JPH0461266B2 - - Google Patents

Info

Publication number
JPH0461266B2
JPH0461266B2 JP60103566A JP10356685A JPH0461266B2 JP H0461266 B2 JPH0461266 B2 JP H0461266B2 JP 60103566 A JP60103566 A JP 60103566A JP 10356685 A JP10356685 A JP 10356685A JP H0461266 B2 JPH0461266 B2 JP H0461266B2
Authority
JP
Japan
Prior art keywords
chamber
pressure
operating rod
refrigerant
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60103566A
Other languages
Japanese (ja)
Other versions
JPS61262569A (en
Inventor
Ichiro Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP60103566A priority Critical patent/JPS61262569A/en
Publication of JPS61262569A publication Critical patent/JPS61262569A/en
Publication of JPH0461266B2 publication Critical patent/JPH0461266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷凍システムの蒸発器への冷媒供給量
を制御するための膨張弁に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an expansion valve for controlling the amount of refrigerant supplied to an evaporator of a refrigeration system.

(従来技術及びその問題点) 従来、上述のような膨張弁は例えば特開昭59−
144875号公報に開示の如く公知であるが、これは
高圧冷媒が作動杆の径大部外周面と通路内周面と
の摺接面間からダイアフラムの下側の室(作動空
間)に漏洩するのを防止するため前記径大部にシ
ール部材を設けているが、このようにシール部材
を設けるものではその経時に伴うシール部材の摩
耗によりシール機能が低下することにより高圧冷
媒がダイアフラムの下側の室に流入する結果、蒸
発器出口の温度と圧力を検出して蒸発器への冷媒
流入量を制御する所謂加熱度制御を正確に行なう
ことができない。しかも、シール部材を設けるも
のではそのシール性を高めるべく該シール部材と
通路内周面との摩擦力を大きくすると作動杆の摺
動性が悪化し、逆に該摺動性を良くしようとする
とシール性が低下してしまい、両者が満足するよ
うにシール部材と通路内周面との摩擦力を設定す
ることは極めて困難である。更に、高圧室(通
路)と低圧室(弁室)との間を開閉する弁本体の
テーパ状弁座(シート部)が高圧室と低圧室との
間の鋭角な弁座(シート部)に接触時、該弁本体
の低圧室内に位置する部分の外径が前記鋭角な弁
座の直径より大きいため調整弁体の開弁時に高圧
冷媒の影響を受けて該調整弁体が開弁方向に所定
リフト以上動きその分だけ多く冷媒が高圧室から
低圧室へ流れてしまい、蒸発器の出口冷媒加熱度
が必要以上に小さくなつてしまう。
(Prior art and its problems) Conventionally, the above-mentioned expansion valve has been disclosed in, for example, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent No. 144875, high-pressure refrigerant leaks into the chamber (operating space) below the diaphragm from between the sliding contact surface between the outer circumferential surface of the large diameter part of the operating rod and the inner circumferential surface of the passage. In order to prevent this, a sealing member is provided at the large diameter portion. However, in the case where a sealing member is provided in this way, the sealing function deteriorates due to wear of the sealing member over time, and the high-pressure refrigerant flows to the lower side of the diaphragm. As a result, so-called heating degree control, which detects the temperature and pressure at the evaporator outlet and controls the amount of refrigerant flowing into the evaporator, cannot be performed accurately. Moreover, in devices equipped with a sealing member, if the frictional force between the sealing member and the inner circumferential surface of the passage is increased in order to improve the sealing performance, the sliding performance of the operating rod deteriorates, and conversely, when trying to improve the sliding performance, The sealing performance deteriorates, and it is extremely difficult to set the frictional force between the sealing member and the inner circumferential surface of the passage so as to satisfy both. Furthermore, the tapered valve seat (seat part) of the valve body, which opens and closes between the high pressure chamber (passage) and the low pressure chamber (valve chamber), forms an acute angle valve seat (seat part) between the high pressure chamber and the low pressure chamber. At the time of contact, since the outer diameter of the portion of the valve body located inside the low-pressure chamber is larger than the diameter of the acute-angled valve seat, when the regulating valve body is opened, the regulating valve body is influenced by the high-pressure refrigerant and moves in the opening direction. If the lift exceeds a predetermined value, more refrigerant will flow from the high pressure chamber to the low pressure chamber, and the degree of heating of the refrigerant at the outlet of the evaporator will become smaller than necessary.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、シ
ール部材を設けることなく高圧冷媒がダイアフラ
ムの作動杆側の作動空間に流入するのを防止し得
て長期に亘つて加熱度制御を正確に行なえるよう
にした膨張弁を提供することを第1の目的とす
る。また、調整弁体が開弁時に高圧冷媒の影響を
受けて開弁方向に所定リフト以上動くということ
なく蒸発器の出口冷媒加熱度が必要以上に小さく
なることのないようにした膨張弁を提供すること
を第3の目的とするものである。
(Object of the Invention) The present invention has been made in view of the above circumstances, and it is possible to prevent high-pressure refrigerant from flowing into the working space on the working rod side of the diaphragm without providing a sealing member, and to maintain the heating level for a long period of time. The first object is to provide an expansion valve that can be accurately controlled. Furthermore, the present invention provides an expansion valve in which the regulating valve body does not move more than a predetermined lift in the valve opening direction due to the influence of high-pressure refrigerant when the valve is opened, and the degree of heating of the refrigerant at the outlet of the evaporator does not become smaller than necessary. The third purpose is to

(問題点を解決するための手段) 上述の問題点を解決するため本発明の第1は冷
凍システムの蒸発器への冷媒供給量を制御するた
めの膨張弁において、圧縮機の吐出口側管路に接
続されると共に高温・高圧冷媒が流入する高圧室
と、該高圧室と蒸発器の入口側管路に夫々接続さ
れると共に低温・低圧冷媒が流入する低圧室と、
作動杆嵌装室と、該作動杆嵌装室内に摺動自在に
嵌装された作動杆と、該作動杆の一端にこれと一
体的に作動し得る如く設けられて前記高圧室と低
圧室との間の通路開口面積を調整すると共にばね
にて閉弁方向に付勢さた調整弁体と、前記作動杆
の他端に設けられ且つ両端面に作用する圧力の差
に応じて前記作動杆の軸線方向に変位する圧力応
動部材と、該圧力応動部材の反作動杆側に位置し
て設けられ且つ前記蒸発器の出口から圧縮機の吸
入口に至る途中の冷媒が通過する冷媒通過室と、
前記圧力応動部材の前記作動杆側端面に対向して
設けられ且つ前記冷媒通過室と連通する作動空間
と、前記圧力応動部材の反作動杆側端面に設けら
れ且つ前記冷媒通過室内の温度変化に応じて前記
圧力応動部材を介して作動杆を開弁方向に押圧す
る圧力を発生する圧力発生手段と、前記高圧室の
冷媒が前記作動杆外周面と作動杆嵌装室内周面と
の摺動面間に漏洩した際該漏洩冷媒を前記冷媒通
過室へリークさせるリーク手段とを具備してなる
構成としたものである。また、本発明の第2は冷
凍システムの蒸発器への冷媒供給量を制御するた
めの膨張弁において、圧縮機の吐出口側管路に接
続されると共に高温・高圧冷媒が流入する高圧室
と、該高圧室と蒸発器の入口側管路に夫々接続さ
れると共に低温・低圧冷媒が流入する低圧室と、
該低圧室と前記高圧室とを接続する通路周縁に設
けられ且つ前記低圧室内径より小径な鋭角シート
部と、作動杆嵌装室と、該作動杆嵌装室内に摺動
自在に嵌装された作動杆と、前記低圧室内に位置
して前記作動杆の一端にこれと一体的に作動し得
る如く設けられてそのテーパ状シート部が前記通
路の鋭角シート部に接離することにより前記高圧
室と低圧室との間の通路開口面積を調整すると共
にばねにて閉弁方向に付勢された截頭円錐状の調
整弁体と、前記作動杆の他端に設けられ且つ両端
面に変位する作用する圧力の差に応じて前記作動
杆の軸線方向に圧力応動部材と、該圧力応動部材
の反作動杆側に位置して設けられ且つ前記蒸発器
の出口から圧縮機の吸入口に至る途中の冷媒が通
過する冷媒通過室と、前記圧力応動部材の前記作
動杆側端面に対向して設けられ且つ前記冷媒通過
室と連通する作動空間と、前記圧力応動部材の反
作動杆側端面に設けられ且つ前記冷媒通過室内の
温度変化に応じて前記圧力応動部材を介して作動
杆を開弁方向に押圧する圧力を発生する圧力発生
手段とを具備し、前記調整弁体の鋭角シート部に
接触する部分より低圧室側に位置する部分の外径
を前記鋭角シート部の直径に可能な限り近い値に
設定した構成としたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the first aspect of the present invention is to provide an expansion valve for controlling the amount of refrigerant supplied to the evaporator of a refrigeration system. a high-pressure chamber connected to a pipe and into which a high-temperature, high-pressure refrigerant flows; a low-pressure chamber, which is connected to the inlet-side pipe of the evaporator and into which a low-temperature, low-pressure refrigerant flows;
an operating rod fitting chamber, an operating rod slidably fitted in the operating rod fitting chamber, and the high pressure chamber and low pressure chamber provided at one end of the operating rod so as to be able to operate integrally therewith. and a regulating valve body which adjusts the passage opening area between the valve body and which is biased in the valve closing direction by a spring, and which is provided at the other end of the actuating rod and adjusts the actuating valve body according to the difference in pressure acting on both end faces. a pressure-responsive member that is displaced in the axial direction of the rod, and a refrigerant passage chamber that is located on the reaction rod side of the pressure-responsive member and through which refrigerant passes on the way from the outlet of the evaporator to the suction port of the compressor. and,
an operating space that is provided opposite to the end surface on the operating rod side of the pressure responsive member and communicates with the refrigerant passage chamber; and an operating space that is provided on the end surface of the reaction rod side of the pressure responsive member and is responsive to temperature changes in the refrigerant passage chamber. pressure generating means for generating pressure to press the operating rod in the valve opening direction via the pressure-responsive member; and a refrigerant in the high pressure chamber sliding between the outer circumferential surface of the operating rod and the inner circumferential surface of the operating rod fitting chamber. The refrigerant refrigerant is configured to include a leak means for leaking the leaked refrigerant to the refrigerant passage chamber when the refrigerant leaks between the surfaces. The second aspect of the present invention is an expansion valve for controlling the amount of refrigerant supplied to an evaporator of a refrigeration system, which is connected to a conduit on the discharge port side of a compressor and has a high-pressure chamber into which high-temperature and high-pressure refrigerant flows. , a low-pressure chamber connected to the high-pressure chamber and the inlet side pipe of the evaporator, and into which a low-temperature, low-pressure refrigerant flows;
an acute-angled seat portion provided at the periphery of a passage connecting the low pressure chamber and the high pressure chamber and having a smaller diameter than the inner diameter of the low pressure chamber; an operating rod fitting chamber; an operating rod located within the low pressure chamber and provided at one end of the operating rod so as to be able to operate integrally therewith, the tapered seat portion of which moves toward and away from the acute-angled seat portion of the passage, thereby reducing the high pressure. A truncated cone-shaped adjustment valve body that adjusts the passage opening area between the chamber and the low pressure chamber and is biased in the valve closing direction by a spring, and a truncated conical adjustment valve body that is provided at the other end of the operating rod and is displaced on both end faces. a pressure-responsive member in the axial direction of the working rod, and a pressure-responsive member located on the reaction rod side of the pressure-responsive member, and extending from the outlet of the evaporator to the inlet of the compressor. a refrigerant passage chamber through which the refrigerant passes, a working space provided opposite to the end surface of the pressure responsive member on the operating rod side and communicating with the refrigerant passage chamber, and an end surface of the pressure responsive member on the reaction rod side. pressure generating means for generating pressure to press the operating rod in the valve opening direction via the pressure responsive member in response to a temperature change in the refrigerant passage chamber; The outer diameter of the portion located closer to the low pressure chamber than the contacting portion is set to a value as close as possible to the diameter of the acute-angled sheet portion.

(実施例) 以下、本発明の一実施例を図面に基づき説明す
る。図は本発明の膨張弁を組み込んだ冷凍システ
ムの構成図で、同図中1は本発明の膨張弁全体を
示し、該膨張弁1はハウジング2内にその一端部
(図中下端部)に設けた挿入口3から膨張弁本体
4を複数(本実施例では3本)のOリング(シー
ル部材)51,52,53を介して挿入して閉塞部
材6にて前記挿入口3を気密に閉塞することによ
り、前記ハウジング2内に膨張弁本体4を固定し
てなる。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. The figure is a block diagram of a refrigeration system incorporating the expansion valve of the present invention. In the figure, 1 indicates the entire expansion valve of the present invention, and the expansion valve 1 is installed in a housing 2 at one end (lower end in the figure). The expansion valve main body 4 is inserted through the provided insertion port 3 through a plurality of (three in this embodiment) O-rings (sealing members) 5 1 , 5 2 , 5 3 , and the closure member 6 closes the insertion port 3 . The expansion valve main body 4 is fixed within the housing 2 by airtightly closing the expansion valve main body 4.

前記ハウジング2はアルミニウム材を用いてダ
イキヤスト成形したものであるが、冷間鍛造或は
熱間鍛造にて成形してもよい。前記ハウジング2
は一端部(図中下端部)が開口し且つ他端部(図
中上端部)が閉塞された中空円筒状をなし、その
内孔部分が膨張弁本体挿入室7となつている。前
記ハウジング2の一側周壁の軸方向略中間部には
第1接続口8が径方向に貫通して設けられてい
る。前記ハウジング2の他側周壁の軸方向略中間
部より一端側(挿入口3側)には第2接続口9が
径方向に貫通して設けられている。前記ハウジン
グ2の他側周壁の他端側(反挿入口3側)には第
3接続口10が径方向に貫通して設けられてい
る。前記ハウジング2の一側周壁の他端側には前
記第3接続口10と対向させて第4接続口11が
径方向に貫通して設けられている。
The housing 2 is formed by die-casting using an aluminum material, but may be formed by cold forging or hot forging. The housing 2
has a hollow cylindrical shape with one end (lower end in the figure) open and the other end (upper end in the figure) closed, and the inner hole thereof serves as the expansion valve main body insertion chamber 7. A first connection port 8 is provided at a substantially intermediate portion in the axial direction of one side peripheral wall of the housing 2 so as to penetrate in the radial direction. A second connection port 9 is provided at one end (on the insertion port 3 side) of the other circumferential wall of the housing 2 from a substantially intermediate portion in the axial direction, passing through the housing 2 in the radial direction. A third connection port 10 is provided on the other end side (the side opposite to the insertion port 3) of the other peripheral wall of the housing 2 so as to penetrate in the radial direction. A fourth connection port 11 is provided at the other end of one peripheral wall of the housing 2 so as to face the third connection port 10 and penetrate in the radial direction.

前記膨張弁本体4は前記ハウジング2の膨張弁
本体挿入室7内に径嵌合されたケーシング12を
有しその一端部(図中下端部)の段部12aがハ
ウジング2の挿入口3内の段部3aに当接し、他
端部(図中上端部)とハウジング2の挿入室7内
端部との間に冷媒通過室である間隙7aを有し、
該冷媒通過室7a内に前記第3及び第4接続口1
0及び11が夫々開口している。前記ケーシング
12は両端面が開口する中空円筒状をなし、その
内周面は、軸方向略中間部に位置してその軸線と
直交する面とされた段部13を介してこれより一
端側(図中下端側)が他端側(図中上端側)より
大径とされている。前記ケーシング12内の小径
部分は作動杆嵌装室14となつており、該作動杆
嵌装室14内に作動杆15が摺動自在に嵌装され
ている。該作動杆15は軸方向略中間部の段部1
6を介して一端側(図中下端側)より他端側(図
中上端側)が大径とされ、該大径部15aの外周
面が作動杆嵌装室14の内周面に摺動自在に径嵌
合されている。前記作動杆15の一端部には調整
弁体17が一体的に作動し得る如く装着されてい
る。該調整弁体17は、前記段部13の内周部側
に位置して前記作動杆嵌装室14とを接続する通
路18の周縁に設けられた鋭角シート部19に接
離するテーパ状シート部20を有する截頭円錐形
状をなしている。前記調整弁体17のテーパ状シ
ート部20が前記通路18の鋭角シート部19に
接触した閉弁状態において、前記作動杆嵌装室1
4内の作動杆15の段部16と調整弁体17のテ
ーパ状シート部20側(図中上端側)端部との間
に高圧室21が画成される。前記調整弁体17は
ばね22により閉弁側(図中上側)に付勢されて
おり、該ばね22は前記調整弁体17と前記ケー
シング12の大径部の一端側内周面に螺装された
ばね受部材23との間に介装されている。前記ケ
ーシング12の大径部内における前記段部13と
ばね受部材23との間に低圧室24が画成され
る。前記ケーシング12の周壁には高圧室21及
び低圧室24に夫々開口する第1通孔25及び第
2通孔26が径方向に貫通して設けられている。
なお、これら第1通孔25及び第2通孔26はケ
ーシング12の両側に夫々設けられ、一側の第2
通孔26は第1接続口8に、他側の第1通孔25
は第2接続口9に夫々合致連通している。
The expansion valve main body 4 has a casing 12 radially fitted into the expansion valve main body insertion chamber 7 of the housing 2, and a stepped portion 12a at one end (lower end in the figure) of the casing 12 is inserted into the insertion opening 3 of the housing 2. It abuts on the stepped portion 3a and has a gap 7a serving as a refrigerant passage chamber between the other end (upper end in the figure) and the inner end of the insertion chamber 7 of the housing 2;
The third and fourth connection ports 1 are provided in the refrigerant passage chamber 7a.
0 and 11 are open. The casing 12 has a hollow cylindrical shape with both end faces open, and its inner circumferential face extends from one end ( The lower end in the figure) has a larger diameter than the other end (the upper end in the figure). A small diameter portion inside the casing 12 serves as an operating rod fitting chamber 14, and an operating rod 15 is slidably fitted into the operating rod fitting chamber 14. The operating rod 15 has a stepped portion 1 located approximately in the middle in the axial direction.
6, one end side (lower end side in the figure) has a larger diameter than the other end side (upper end side in the figure), and the outer circumferential surface of the large diameter portion 15a slides on the inner circumferential surface of the operating rod fitting chamber 14. The diameter is fitted freely. A regulating valve body 17 is attached to one end of the operating rod 15 so as to be able to operate integrally therewith. The adjusting valve body 17 is a tapered seat that approaches and separates from an acute-angled seat portion 19 provided at the periphery of a passage 18 that is located on the inner peripheral side of the stepped portion 13 and connects with the operating rod fitting chamber 14. It has a truncated conical shape with a portion 20. In the valve closed state in which the tapered seat portion 20 of the regulating valve body 17 contacts the acute-angled seat portion 19 of the passage 18, the operating rod fitting chamber 1
A high pressure chamber 21 is defined between the stepped portion 16 of the operating rod 15 in the valve body 4 and the end portion of the regulating valve body 17 on the tapered seat portion 20 side (upper end side in the figure). The adjusting valve body 17 is urged toward the valve closing side (upper side in the figure) by a spring 22, and the spring 22 is screwed into the inner circumferential surface of the adjusting valve body 17 and one end side of the large diameter portion of the casing 12. The spring receiving member 23 is interposed between the spring receiving member 23 and the spring receiving member 23 . A low pressure chamber 24 is defined between the step portion 13 and the spring receiving member 23 within the large diameter portion of the casing 12 . A first through hole 25 and a second through hole 26, which open into the high pressure chamber 21 and the low pressure chamber 24, respectively, are provided through the peripheral wall of the casing 12 in the radial direction.
Note that the first through hole 25 and the second through hole 26 are provided on both sides of the casing 12, and the second through hole on one side is
The through hole 26 is connected to the first connection port 8, and the first through hole 25 on the other side is connected to the first connection port 8.
are in communication with the second connection port 9, respectively.

前記ケーシング12の外周面には、第1通孔2
5より一端側、第1通孔25と第2通孔26との
間、及び第2通孔26より他端側に夫々位置して
環状溝271,272,273が設けられており、
これら環状溝271,272,273に前記Oリン
グ51,52,53が夫々嵌装され、これらOリン
グ51〜53にてハウジング2の挿入室7内周面と
ケーシング12の外周面との間の高圧側と低圧側
とが気密に区画されている。
A first through hole 2 is provided on the outer peripheral surface of the casing 12.
Annular grooves 27 1 , 27 2 , and 27 3 are provided at one end side of the groove 5, between the first through hole 25 and the second through hole 26, and on the other end side of the second through hole 26, respectively. ,
The O-rings 5 1 , 5 2 , 5 3 are fitted into these annular grooves 27 1 , 27 2 , 27 3 , respectively, and these O-rings 5 1 to 5 3 connect the inner peripheral surface of the insertion chamber 7 of the housing 2 and the casing. A high-pressure side and a low-pressure side between the outer circumferential surface of 12 are airtightly partitioned.

前記ケーシング12の他端に設けた凹部内には
ダイアフラム(圧力応動部材)28が設けられて
いる。該ダイアフラム28はその外周部が前記ケ
ーシング12の他端の凹部内底壁外周部とプレー
ト29の外周部との間に挾持され、該プレート2
9とダイアフラム28との間に空隙29aを有し
ている。前記ダイアフラム28の中央部が前記作
動杆15の他端面(反調整弁体17側端面)に当
接しており、該作動杆15の軸線方向に変位す
る。前記ダイアフラム28の作動杆15側端面と
ケーシング12の凹部内底壁との間には作動空間
30が設けられ、該作動空間30はケーシング1
2の周壁に径方向に沿つて設けた第3通孔31
(外部均圧通路)及びケーシング12の外周面と
ハウジング2内の膨張弁本体挿入室7の内周面と
の間の間隙32を介して、前記ハウジング2内の
膨張弁本体挿入室7の反挿入口3側端内部、即
ち、冷媒通過室7a内と連通する。
A diaphragm (pressure responsive member) 28 is provided within the recess provided at the other end of the casing 12. The outer periphery of the diaphragm 28 is held between the outer periphery of the inner bottom wall of the recess at the other end of the casing 12 and the outer periphery of the plate 29.
9 and the diaphragm 28 has a gap 29a. The center portion of the diaphragm 28 is in contact with the other end surface of the operating rod 15 (the end surface on the side opposite to the regulating valve body 17), and is displaced in the axial direction of the operating rod 15. An operating space 30 is provided between the end surface of the diaphragm 28 on the operating rod 15 side and the inner bottom wall of the recess of the casing 12.
A third through hole 31 provided along the radial direction in the peripheral wall of No. 2
(external pressure equalization passage) and the gap 32 between the outer circumferential surface of the casing 12 and the inner circumferential surface of the expansion valve body insertion chamber 7 in the housing 2. It communicates with the inside of the side end of the insertion port 3, that is, the inside of the refrigerant passage chamber 7a.

前記ケーシング12の他端側にはダイアフラム
28と対向させて圧力発生手段33が設けられて
いる。該圧力発生手段33は前記プレート29の
反ダイアフラム28側端に略半球状カバー34を
装着して構成した密閉空間34a内に温度に比例
して膨張するガスを封入したもので、前記密閉空
間34a内はプレート29に穿設された透孔36
を介してダイアフラム28とプレート29との間
の空隙29a内と連通されている。前記カバー3
4を介して冷媒通過室7a内を通過する冷媒の温
度が密閉空間34a内に伝達され、当該温度に応
じて前記ダイアフラム28を介して作動杆を開弁
方向に押圧する圧力を発生するようになつてい
る。
A pressure generating means 33 is provided at the other end of the casing 12, facing the diaphragm 28. The pressure generating means 33 is a closed space 34a formed by attaching a substantially hemispherical cover 34 to the end of the plate 29 opposite to the diaphragm 28, and a gas that expands in proportion to the temperature is sealed in the closed space 34a. Inside is a through hole 36 bored in the plate 29.
It communicates with the inside of the gap 29a between the diaphragm 28 and the plate 29 via. Said cover 3
4, the temperature of the refrigerant passing through the refrigerant passage chamber 7a is transmitted into the closed space 34a, and in response to the temperature, pressure is generated to press the operating rod in the valve opening direction through the diaphragm 28. It's summery.

前記閉塞部材6はねじ部材よりなり前記挿入口
3の内周面に螺装され、該閉塞部材6とケーシン
グ12との間はOリング37にて気密にシールさ
れており、該Oリング37は閉塞部材6の内端面
の環状溝38内に嵌装されている。
The closing member 6 is made of a threaded member and is screwed onto the inner circumferential surface of the insertion port 3, and the space between the closing member 6 and the casing 12 is airtightly sealed with an O-ring 37. It is fitted into an annular groove 38 on the inner end surface of the closing member 6.

前記高圧室21の冷媒が前記作動杆15の大径
部15aの外周面と作動杆嵌装室14の内周面と
の摺動面間に漏洩した際該漏洩冷媒を前記冷媒通
過室7aへリークさせるリーク手段が設けられて
いる。該リーク手段は前記作動杆15の大径部1
5aの外周面に設けられた環状リーク溝39と、
該環状リーク溝39と冷媒通過室7aとを連通す
る如くケーシング12の周壁に径方向に貫通して
設けたリーク通路40とからなり、該リーク通路
40は前記ケーシング12の外周面とハウジング
2の挿入室7の内周面との間の間隙32を介して
冷媒通過室7a内と連通している。なお、リーク
通路40と前記第3通孔31とはケーシング12
の周方向に180°変位しており、これによりリーク
通路40からの冷媒が第3通孔31へ直接流入す
るのを防止している。
When the refrigerant in the high pressure chamber 21 leaks between the sliding surfaces of the outer peripheral surface of the large diameter portion 15a of the operating rod 15 and the inner peripheral surface of the operating rod fitting chamber 14, the leaked refrigerant is transferred to the refrigerant passage chamber 7a. A leak means is provided for causing the leak. The leak means is the large diameter portion 1 of the operating rod 15.
An annular leak groove 39 provided on the outer peripheral surface of 5a,
The annular leak groove 39 and the refrigerant passage chamber 7a are connected to each other by a leak passage 40 which is provided through the circumferential wall of the casing 12 in the radial direction. It communicates with the inside of the refrigerant passage chamber 7a via a gap 32 between the insertion chamber 7 and the inner circumferential surface of the insertion chamber 7. Note that the leak passage 40 and the third through hole 31 are connected to the casing 12.
is displaced by 180° in the circumferential direction, thereby preventing the refrigerant from the leak passage 40 from directly flowing into the third through hole 31.

前記調整弁体17の鋭角シート部19に接触す
る部分より低圧室24側に位置する部分の外径D
を、前記鋭角シート部19の直径D1に可能な限
り近い値に設定されている。
Outer diameter D of the portion of the regulating valve body 17 that is located closer to the low pressure chamber 24 than the portion that contacts the acute-angled seat portion 19
is set to a value as close as possible to the diameter D 1 of the acute-angled seat portion 19.

上述のように構成された本発明の膨張弁1は、
第1の接続口8をレシーバタンク41及び凝縮器
42を順次介して圧縮機43の吐出口43aに、
第4接続口11を圧縮機43の吸入口43bに、
第2接続口9を蒸発器44の入口44aに、第3
接続口10を該蒸発器44の出口44bに夫々接
続することにより冷凍システムに組み込まれる。
The expansion valve 1 of the present invention configured as described above has the following features:
The first connection port 8 is connected to the discharge port 43a of the compressor 43 through the receiver tank 41 and the condenser 42,
The fourth connection port 11 is connected to the suction port 43b of the compressor 43,
The second connection port 9 is connected to the inlet 44a of the evaporator 44, and the third
It is incorporated into a refrigeration system by connecting the connection ports 10 to the outlets 44b of the evaporator 44, respectively.

(作用) 次に、上記構成の膨張弁1の作用を説明する。
圧縮機43の駆動により圧縮された高温・高圧の
冷媒は凝縮器42→レシーバタンク41→第2通
孔26→高圧室21→低圧室24→第1通孔25
→蒸発器44→冷媒通過室7aの径路を経て再び
圧縮機43に戻る。このような冷凍サイクルにお
いて、蒸発器44の出口から流出する冷媒の温度
は冷媒通過室7a内においてカバー34にて検出
され、当該温度に応じて密閉空間34a内の封入
ガスが膨張(縮小)し、ダイアフラム28を介し
て作動杆15を開弁(閉弁)方向に下降(上昇)
させる。該密閉空間内の圧力は冷媒通過室7a内
の冷媒温度によつて決まるもので、該圧力とばね
22のばね力とのバランスにより調整弁体17の
開度が決定し、該開度に応じて高圧室21から低
圧室24への冷媒流入量が決定され、これに伴い
蒸発器44内への冷媒流入量が決定される。即
ち、前記ダイアフラム28の開弁方向への押圧力
FDは、蒸発器44の出口からの冷媒が通過する
冷媒通過室7a内の冷媒圧力及び温度をP1及び
T1、密閉空間34a内の圧力をP2、ダイアフラ
ム28の受圧面積をAとすると、FD=(P2
P1)・Aとなる。ここでP2はT1に対応して決まる
圧力であり、ばね22のばね力をFspとすればFD
=Fsp=(P2−P1)・Aとなり、またP2はT1の関
数であるから、Fspと密閉空間34a内のT1に対
する圧力変化特性を適当に選択することにより、
P1に相当する飽和温度とT1の差、即ち蒸発器4
4の出口冷媒加熱度を適正範囲に制御できるもの
である。
(Operation) Next, the operation of the expansion valve 1 having the above configuration will be explained.
The high-temperature, high-pressure refrigerant compressed by the drive of the compressor 43 flows through the condenser 42 → receiver tank 41 → second through hole 26 → high pressure chamber 21 → low pressure chamber 24 → first through hole 25
→ Evaporator 44 → Returns to compressor 43 again via the path of refrigerant passage chamber 7a. In such a refrigeration cycle, the temperature of the refrigerant flowing out from the outlet of the evaporator 44 is detected by the cover 34 in the refrigerant passage chamber 7a, and the sealed gas in the closed space 34a expands (contracts) according to the temperature. , the operating rod 15 descends (rises) in the valve opening (valve closing) direction via the diaphragm 28.
let The pressure in the sealed space is determined by the refrigerant temperature in the refrigerant passage chamber 7a, and the opening degree of the regulating valve body 17 is determined by the balance between this pressure and the spring force of the spring 22, and the opening degree of the regulating valve body 17 is determined according to the opening degree. The amount of refrigerant flowing into the low pressure chamber 24 from the high pressure chamber 21 is determined, and accordingly, the amount of refrigerant flowing into the evaporator 44 is determined. That is, the pressing force of the diaphragm 28 in the valve opening direction
F D is the refrigerant pressure and temperature in the refrigerant passage chamber 7a through which the refrigerant from the outlet of the evaporator 44 passes.
T 1 , the pressure inside the sealed space 34a is P 2 , and the pressure receiving area of the diaphragm 28 is A, then F D =(P 2
P 1 )・A. Here, P 2 is the pressure determined corresponding to T 1 , and if the spring force of the spring 22 is Fsp, then F D
=Fsp=( P2 - P1 )・A, and since P2 is a function of T1 , by appropriately selecting Fsp and pressure change characteristics with respect to T1 in the closed space 34a,
The difference between the saturation temperature corresponding to P 1 and T 1 , i.e. the evaporator 4
The degree of heating of the outlet refrigerant in step 4 can be controlled within an appropriate range.

このような膨張弁1の作動時において、調整弁
体17の外径Dを鋭角シート部19の直径D1
可能な限り近い値に設定されているから、開弁時
に高圧冷媒の影響を受けて調整弁体17の開度
(絞り量)が所定値以上に小さくなるということ
がない。また、高圧室21内の高圧冷媒が作動杆
15の大径部15aの外周面と作動杆嵌装室14
の内周面との摺動面間に漏洩した場合、該漏洩冷
媒は環状リーク溝39内にたまつた後、リーク通
路40及び間隙32を介して冷媒通過室7a内へ
リークされる。従つて、漏洩冷媒が作動空間30
内へ流入することにより該作動空間30内の圧力
が高まりダイアフラム28が閉弁方向に所定以上
に変位される結果、調整弁体17の開度(絞り
量)が所定値以下となつていまい、更には流量不
足から蒸発器44の出口冷媒加熱度を過大にして
しまうという不具合を生じるということがない。
When the expansion valve 1 is operated, the outer diameter D of the regulating valve body 17 is set to a value as close as possible to the diameter D1 of the acute-angled seat portion 19, so that it is not affected by the high-pressure refrigerant when the valve is opened. Therefore, the opening degree (throttling amount) of the regulating valve body 17 does not become smaller than a predetermined value. Furthermore, the high-pressure refrigerant in the high-pressure chamber 21 is connected to the outer circumferential surface of the large diameter portion 15a of the operating rod 15 and the operating rod fitting chamber 14.
If the refrigerant leaks between the sliding surface and the inner peripheral surface of the refrigerant, the leaked refrigerant accumulates in the annular leak groove 39 and then leaks into the refrigerant passage chamber 7a through the leak passage 40 and the gap 32. Therefore, the leaked refrigerant flows into the working space 30.
As a result, the pressure in the working space 30 increases and the diaphragm 28 is displaced more than a predetermined amount in the valve closing direction, so that the opening degree (throttling amount) of the regulating valve body 17 does not fall below a predetermined value. Furthermore, there is no problem of excessive heating of the refrigerant at the outlet of the evaporator 44 due to insufficient flow rate.

更に、膨張弁本体4の保守、点検、整備等の際
は、閉際部材6を挿入口3から取り外してハウジ
ング2の挿入口3から膨張弁本体4を引き出せば
よく、他の圧縮機43や蒸発器44等の機器との
接続部分は接続状態のままでよいから、メンテナ
ンス性が良好であり、またハウジング2の膨張弁
本体挿入室7内端部の冷媒通過室7a内の冷媒温
度を直接感知する方式のため設置場所に制約を受
けない。
Furthermore, when maintaining, inspecting, servicing, etc. the expansion valve body 4, it is sufficient to remove the closing member 6 from the insertion port 3 and pull out the expansion valve body 4 from the insertion port 3 of the housing 2. Since the connection parts to devices such as the evaporator 44 can remain connected, maintenance is easy, and the refrigerant temperature in the refrigerant passage chamber 7a at the inner end of the expansion valve body insertion chamber 7 of the housing 2 can be directly measured. Since it is a sensing method, there are no restrictions on installation location.

なお、上記実施例においては環状リーク溝39
を作動杆15の大径部15aの外周面に設けた場
合について説明したが、これに限られることな
く、作動杆嵌装室14の内周面に設けてもよい。
Note that in the above embodiment, the annular leak groove 39
Although the case has been described in which it is provided on the outer circumferential surface of the large diameter portion 15a of the operating rod 15, the present invention is not limited to this, and it may be provided on the inner circumferential surface of the operating rod fitting chamber 14.

(発明の効果) 以上の如く本発明の第1は、冷凍システムの蒸
発器への冷媒供給量を制御するための膨張弁にお
いて、圧縮機の吐出口側管路に接続されると共に
高温・高圧冷媒が流入する高圧室と、該高圧室と
蒸発器の入口側管路に夫々接続されると共に低
温・低圧冷媒が流入する低圧室と、作動杆嵌装室
と、該作動杆嵌装室内に摺動自在に嵌装された作
動杆と、該作動杆の一端にこれと一体的に作動し
得る如く設けられて前記高圧室と低圧室との間の
通路開口面積を調整すると共にばねにて閉弁方向
に付勢された調整弁体と、前記作動杆の他端に設
けられ且つ両端面に作用する圧力の差に応じて前
記作動杆の軸線方向に変位する圧力応動部材と、
該圧力応動部材の反作動杆側に位置して設けられ
且つ前記蒸発器の出口から圧縮機の吸入口に至る
途中の冷媒が通過する冷媒通過室と、前記圧力応
動部材の前記作動杆側端面に対向して設けられ且
つ前記冷媒通過室と連通する作動空間と、前記圧
力応動部材の反作動杆側端面に設けられ且つ前記
冷媒通過室内の温度変化に応じて前記圧力応動部
材を介して作動杆を開弁方向に押圧する圧力を発
生する圧力発生手段と、前記高圧室の冷媒が前記
作動杆外周面と作動杆嵌装室内周面との摺動面間
に漏洩した際該漏洩冷媒を前記冷媒通過室へリー
クさせるリーク手段とを具備したから、シール部
材を設けることなく高圧冷媒がダイアフラムの作
動杆側の作動空間に流入するのを防止し得て長期
に亘つて加熱度制御を正確に行えるという効果を
奏する。
(Effects of the Invention) As described above, the first aspect of the present invention is that in an expansion valve for controlling the amount of refrigerant supplied to an evaporator of a refrigeration system, the A high-pressure chamber into which refrigerant flows, a low-pressure chamber connected to the high-pressure chamber and the inlet side pipe of the evaporator and into which low-temperature, low-pressure refrigerant flows, an operating rod fitting chamber, and the operating rod fitting chamber. an operating rod fitted in a slidable manner; and an operating rod provided at one end of the operating rod so as to be able to operate integrally therewith to adjust the passage opening area between the high pressure chamber and the low pressure chamber, and a spring an adjusting valve body biased in the valve closing direction; a pressure responsive member provided at the other end of the operating rod and displacing in the axial direction of the operating rod in response to a difference in pressure acting on both end surfaces;
a refrigerant passage chamber located on the reaction rod side of the pressure responsive member and through which refrigerant passes on the way from the outlet of the evaporator to the suction port of the compressor; and an end surface of the pressure responsive member on the reaction rod side. an actuation space that is provided opposite to the refrigerant passage chamber and communicates with the refrigerant passage chamber; and an actuation space that is provided on the reaction rod side end surface of the pressure responsive member and that operates via the pressure responsive member in response to temperature changes in the refrigerant passage chamber. A pressure generating means for generating pressure to press the rod in the valve opening direction; Since the refrigerant is provided with a leak means for causing the refrigerant to leak into the refrigerant passage chamber, the high-pressure refrigerant can be prevented from flowing into the working space on the working rod side of the diaphragm without providing a sealing member, and the heating degree can be controlled accurately over a long period of time. This has the effect that it can be done.

また、本発明の第2は、冷凍システムの蒸発器
への冷媒供給量を制御するための膨張弁におい
て、圧縮機の吐出口側管路に接続されると共に高
温・高圧冷媒が流入する高圧室と、該高圧室と蒸
発器の入口側管路に夫々接続されると共に低温・
低圧冷媒が流入する低圧室と、該低圧室と前記高
圧室とを接続する通路周縁に設けられ且つ前記低
圧室内径より小径な鋭角シート部と、作動杆嵌装
室と、該作動杆嵌装室内に摺動自在に嵌装された
作動杆と、前記低圧室内に位置して前記作動杆の
一端にこれと一体的に作動し得る如く設けられて
そのテーパ状シート部が前記通路の鋭角シート部
に接離することにより前記高圧室と低圧室との間
の通路開口面積を調整すると共にばねにて閉弁方
向に付勢された截頭円錐状の調整弁体と、前記作
動杆の他端に設けられ且つ両端面に作用する圧力
の差に応じて前記作動杆の軸線方向に変位する圧
力応動部材と、該圧力応動部材の反作動杆側に位
置して設けられ且つ前記蒸発器の出口から圧縮機
の吸入口に至る途中の冷媒が通過する冷媒通過室
と、前記圧力応動部材の前記作動杆側端面に対向
して設けられ且つ前記冷媒通過室と連通する作動
空間と、前記圧力応動部材の反作動杆側端面に設
けられ且つ前記冷媒通過室内の温度変化に応じて
前記圧力応動部材を介して作動杆を開弁方向に押
圧する圧力を発生する圧力発生手段とを具備し、
前記調整弁体の鋭角シート部に接触する部分より
低圧室側に位置する部分の外径を前記鋭角シート
部の直径に可能な限り近い値に設定したから、調
整弁体が開弁時に高圧冷媒の影響を殆ど受けるこ
とがないので、蒸発器の出口冷媒過熱度が必要以
上に小さくなることがないという効果を奏する。
The second aspect of the present invention is that in an expansion valve for controlling the amount of refrigerant supplied to an evaporator of a refrigeration system, a high-pressure chamber is connected to a conduit on the discharge port side of a compressor and into which high-temperature and high-pressure refrigerant flows. is connected to the high pressure chamber and the inlet side pipe of the evaporator, respectively, and is connected to the low temperature and
a low pressure chamber into which a low pressure refrigerant flows; an acute-angled seat portion provided at the periphery of a passage connecting the low pressure chamber and the high pressure chamber and having a smaller diameter than the inner diameter of the low pressure chamber; an operating rod fitting chamber; and the operating rod fitting. an operating rod that is slidably fitted into the chamber; and an operating rod that is located within the low-pressure chamber and is provided at one end of the operating rod so as to be able to operate integrally therewith, and that the tapered seat portion forms an acute-angled seat of the passage. a truncated conical regulating valve body which adjusts the passage opening area between the high pressure chamber and the low pressure chamber by moving toward and away from the section, and which is biased in the valve closing direction by a spring; a pressure-responsive member disposed at one end of the evaporator and displaceable in the axial direction of the working rod in response to a difference in pressure acting on both end faces; a refrigerant passage chamber through which the refrigerant passes on the way from the outlet to the suction port of the compressor; an operating space that is provided opposite to the end surface of the pressure responsive member on the operating rod side and communicates with the refrigerant passage chamber; pressure generating means, which is provided on the end surface of the responsive member on the reaction rod side and generates a pressure that presses the operating rod in the valve opening direction via the pressure responsive member in response to a temperature change in the refrigerant passage chamber;
Since the outer diameter of the part of the regulating valve element located closer to the low pressure chamber than the part that contacts the acute-angled seat part is set to a value as close as possible to the diameter of the acute-angled seat part, when the regulating valve element opens, high-pressure refrigerant Since the degree of superheating of the refrigerant at the outlet of the evaporator does not become smaller than necessary, this effect is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図は冷凍システムに組み込んだ状態の本発明の
膨張弁の一実施例を示す断面図である。 1……膨張弁、2……ハウジング、3……挿入
口、4……膨張弁本体、51〜53……Oリング
(シール部材)、6……閉塞部材、7……膨張弁本
体挿入室、7a……冷媒通過室、8……第1接続
口、9……第2接続口、10……第3接続口、1
1……第4接続口、14……作動杆嵌装室、15
……作動杆、17……調整弁体、18……通路、
19……鋭角シート部、20……テーパ状シート
部、21……高圧室、22……ばね、24……低
圧室、25……第1通孔、26……第2通孔、2
8……ダイアフラム(圧力応動部材)、30……
作動空間、31……第3通孔(外部均圧通路)、
33……圧力発生手段、39……環状リーク溝、
40……リーク通路。
The figure is a sectional view showing an embodiment of the expansion valve of the present invention installed in a refrigeration system. DESCRIPTION OF SYMBOLS 1... Expansion valve, 2... Housing, 3... Insertion port, 4... Expansion valve body, 5 1 to 5 3 ... O-ring (sealing member), 6... Closing member, 7... Expansion valve main body Insertion chamber, 7a... Refrigerant passage chamber, 8... First connection port, 9... Second connection port, 10... Third connection port, 1
1...Fourth connection port, 14...Operation rod fitting chamber, 15
... Operating rod, 17 ... Adjustment valve body, 18 ... Passage,
19...Acute angle sheet portion, 20...Tapered sheet portion, 21...High pressure chamber, 22...Spring, 24...Low pressure chamber, 25...First passage hole, 26... Second passage hole, 2
8...Diaphragm (pressure responsive member), 30...
Working space, 31... third through hole (external pressure equalization passage),
33... Pressure generating means, 39... Annular leak groove,
40...Leak passage.

Claims (1)

【特許請求の範囲】 1 冷凍システムの蒸発器への冷媒供給量を制御
するための膨張弁において、圧縮機の吐出口側管
路に接続されると共に高温・高圧冷媒が流入する
高圧室と、該高圧室と蒸発器の入口側管路に夫々
接続されると共に低温・低圧冷媒が流入する低圧
室と、作動杆嵌装室と、該作動杆嵌装室内に摺動
自在に嵌装された作動杆と、課題作動杆の一端に
これと一体的に作動し得る如く設けられて前記高
圧室と低圧室との間の通路開口面積を調整すると
共にばねにて閉弁方向に付勢さた調整弁体と、前
記作動杆の他端に設けられ且つ両端面に作用する
圧力の差に応じて前記作動杆の軸線方向に変位す
る圧力応動部材と、該圧力応動部材の反作動杆側
に位置して設けられ且つ前記蒸発器の出口から圧
縮機の吸入口に至る途中の冷媒が通過する冷媒通
過室と、前記圧力応動部材の前記作動杆側端面に
対向して設けられ且つ前記冷媒通過室と連通する
作動空間と、前記圧力応動部材の反作動杆側端面
に設けられ且つ前記冷媒通過室内の温度変化に応
じて前記圧力応動部材を介して作動杆を開弁方向
に押圧する圧力を発生する圧力発生手段と、前記
高圧室の冷媒が前記作動杆外周面と作動杆嵌装室
内周面との摺動面間に漏洩した際該漏洩冷媒を前
記冷媒通過室へリークさせるリーク手段とを具備
してなることを特徴とする膨張弁。 2 前記冷媒通過室と作動空間とを連通する連通
部の前記冷媒通過室側開口端と、前記リーク通路
の前記冷媒通過室側開口端とを前記作動杆の周方
向に互いに略180°変位させたことを特徴とする特
許請求の範囲第1項記載の膨張弁。 3 前記圧力応動部材はダイアフラムであること
を特徴とする特許請求の範囲第1項記載の膨張
弁。 4 前記リーク手段は前記作動杆外周面に設けら
れた環状リーク溝と、該環状リーク溝と前記冷媒
通過室とを連通するリーク通路とよりなることを
特徴とする特許請求の範囲第1項記載の膨張弁。 5 前記リーク手段は前記作動杆嵌装室内内周面
に設けられた環状リーク溝と、該環状リーク溝と
前記冷媒通過室とを連通するリーク通路とよりな
ることを特徴とする特許請求の範囲第1項記載の
膨張弁。 6 冷凍システムの蒸発器への冷媒供給量を制御
するための膨張弁において、圧縮機の吐出口側管
路に接続されると共に高温・高圧冷媒が流入する
高圧室と、該高圧室と蒸発器の入口側管路に夫々
接続されると共に低温・低圧冷媒が流入する低圧
室と、該低圧室と前記高圧室とを接続する通路周
縁に設けられ且つ前記低圧室内径より小径な鋭角
シート部と、作動杆嵌装室と、該作動杆嵌装室内
に摺動自在に嵌装された作動杆と、前記低圧室内
に位置して前記作動杆の一端にこれと一体的に作
動し得る如く設けられてそのテーパ状シート部が
前記通路の鋭角シート部に接離することにより前
記高圧室と低圧室との間の通路開口面積を調整す
ると共にばねにて閉弁方向に付勢された截頭円錐
状の調整弁体と、前記作動杆の他端に設けられ且
つ両端面に作用する圧力の差に応じて前記作動杆
の軸線方向に変位する圧力応動部材と、該圧力応
動部材の反作動杆側に位置して設けられ且つ前記
蒸発器の出口から圧縮機の吸入口に至る途中の冷
媒が通過する冷媒通過室と、前記圧力応動部材の
前記作動杆側端面に対向して設けられ且つ前記冷
媒通過室と連通する作動空間と、前記圧力応動部
材の反作動杆側端面に設けられ且つ前記冷媒通過
室内の温度変化に応じて前記圧力応動部材を介し
て作動杆を開弁方向に押圧する圧力を発生する圧
力発生手段とを具備し、前記調整弁体の鋭角シー
ト部に接触する部分より低圧室側に位置する部分
の外径を前記鋭角シート部の直径に可能な限り近
い値に設定したことを特徴とする膨張弁。 7 前記圧力応動部材はダイアフラムであること
を特徴とする特許請求の範囲第6項記載の膨張
弁。
[Scope of Claims] 1. In an expansion valve for controlling the amount of refrigerant supplied to an evaporator of a refrigeration system, a high-pressure chamber connected to a conduit on the discharge port side of a compressor and into which high-temperature and high-pressure refrigerant flows; a low-pressure chamber connected to the high-pressure chamber and the inlet side pipe of the evaporator and into which a low-temperature, low-pressure refrigerant flows; an operating rod fitting chamber; and a low-pressure chamber that is slidably fitted into the operating rod fitting chamber. An operating rod, which is provided at one end of the operating rod so as to be able to operate integrally therewith, adjusts the passage opening area between the high pressure chamber and the low pressure chamber, and is biased by a spring in the valve closing direction. an adjusting valve body, a pressure-responsive member provided at the other end of the operating rod and displaced in the axial direction of the operating rod in accordance with a difference in pressure acting on both end surfaces; a refrigerant passage chamber, which is provided oppositely to the end surface of the operating rod side of the pressure responsive member, through which the refrigerant passes on the way from the outlet of the evaporator to the suction port of the compressor; The actuating space communicates with the chamber, and the pressure-responsive member is provided on the end face of the reaction rod side, and applies pressure to press the actuating rod in the valve-opening direction via the pressure-responsive member in response to temperature changes in the refrigerant passage chamber. and a leak means for leaking the leaked refrigerant to the refrigerant passage chamber when the refrigerant in the high pressure chamber leaks between the sliding surfaces of the outer peripheral surface of the operating rod and the peripheral surface of the operating rod fitting chamber. An expansion valve comprising: 2 The refrigerant passage chamber side open end of the communication portion that communicates the refrigerant passage chamber and the working space and the refrigerant passage chamber side open end of the leak passage are displaced approximately 180° from each other in the circumferential direction of the working rod. The expansion valve according to claim 1, characterized in that: 3. The expansion valve according to claim 1, wherein the pressure responsive member is a diaphragm. 4. The leak means comprises an annular leak groove provided on the outer circumferential surface of the operating rod, and a leak passage communicating the annular leak groove with the refrigerant passage chamber. expansion valve. 5. Claims characterized in that the leak means comprises an annular leak groove provided on the inner circumferential surface of the operating rod fitting chamber, and a leak passage communicating the annular leak groove with the refrigerant passage chamber. The expansion valve according to item 1. 6 In an expansion valve for controlling the amount of refrigerant supplied to the evaporator of a refrigeration system, a high-pressure chamber connected to the discharge port side pipe of the compressor and into which high-temperature/high-pressure refrigerant flows, and the high-pressure chamber and the evaporator. a low pressure chamber connected to each of the inlet side pipes and into which low-temperature, low-pressure refrigerant flows; and an acute-angled sheet portion provided at the periphery of a passage connecting the low pressure chamber and the high pressure chamber and having a diameter smaller than the inner diameter of the low pressure chamber. an operating rod fitting chamber, an operating rod slidably fitted into the operating rod fitting chamber, and an operating rod located within the low pressure chamber and provided at one end of the operating rod so as to be able to operate integrally therewith. The tapered seat portion moves toward and away from the acute-angled seat portion of the passage to adjust the opening area of the passage between the high pressure chamber and the low pressure chamber, and the truncated portion is biased in the valve closing direction by a spring. a conical regulating valve body; a pressure-responsive member disposed at the other end of the operating rod and displaced in the axial direction of the operating rod in response to a difference in pressure acting on both end surfaces; and a reaction of the pressure-responsive member. a refrigerant passage chamber provided on the rod side and through which refrigerant passes on the way from the outlet of the evaporator to the suction port of the compressor; and a refrigerant passage chamber provided opposite to the end surface of the pressure responsive member on the operating rod side; An operating space communicating with the refrigerant passage chamber and an end surface of the pressure responsive member on the reaction rod side are provided, and the actuating rod is pressed in the valve opening direction via the pressure responsive member in response to a temperature change in the refrigerant passage chamber. and pressure generating means for generating a pressure such that the outer diameter of a portion of the regulating valve body located closer to the low pressure chamber than the portion that contacts the acute-angled seat portion is set to a value as close as possible to the diameter of the acute-angled seat portion. An expansion valve characterized by setting. 7. The expansion valve according to claim 6, wherein the pressure responsive member is a diaphragm.
JP60103566A 1985-05-14 1985-05-14 Expansion valve Granted JPS61262569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103566A JPS61262569A (en) 1985-05-14 1985-05-14 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103566A JPS61262569A (en) 1985-05-14 1985-05-14 Expansion valve

Publications (2)

Publication Number Publication Date
JPS61262569A JPS61262569A (en) 1986-11-20
JPH0461266B2 true JPH0461266B2 (en) 1992-09-30

Family

ID=14357352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103566A Granted JPS61262569A (en) 1985-05-14 1985-05-14 Expansion valve

Country Status (1)

Country Link
JP (1) JPS61262569A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230966A (en) * 1988-03-10 1989-09-14 Fuji Koki Seisakusho:Kk Control of refrigerating system and thermostatic expansion valve

Also Published As

Publication number Publication date
JPS61262569A (en) 1986-11-20

Similar Documents

Publication Publication Date Title
US5944257A (en) Bulb-operated modulating gas valve with minimum bypass
US5127237A (en) Expansion valve
EP1435495A2 (en) Switching valve
US6866242B2 (en) Proportional valve
JP2009526315A (en) Dome load type pressure regulator
JPH10253199A (en) Thermal expansion valve
EP1394646B1 (en) Differential pressure control valve
KR101352205B1 (en) Temperature expansion valve
US8449266B2 (en) Control valve for variable displacement compressor
JP2008138812A (en) Differential pressure valve
KR19980024054A (en) Expansion valve
DK176848B1 (en) Pilot controlled valve with variable opening in a piston
JP2005164208A (en) Expansion valve
US5277364A (en) Dual capacity thermal expansion valve
WO2001053730A1 (en) Regulating insert to be placed in valves, and valve unit
US3452929A (en) Temperature piloted evaporator pressure control
JPH0461266B2 (en)
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP2006292185A (en) Expansion device and refrigerating cycle
JPH02254270A (en) Temperature actuating type expansion valve
JPH0422229Y2 (en)
JPH0694335A (en) Reversible expansion valve
US4079886A (en) Double ported expansion valve
JP2701945B2 (en) Temperature type subcool control valve
JP3842354B2 (en) Temperature expansion valve