 3a of the valve body 2, and the O-ring 16 is in close contact with the passages 4b and 3a, the pipe 15 is connected to the temperature expansion valve 1. is there. In this way, a pipe connection method is provided in which a recess is formed in a tip portion which is a passage connection portion of a pipe connected to the passage, and a seal between the passage and the pipe is realized by an O-ring inserted into the recess. Hereinafter, it is referred to as a cylindrical sealing method.
[0009]
  In this cylindrical sealing method, the O-ring is only compressed from the passage and the O-ring is less deformed and the reliability is improved. However, the pipe 15 has a circumferential surface 15a at the tip portion inserted into the passage. Therefore, the depth inserted into the passage becomes longer. The depth d thus inserted into the passageOrWhen d1 becomes long, especially when the depth d1 becomes long, the mounting hole 2b and the input side passage 3a may interfere with each other. For example, FIG.as well asIn the conventional temperature expansion valve shown in FIG. 13, the width W of the valve body is about 29 mm, the height H is about 73.5 mm, the depth T is about 26 mm, and only the lower part of the valve body of FIG. Thus, when the diameter φ of the seal surface 2c of the mounting hole 2b is about 13 mm, there is a risk of interference when the pipe depth d1 is about 8 mm, and when d1 is 8 mm or more, there is an interference. NaRu.
[0010]
  That is, as shown in FIG. 11, an enlarged portion of the mounting hole 2b of the valve main body 2 which is a main part of the temperature expansion valve 1 shown in FIG. 10 is partly connected to the seal surface 2c of the mounting hole 2b by the input side passage 3a. When cut, problems such as an airtight defect of the O-ring 11a attached to the adjustment screw 11 shown in FIG. 10 occur. Further, when the passage is deepened, the thickness of the valve main body may be reduced and the strength may be reduced, which may result in poor airtightness. In view of this point, an object of the present invention is to provide a temperature expansion valve that can be connected to a pipe for a refrigeration cycle that can prevent a hermetic failure without significantly changing the configuration of the temperature expansion valve.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, the temperature expansion valve of the present invention includes a first passage through which refrigerant flows from the receiver to the evaporator, and a second passage through which refrigerant flows from the evaporator to the compressor.Is formedProvided on the valve body and the upper end of the valve body.A power element portion having a diaphragm that operates by a pressure difference between the upper and lower sides, a valve body that is driven up and down according to the displacement of the diaphragm and opens and closes an orifice provided in the first passage, and the valve body in a closing direction A temperature expansion valve comprising: a compression coil spring that presses against the valve body; and an adjustment screw that is screwed into a mounting hole formed in a lower end portion of the valve body and adjusts the pressing force of the compression coil spring. From the lower end surface of the valve body to the mounting hole, an internal thread portion into which the adjustment screw is screwed and a seal cylindrical portion to which an O-ring mounted on the outer periphery of the adjustment screw is sealingly engaged are sequentially formed. Formed The first passage communicates with the upper end of the seal cylindrical portion, has a smaller diameter than the seal cylindrical portion, and has one end of the orifice opened at the upper end surface, and one of the valve main bodies. An inlet side passage formed from a side surface toward the side surface of the valve chamber and into which piping is inserted and connected, and the inlet side passage is formed on the one side surface side of the valve body and A large-diameter inlet seal cylindrical portion that realizes a cylindrical seal by contacting an O-ring mounted on the outer periphery, and is positioned between the inlet seal cylindrical portion and the valve chamber and communicated with each other to connect the inlet A small-diameter passage portion having a smaller diameter than the seal cylindrical portion, and the small-diameter passage portion is connected to the inlet seal cylindrical portion via a step, and the step is connected to the seal cylindrical portion and the inlet seal cylindrical portion. Offers a wall between ,It is characterized by that.Since the valve body connects the pipe to the inlet side passage by a cylindrical sealing method, the inlet side passage has a small diameter passage portion that does not interfere with the valve chamber.
[0012]
  In the temperature expansion valve, the length of the small-diameter passage portion is ensured so that a connection end of the small-diameter passage portion with the inlet seal cylindrical portion is located radially outside the inlet seal cylindrical portion.
[0013]
  In the temperature expansion valve, the inlet-side passage is disposed only on the radially outer side of the valve chamber to ensure the length of the inlet seal cylindrical portion..
[0014]
  The present inventionBy anotherTemperature expansionValve,A valve body in which a first passage through which refrigerant flows from the receiver to the evaporator and a second passage through which refrigerant flows from the evaporator to the compressor are formed, and the upper end portion of the valve body is operated by an upper and lower pressure difference. A power element portion having a diaphragm; a valve body that is driven up and down in response to displacement of the diaphragm to open and close an orifice provided in the first passage; and a compression coil spring that presses the valve body in a closing direction. A temperature expansion valve that is screwed into a mounting hole formed in a lower end portion of the valve main body and adjusts the pressing force of the compression coil spring. From the lower end surface of the main body upward, an internal thread portion in which the adjustment screw is screwed and a seal cylindrical portion in which an O-ring attached to the outer periphery of the adjustment screw is in sealing engagement are sequentially arranged. The first passage is formed in a valve chamber communicating with the upper end of the seal cylindrical portion and having a smaller diameter than the seal cylindrical portion and having one end of the orifice opened at the upper end surface. An outlet-side passage including an outlet seal cylindrical portion having a length that is connected to an end and extends toward one side surface of the valve main body and that can be inserted and connected to a pipe having an O-ring attached to the outer periphery thereof by a cylindrical sealing method; The valve chamber includes a large-diameter portion on a lower end side and a small-diameter portion extending upward from the upper end of the large-diameter portion, and the small-diameter portion of the valve chamber is connected to the outlet-side passage. It is formed so as to ensure a predetermined thickness betweenIt is characterized by that.Since a predetermined pipe is connected to the outlet side passage of the valve body by a cylindrical sealing method, a predetermined space is secured between the small diameter portion of the valve chamber and the outlet side passage.
[0015]
  The outlet-side passage has a large-diameter portion formed on the one side surface side of the valve body, and a small-diameter portion that is formed continuously with the large-diameter portion and communicates with the other end of the orifice. it can.
  The small-diameter portion of the outlet-side passage can be positioned above the valve chamber and communicated with the valve chamber via the orifice.
  The large diameter portion of the outlet side passage may be the outlet seal cylindrical portion.
  Furthermore, the large diameter portion of the outlet side passage can be positioned above the large diameter portion of the valve chamber and radially outside the small diameter portion of the valve chamber.
  The above space is secured by increasing the width of the valve body.be able to. The above space is secured by increasing the height of the valve body.be able to.MoreThe above space is secured by changing the piping interval of the valve body.be able to. The space is secured by increasing the width of the valve body on the side where the high-pressure refrigerant is supplied.be able to. In the temperature expansion valve of the present invention configured as described above, piping is connected by a cylindrical sealing method without significant change in configuration, and the airtight reliability can be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, an embodiment of the present invention will be described in detail. FIG. 1 shows this embodiment.Pertaining toFIG. 2 is a longitudinal sectional view of a main part of the valve main body of FIG. 1 in a refrigeration cycle of the temperature expansion valve. In FIG. 1, the valve body 21 of the temperature expansion valve 20 passes through the refrigerant interposed in the refrigerant line of the refrigeration cycle from the refrigerant outlet of the condenser 41 to the refrigerant inlet of the evaporator 43 via the receiver 42. One passage 22 and a second passage 23 through which the refrigerant interposed in a portion of the refrigerant pipe from the refrigerant outlet of the evaporator 43 to the refrigerant inlet of the compressor 40 passes are formed apart from each other in the vertical direction. Yes.
[0017]
  The first passage 22 is formed with an orifice 22c for adiabatic expansion of the liquid-phase refrigerant supplied from the refrigerant outlet of the receiver 42. The first passage 22 passes through the orifice 22c from the inlet-side passage 22a. It reaches the outlet side passage 22b. The orifice 22 c is located on the center line along the longitudinal direction of the valve body 21. A valve seat is formed at the inlet of the orifice 22c, and a valve body 24 supported by a valve member 24a exists in the valve seat, and the valve body 24 and the valve member 24a are fixed by welding. The valve member 24a is a valve body24And is pressed in the direction of the orifice by one end of the compression coil spring 24b. The valve body 24 may be configured to contact the valve member 24a.
[0018]
  An adjustment screw 25 is provided at the lower end of the valve body 21 and is screwed into a mounting hole 26 communicating with the first passage 22, and the other end of the spring 24 b is in contact therewith. The adjusting screw 25 has a mounting hole 26.Seal cylindrical portion 26a formed to provide a sealing surfaceO-ring 27The seal engagingIt can be advanced and retracted in a sealed state by the hexagonal hole 25a at the lower end, adjusts the pressing force of the spring 24b, and adjusts the valve opening degree of the valve body 24.
[0019]
  A power element portion 28 is screwed to the upper end portion of the valve body 21 through a packing 29 in a sealed state. The power element portion 28 includes an upper airtight chamber 28-3 formed by sealing an upper cover 28-1, a lower cover 28-2, and a diaphragm 30 sandwiched therebetween, and a lower airtight chamber 28-4. A predetermined refrigerant or the like is sealed in the upper hermetic chamber serving as a temperature sensitive greenhouse. A temperature sensing rod 31 whose upper surface is in contact with the diaphragm 30 is located in the lower hermetic chamber. The lower end of the temperature sensing rod 31 is inserted into the hole 32 via an O-ring 32a, and the temperature sensing rod 31 is slidably attached to the valve body 21.
[0020]
  Reference numeral 33 denotes an operating rod, whose upper end is in contact with the lower end of the temperature sensing rod 31 and whose lower end is in contact with the valve body 24. The diaphragm 30 is displaced by the pressure difference between the pressure of the refrigerant sealed in the upper hermetic chamber and the pressure of the refrigerant in the lower hermetic chamber, and the displacement of the diaphragm is the temperature sensing rod 31.as well asThe flow rate of the refrigerant in the first passage 22 is controlled by displacing the valve body 24 via the operating rod 33 and controlling the gap between the orifice 22c of the first passage 22 and the valve body 24.
[0021]
  The temperature expansion valve 20 has the above configuration,nextThe connection between this temperature expansion valve and piping will be described. That is, in this embodiment, the width W of the valve main body 21 of the temperature expansion valve 20 is configured to be larger by ΔW as shown in FIGS.In contrast, with respect to the large-diameter inlet seal cylindrical portion 22d formed on the side surface of the valve body 21,Even when the pipe is connected by the cylindrical sealing method, the inlet-side passage 22a is configured to be long by ΔW. As a result, the tip end surface of the connected pipe and the mounting hole 26 are connected. This distance becomes longer, and this distance can be secured as a space for the cylindrical seal, and the entrance side passage 22a and the mounting hole 26 can be prevented from interfering with each other. Therefore, it is possible to avoid a poor airtightness of the O-ring 27 attached to the adjustment screw 25. Thus, in the present embodiment, the configuration of the temperature expansion valve 20 increases about 1.5 mm on both sides as ΔW when the total width W of the conventional temperature expansion valve shown in FIG. 12 is about 29 mm. The total width W is about 32 mm. As a result, the configuration of the temperature expansion valve is hardly changed.
[0022]
  FIG. 14 shows an application example in the case where piping according to the cylindrical sealing method is connected to the temperature expansion valve shown in FIG. 1 of this embodiment. In FIG. 14, pipes 34 are connected to the respective passages 22 and 23 of the valve body 21 by a cylindrical sealing method. That is, the piping 34 has,A circumferential surface 34a formed over the tip of the distances d and d1.Is formed and a circleCircumference34aA projecting portion 34b that is further raised and locked when the valve body 21 is attached is formed over the entire circumference. Further, the circumferential surface 34a is formed with a recess 34c into which the O-ring 35 is inserted,The O-ring 35 is in sealing engagement with the inlet seal cylindrical portion of the inlet side passage 22a. As shown in FIG. 2, a large-diameter inlet seal cylindrical portion 22d is formed on the side surface of the valve body 21 in the inlet-side passage 22a. Further, a passage having a smaller diameter than the inlet seal cylindrical portion 22d is connected to a portion connecting the inlet seal cylindrical portion 22d of the inlet side passage 22a and the valve chamber 39 formed as a part of the first passage 22. A portion 22e is formed. The passage portion 2e is set to an axial length that extends to a position radially outside the seal cylindrical portion 26b of the mounting hole 26. By forming the passage portion 2e to have such an axial length, the shape and arrangement of the inlet seal cylindrical portion 22d and the passage portion 2e are limited, and the innermost portion of the inlet seal cylindrical portion 22d into the valve body 21;A gap 37 is formed between the mounting hole 26 and the mounting hole 26.The Due to such a gap 37, there is a gap between the seal cylindrical portion 26b of the mounting hole 26 and the inlet seal cylindrical portion 22d of the inlet side passage 22a.Predetermined distanceButSecureThus, direct interference between the two parts can be prevented.
[0023]
  MoreIn the present embodiment, when a refrigeration cycle is configured with a press-formed pipe 36 as shown in FIG., ArrangementOf course, the pipe 36 can be connected to the temperature expansion valve, and interference between the inlet side passage and the mounting hole can be prevented. In particular, in the case of a press-molded pipe, it is a pipe that forms the circumferential surface 36a, the protrusion 36b, and the recess 36c, so that the above-mentioned interference is likely to occur, and the present invention is effective in preventing it.
[0024]
  next,A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a vertical sectional view of the lower part showing the configuration of the main part of the valve main body 21 of the temperature expansion valve 20 shown in FIG. 1. The width W of the valve main body 21 is constant and is increased by ΔH with respect to the height H. Space for connection is secured by the sealing method. Therefore, since the height L of the mounting hole 26 is constant, the valve body 21 does not interfere with the mounting hole 26 and the passage 22a.Small diameterPassage22eCan be secured. In this embodiment, for example, the height H is about 73.5 mm, ΔH is about 1.5 mm, and the total height is about 75 mm.
[0025]
  A third embodiment of the present invention will be described based on FIG. 4 which is a longitudinal sectional view of a valve body. In the figure, the valve body 21 has a constant width W and height H,Entrance sideThe passage 22a is displaced upward by ΔP to reduce the distance P between the passage 22a and the upper passage 23b, thereby securing a space for connection by a cylindrical sealing method. For this reason, the valve body 21 is connected to the mounting hole 26.Entrance sideDoes not interfere with passage 22aSmall diameterPassage22eCan be secured. The interval P is, for example, about 40 mm, ΔP is about 1.5 mm, and the changed interval is about 38.5 mm.
[0026]
  A fourth embodiment of the present invention will be described with reference to FIG. 5 which is a longitudinal sectional view of the lower part of the valve body. In the figure, the valve body 21 has a width W increased by ΔW on one side to secure a space for connection by a cylindrical sealing method. That is, ΔW is an inlet side passage through which high-pressure liquid refrigerant from the receiver is supplied.22aThe long-term reliability of the high-pressure side seal is improved by increasing the width on the high-pressure side. For this reason, the valve body 21 is connected to the mounting hole 26.Entrance sideDoes not interfere with passage 22aSmall diameterPassage22eCan be ensured, and since the increase of ΔW is on one side, the material of the valve body 21 can be saved. In the present embodiment, for example, the width W is about 29 mm, ΔW is about 1.5 mm, and the total width is about 30.5 mm.
[0027]
  A fifth embodiment of the present invention will be described with reference to FIG. 6 which is a longitudinal sectional view of a temperature expansion valve. 6 is the same as FIG.OrEquivalent parts are denoted by the same reference numerals. In the figure, the valve body 21 of the temperature expansion valve 20 has a constant width W and a height H, and the height E of the mounting hole 26 of the adjusting screw 25 is smaller than the original height L (see FIG. 3). The length of the passage connecting the pipes is secured by a cylindrical sealing method.That isThe height L of the mounting hole 26 is reduced from about 10 mm to 1 to 2 mm, for example, and the height E is set to 8 to 9 mm, so that the passage 22a and the mounting hole 26 do not interfere with each other.Small diameterPassage22eThe length is secured.
[0028]
  And in order to ensure the adjustment stroke of the adjustment screw 25 of the same dimension as 1st embodiment, the adjustment screw 25 of height F protrudes only (DELTA) F, and it mounts | wears with the valve main body 21. FIG. This protrusion amount ΔF is set to about 1.5 mm. In this embodiment, the adjusting screw 25 is not changed, and the spring24bThe free length is about 1.5 mm large and a predetermined pressing force can be obtained. The mounting hole 26 has a counterbore shape and has a flat top at the top.Entrance sideaislePart22aThe thickness of the approaching part is kept large. In the present embodiment, the height of the mounting hole 26 of the valve body 21 is reduced, and the spring24bIt is possible to perform piping by the cylindrical sealing method by simply changing to a large free length.
[0029]
  A sixth embodiment of the present invention will be described with reference to FIG. 7, which is a longitudinal sectional view of the lower part of the valve body. Figure7Same as FIG.OrEquivalent parts are denoted by the same reference numerals. In the figure, the valve body 21 has a constant width W and a height H, and the height E of the mounting hole 26 of the adjusting screw 25 is reduced from the original height L (see FIG. 3), and the cylinder sealing method is used. The length of the passage connecting the pipes is secured. That is, the height L of the mounting hole 26 is reduced by, for example, about 10 mm to 1 to 2 mm, and the height E is set to 8 to 9 mm.Entrance sideThe passage 22a and the mounting hole 26 do not interfere with each other.Small diameterPassage22eThe length is secured.
[0030]
  The adjustment screw 38 is attached to the height G of the adjustment screw 25, which is about 1.5 mm less than the height F of the adjustment screw 25 having the same dimensions as the first embodiment, so that the adjustment screw 38 does not protrude from the valve body 21. Yes. The counterbore depth of the spring receiving surface of the adjusting screw 38 is set small, and the same spring 24b as that of the first embodiment is employed. The top surface of the mounting hole 26 is a flat surface as in the fifth embodiment. 38a is a hexagonal hole. In the present embodiment, the cylindrical sealing method can be applied only by reducing the height of the mounting hole 26 of the valve body 21 and reducing the height of the adjusting screw 38. Further, since the adjustment screw 38 does not protrude from the valve main body 21, it is possible to solve the problem that the adjustment screw loosens due to another object colliding during assembly or the like.
[0031]
  A seventh embodiment of the present invention will be described with reference to FIG. 8 which is a longitudinal sectional view of a temperature expansion valve. In addition, this embodiment improves the case where the thickness between the valve chamber 39 and the exit side channel | path 22b becomes thin in 1st embodiment.
  In the figure, the valve main body 21 of the temperature expansion valve 20 is increased by ΔW on both sides of the width W, the height is H, and the outer shape is the same as that of the first embodiment. The first passage 22 has a valve chamber 39 from the inlet-side passage 22a.as well asIt reaches the outlet side passage 22b through the orifice 22c. The valve chamber 39 has a large-diameter portion 39a having a diameter I and a small-diameter portion 39b having a diameter J smaller than the diameter I. The small-diameter portion 39b and the outlet-side passage 22b of the first passage 22 have a predetermined thickness k. It is provided to ensure. The small diameter portion 39b is set to a diameter that does not hinder the movement of the spring receiver 24b of the spring 24 that presses the valve body 24 upward. 8 that are the same as or equivalent to those in FIG.
[0032]
  In this embodiment, for example, the diameter I of the large diameter portion 39a is about 10 mm, the diameter J of the small diameter portion 39b is about 8 mm, the depth of the outlet side passage 22b is about 8.5 mm, and the wall thickness k is about 2 mm. Thick enough to withstand the high pressure of the refrigerant.
[0033]
【The invention's effect】
  Since the temperature expansion valve of the present invention can be connected to a pipe by a cylindrical sealing method without significantly changing the configuration, the reliability of the airtightness between the temperature expansion valve and the pipe can be improved, and refrigerant leakage is prevented. can do.In addition, due to the arrangement and shape of the inlet-side passage and the outlet-side passage of the first passage and the valve chamber, a sufficient gap and wall thickness can be secured between the inlet / outlet-side passage and the valve chamber. In addition, it is possible to obtain a special action / effect as a temperature expansion valve that avoids direct interference between the two, and can provide a sufficient margin for securing the strength and designing / manufacturing.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view in a refrigeration cycle of a temperature expansion valve showing a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of an essential part of a valve main body of a temperature expansion valve showing a first embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of an essential part of a valve main body of a temperature expansion valve showing a second embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a valve main body of a temperature expansion valve showing a third embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of an essential part of a valve main body of a temperature expansion valve showing a fourth embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a temperature expansion valve showing a fifth embodiment of the present invention.
FIG. 7 is a longitudinal sectional view of an essential part of a temperature expansion valve showing a sixth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a temperature expansion valve showing a seventh embodiment of the present invention.
FIG. 9 is a longitudinal sectional view in a refrigeration cycle of a temperature expansion valve in which a part of piping is connected by a conventional connection method.
FIG. 10 is a longitudinal sectional view of a conventional temperature expansion valve in which a part of piping is connected by a cylindrical sealing method.
FIG. 11 is a longitudinal sectional view of an essential part of a valve body for explaining an interference portion of a conventional temperature expansion valve that connects pipes by a cylindrical sealing method.
FIG. 12 is a longitudinal sectional view of a conventional temperature expansion valve in a refrigeration cycle.
FIG. 13 is a schematic perspective view of a conventional temperature expansion valve.
FIG. 14 is a longitudinal sectional view in a refrigeration cycle in which a part of piping is connected to the temperature expansion valve according to the first embodiment of the present invention.
FIG. 15 is a cross-sectional view showing a conventional example of piping.
[Explanation of symbols]
20 Temperature expansion valve
21 Valve body
22 First passage
22a  Entrance passage
22b  Exit side passage
22c Orifice
22d  Inlet seal cylinder
22e  Small diameter passage
22f  Outlet seal cylinder
23 Second passage
24 Disc
24b spring
25 Adjustment screw
26 Mounting hole
26b  Seal cylinder
28 Power element section
30 Diaphragm
31 temperature sensor
34 Piping
34c recess
35 O-ring
39    Valve chamber

Claims (8)

レシーバからエバポレータに向かう冷媒の通る第一の通路及びエバポレータからコンプレッサに向かう冷媒の通る第二の通路が形成されている弁本体と、上記弁本体の上端部に設けられ上下の圧力差により作動するダイヤフラムを有するパワーエレメント部と、上記ダイヤフラムの変位に応じて上下に駆動され上記第一の通路中に設けられたオリフィスを開閉する弁体と、上記弁体を閉方向に押圧する圧縮コイルばねと、上記弁本体の下端部に形成された装着穴に螺着され、上記圧縮コイルばねの押圧力を調整するための調整ねじと、を備えた温度膨張弁において、
上記装着穴には、上記弁本体の下端面から上方に向けて、上記調整ねじが螺合する雌ねじ部と、上記調整ねじの外周に装着されたOリングがシール係合するシール円筒部とが順次形成されており、
上記第一の通路は、上記シール円筒部の上端に連通し上記シール円筒部よりも小径で且つ上端面に上記オリフィスの一端が開口している弁室と、上記弁本体の一方の側面から上記弁室の側面に向けて形成され配管が挿入接続される入口側通路と、を有しており、
上記入口側通路は、上記弁本体の上記一方の側面側に形成され上記配管の外周 に装着されたOリングが接することにより円筒シールを実現する大径の入口シール円筒部と、上記入口シール円筒部と上記弁室との間に位置するとともにこれらを相互に連通接続し上記入口シール円筒部よりも小径の小径通路部と、を有しており、
上記小径通路部は、上記入口シール円筒部と段差を介して接続され、この段差が上記シール円筒部と上記入口シール円筒部との間の壁を提供している、
ことを特徴とする温度膨張弁。
A valve body in which a first passage through which refrigerant flows from the receiver to the evaporator and a second passage through which refrigerant flows from the evaporator to the compressor are formed, and the upper end of the valve body is operated by a pressure difference between the upper and lower sides. A power element portion having a diaphragm; a valve body that is driven up and down in response to displacement of the diaphragm to open and close an orifice provided in the first passage; and a compression coil spring that presses the valve body in a closing direction. In the temperature expansion valve provided with an adjusting screw that is screwed into a mounting hole formed in the lower end portion of the valve body and adjusts the pressing force of the compression coil spring,
From the lower end surface of the valve main body, the mounting hole has an internal thread portion into which the adjustment screw is screwed and a seal cylindrical portion to which an O-ring mounted on the outer periphery of the adjustment screw is sealingly engaged. Are formed sequentially,
The first passage communicates with the upper end of the seal cylindrical portion, has a smaller diameter than the seal cylindrical portion, and has an upper end surface with one end of the orifice open, and one side surface of the valve body from the side surface. An inlet-side passage that is formed toward the side surface of the valve chamber and into which piping is inserted and connected,
The inlet-side passage is formed on the one side surface of the valve body and has a large-diameter inlet seal cylindrical portion that realizes a cylindrical seal by contacting an O-ring mounted on the outer periphery of the pipe, and the inlet seal cylinder And a small-diameter passage portion having a diameter smaller than that of the inlet seal cylindrical portion, which is located between the valve chamber and the valve chamber and communicates with each other.
The small-diameter passage portion is connected to the inlet seal cylindrical portion through a step, and the step provides a wall between the seal cylindrical portion and the inlet seal cylindrical portion.
A temperature expansion valve characterized by that.
上記小径通路部の上記入口シール円筒部との接続端が上記入口シール円筒部に対して径方向外側に位置するように上記小径通路部の長さを確保してあることを特徴とする請求項1記載の温度膨張弁。 The length of the small-diameter passage portion is secured so that a connection end of the small-diameter passage portion with the inlet seal cylindrical portion is located radially outside the inlet seal cylindrical portion. The temperature expansion valve according to 1. 上記入口側通路を上記弁室の径方向外側にのみ配置して上記入口シール円筒部の長さを確保してあることを特徴とする請求項1記載の温度膨張弁。 2. The temperature expansion valve according to claim 1, wherein the inlet side passage is disposed only on the radially outer side of the valve chamber to secure the length of the inlet seal cylindrical portion . レシーバからエバポレータに向かう冷媒の通る第一の通路及びエバポレータからコンプレッサに向かう冷媒の通る第二の通路が形成されている弁本体と、上記弁本体の上端部に設けられ上下の圧力差により作動するダイヤフラムを有するパワーエレメント部と、上記ダイヤフラムの変位に応じて上下に駆動され上記第一の通路中に設けられたオリフィスを開閉する弁体と、上記弁体を閉方向に押圧する圧縮コイルばねと、上記弁本体の下端部に形成された装着穴に螺着され、上記圧縮コイルばねの押圧力を調整するための調整ねじと、を備えた温度膨張弁において、
上記装着穴には、上記弁本体の下端面から上方に向けて、上記調整ねじが螺合する雌ねじ部と、上記調整ねじの外周に装着されたOリングがシール係合するシール円筒部とが順次形成されており、
上記第一の通路は、上記シール円筒部の上端に連通し上記シール円筒部よりも小径で且つ上端面に上記オリフィスの一端が開口している弁室と、上記オリフィスの他端に連通し上記弁本体の一方の側面に向かって延びるとともに外周にOリングが装着された配管を円筒シール方法により挿入接続可能な長さを有する出口シール円筒部を含む出口側通路と、を有しており、
上記弁室は、下端側の大径部と、上記大径部の上端から上方に延びる小径部とから成っており、
上記弁室の小径部は、上記出口側通路との間に所定の肉厚を確保するように形成されている、
ことを特徴とする温度膨張弁。
A valve body in which a first passage through which refrigerant flows from the receiver to the evaporator and a second passage through which refrigerant flows from the evaporator to the compressor are formed, and the upper end of the valve body is operated by a pressure difference between the upper and lower sides. A power element portion having a diaphragm; a valve body that is driven up and down in response to displacement of the diaphragm to open and close an orifice provided in the first passage; and a compression coil spring that presses the valve body in a closing direction. In the temperature expansion valve provided with an adjusting screw that is screwed into a mounting hole formed in the lower end portion of the valve body and adjusts the pressing force of the compression coil spring,
From the lower end surface of the valve main body, the mounting hole has an internal thread portion into which the adjustment screw is screwed and a seal cylindrical portion to which an O-ring mounted on the outer periphery of the adjustment screw is sealingly engaged. Are formed sequentially,
The first passage communicates with the upper end of the seal cylindrical portion, has a smaller diameter than the seal cylindrical portion, and communicates with the other end of the orifice. An outlet side passage including an outlet seal cylindrical portion extending toward one side surface of the valve body and having a length capable of inserting and connecting a pipe having an O-ring attached to the outer periphery thereof by a cylindrical sealing method,
The valve chamber is composed of a large-diameter portion on the lower end side and a small-diameter portion extending upward from the upper end of the large-diameter portion,
The small diameter portion of the valve chamber is formed so as to ensure a predetermined thickness between the outlet chamber and the outlet side passage.
A temperature expansion valve characterized by that.
上記出口側通路は、上記弁本体の上記一方の側面側に形成された大径部と、上記大径部に連続して形成され上記オリフィスの他端に連通する小径部と、を有す ことを特徴とする請求項記載の温度膨張弁。 The outlet passage, that Yusuke a large diameter portion formed on the one side surface of the valve body, and a small diameter portion which communicates with the other end of the formed continuously with the large diameter portion above the orifice, the The temperature expansion valve according to claim 4 . 上記出口側通路の小径部は、上記弁室の上方に位置するとともに、上記オリフィスを介して上記弁室に連通していることを特徴とする請求項記載の温度膨張弁。 6. The temperature expansion valve according to claim 5 , wherein the small-diameter portion of the outlet side passage is located above the valve chamber and communicates with the valve chamber via the orifice . 上記出口側通路の大径部は、上記出口シール円筒面であることを特徴とする請求項記載の温度膨張弁。 6. The temperature expansion valve according to claim 5 , wherein the large-diameter portion of the outlet side passage is the outlet seal cylindrical surface . 上記出口側通路の大径部は、上記弁室の大径部よりも上方で且つ上記弁室の小径部よりも径方向外側に位置していることを特徴とする請求項記載の温度膨張弁。 6. The temperature expansion according to claim 5 , wherein the large-diameter portion of the outlet side passage is located above the large-diameter portion of the valve chamber and radially outside the small-diameter portion of the valve chamber. valve.
JP32858696A 1996-11-14 1996-12-09 Temperature expansion valve Expired - Fee Related JP3842354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32858696A JP3842354B2 (en) 1996-11-14 1996-12-09 Temperature expansion valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-303226 1996-11-14
JP30322696 1996-11-14
JP32858696A JP3842354B2 (en) 1996-11-14 1996-12-09 Temperature expansion valve

Publications (2)

Publication Number Publication Date
JPH10197104A JPH10197104A (en) 1998-07-31
JP3842354B2 true JP3842354B2 (en) 2006-11-08

Family

ID=26563451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32858696A Expired - Fee Related JP3842354B2 (en) 1996-11-14 1996-12-09 Temperature expansion valve

Country Status (1)

Country Link
JP (1) JP3842354B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201212A (en) * 2000-01-18 2001-07-27 Fuji Koki Corp Temperature expansion valve

Also Published As

Publication number Publication date
JPH10197104A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP3207716B2 (en) Temperature expansion valve
JPH10253199A (en) Thermal expansion valve
EP1857749A2 (en) Mounting structure of expansion valve
US7621151B2 (en) Pressure control valve
EP1394646A2 (en) Differential pressure control valve
US6935573B2 (en) Expansion valve
EP1384962A2 (en) Expansion valve
EP1538408A1 (en) Expansion valve
JP3842354B2 (en) Temperature expansion valve
EP1130345B1 (en) Expansion valve
JP2003254460A (en) Pressure control valve
JP2008039262A (en) Expansion valve
JP3942848B2 (en) Expansion valve unit
JP2006292185A (en) Expansion device and refrigerating cycle
CN1179516A (en) Thermal expansion valve for air-conditioner of automobile
JPH0829019A (en) Expansion valve for cooler device
JP2521523Y2 (en) Fluid control valve
JP7262261B2 (en) THERMAL EXPANSION VALVE AND REFRIGERATION CYCLE SYSTEM USING THERMAL EXPANSION VALVE
JP2006105474A (en) Temperature differential type expansion valve
JP4462813B2 (en) Expansion valve
JP2017044357A (en) Expansion valve
JP3920060B2 (en) Expansion valve
JP3920056B2 (en) Expansion valve
JP2685293B2 (en) Fluid control valve
JP2678057B2 (en) Fluid control valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees