JP2701945B2 - Temperature type subcool control valve - Google Patents

Temperature type subcool control valve

Info

Publication number
JP2701945B2
JP2701945B2 JP1265001A JP26500189A JP2701945B2 JP 2701945 B2 JP2701945 B2 JP 2701945B2 JP 1265001 A JP1265001 A JP 1265001A JP 26500189 A JP26500189 A JP 26500189A JP 2701945 B2 JP2701945 B2 JP 2701945B2
Authority
JP
Japan
Prior art keywords
valve
piston
hole
receivers
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1265001A
Other languages
Japanese (ja)
Other versions
JPH03129272A (en
Inventor
仁志 梅沢
貞武 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP1265001A priority Critical patent/JP2701945B2/en
Publication of JPH03129272A publication Critical patent/JPH03129272A/en
Application granted granted Critical
Publication of JP2701945B2 publication Critical patent/JP2701945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は過冷却制御によるヒートポンプサイクルにお
ける冷媒流量調整弁に関するものである。
Description: TECHNICAL FIELD The present invention relates to a refrigerant flow control valve in a heat pump cycle by supercooling control.

〔従来の技術〕[Conventional technology]

従来温度式膨張弁を用いたヒートポンプサイクルで
は、冷房運転時と暖房運転時とでは膨張弁を2台使用し
ているが、過冷却制御方式によるヒートポンプサイクル
においては、冷凍−第42巻第476号第71頁の第1図に示
すように温度式サブクール制御弁は1台で事足りてい
た。
In a conventional heat pump cycle using a temperature-type expansion valve, two expansion valves are used during a cooling operation and a heating operation. However, in a heat pump cycle using a supercooling control method, refrigeration-Vol. As shown in FIG. 1 on page 71, one thermal type subcool control valve was sufficient.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

然し乍らこの場合サブクール制御弁への液冷媒の流出
入口が定っている為、マニホールドチェック弁を介して
サブクール制御弁への液冷媒の流出入方向を制御しなけ
ればならず、その為配管系が長く複雑になり、冷媒充填
においても余分に冷媒を必要とし、又メインテナンスも
大変であった。
However, in this case, since the outflow and inflow of the liquid refrigerant to the subcool control valve are fixed, it is necessary to control the outflow and inflow of the liquid refrigerant to and from the subcool control valve through the manifold check valve. It is long and complicated, requires an extra refrigerant for charging the refrigerant, and requires a lot of maintenance.

更にマニホールドチェック弁は構造が複雑であるの
で、故障発生率も高く、又配管条件によっては誤差動を
起す可能性もあった。
Further, since the structure of the manifold check valve is complicated, a failure occurrence rate is high, and an error may occur depending on piping conditions.

このように過冷却制御方式によるヒートポンプサイク
ルにおいては、構造の複雑なマニホールドチェック弁を
必要とし、その関係上回路自体も複雑化するので、系全
体としてのコスト及び故障発生率も高く、高価なシステ
ムの割には付加価値の低いシステムであった。
As described above, in the heat pump cycle based on the supercooling control method, a manifold check valve having a complicated structure is required, and the circuit itself is complicated due to the need. Therefore, the cost and the failure rate of the entire system are high, and the expensive system is expensive. However, it was a low value-added system.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は以上のような課題を解決する為に発明された
もので、本発明によれば、一方において室内の熱交換器
と他方において室外の熱交換器と夫夫連通する通孔を有
する弁本体を互いに対向して設け、両弁本体に夫々内側
に開口を有する隔壁を突設した筒状の受けを固定し、両
受け間にダイヤフラムを介挿して両受けを密着固定する
と共にこれ等両受け間にダイヤフラムを挾むように対向
してストッパーを内設し、前記両弁本体内を摺動するよ
うに前記ダイヤフラムの有効径と略等しい径の夫々ピス
トンを対向して設け、前記両受けの隔壁と各ピストン間
に夫々ばねを介在し、各ピストンと両ストッパー間に夫
々ステムを植設し、これ等ステムを包囲するように前記
両受けの各隔壁と各ピストンとの間に夫々ベローズを設
けて各受け、ストッパー間にベローズ室を構成し、各ピ
ストンの夫々ステムと対向する側に夫々弁体を各ピスト
ンと各弁本体とによって形成された弁室内において各弁
本体に設けられた弁座に対向する如く突設し、各弁体を
常時夫々ピストン側に偏位し、且外部より夫々調節可能
な調節ばねを各弁本体内に設け、前記各通孔と各ピスト
ン、弁本体、受けの隔壁によって構成された中間室とを
連通する如く各弁体、ステム及びピストンを通ずる均圧
孔を設け、各通孔と各弁室を連通するブリードポートを
夫々弁本体に穿設し、前記各通孔に接して設けられた各
感温筒を夫々キャピラリーチューブを介して前記各ベロ
ーズ室へ連通すると共に各通孔を夫々連通路を介して前
記各弁室に連通してなる事を要旨とするものである。
According to the present invention, a valve having a through hole communicating with an indoor heat exchanger on one side and an outdoor heat exchanger on the other side is provided according to the present invention. The main bodies are provided to face each other, a cylindrical receiver having a partition wall having an opening inside is fixed to both valve bodies, and a diaphragm is interposed between the two receivers to tightly fix the two receivers. A stopper is provided inside the diaphragm so as to sandwich the diaphragm therebetween, and pistons each having a diameter substantially equal to the effective diameter of the diaphragm are provided facing each other so as to slide in the two valve bodies. A spring is interposed between each piston and each piston, a stem is implanted between each piston and both stoppers, and a bellows is provided between each partition and each piston of the both receivers so as to surround these stems. Each storage A bellows chamber is formed between the pistons and a valve body is provided on a side of each piston facing the stem so as to face a valve seat provided on each valve body in a valve chamber formed by each piston and each valve body. Each valve body is always protruded, and each valve body is constantly deviated toward the piston side, and an adjusting spring which can be individually adjusted from the outside is provided in each valve body, and each of the through holes, each piston, the valve body, and a partition of the receiving member are formed. A pressure equalizing hole that communicates with each valve element, stem and piston is provided so as to communicate with the intermediate chamber, and a bleed port that communicates each through hole with each valve chamber is formed in the valve body. The gist is that the temperature sensing cylinders provided in contact with the bellows chambers are respectively connected to the respective bellows chambers via the capillary tubes, and the respective through holes are respectively connected to the respective valve chambers via the communication passages. is there.

〔作用〕 本発明は以上のような手段を有するから、暖房運転時
液冷媒が過冷却されていない時は液冷媒は室内の熱交換
器と連通する一方の通孔から一方の均圧孔を経て一方の
中間室に導入され、一方のピストンを介して一方の弁体
を一方の調節ばね圧に抗して移動し一方の弁座に着座さ
せて閉弁する。
[Operation] Since the present invention has the means as described above, when the liquid refrigerant is not supercooled during the heating operation, the liquid refrigerant passes from one through hole communicating with the indoor heat exchanger to one pressure equalizing hole. Then, the valve body is introduced into one of the intermediate chambers, moves one valve body via one piston against one adjustment spring pressure, and seats on one valve seat to close the valve.

同時に一方の通孔に設けられた一方の感温筒内の高圧
の封入ガスはキャピラリーチューブを介して一方のベロ
ーズ室内に導かれ、このベローズ室内の高圧のガス圧に
より一方のストッパー,ダイヤフラム及び他方のストッ
パー他方のステム、他方のピストンを介して他方の弁体
を同様に閉弁する。
At the same time, the high-pressure sealed gas in one temperature-sensitive cylinder provided in one through-hole is guided into one bellows chamber through a capillary tube, and the one stopper, the diaphragm and the other are caused by the high gas pressure in the bellows chamber. The other valve body is similarly closed via the other stem and the other piston.

然し乍ら液冷媒は一方のブリードポートにより一方の
弁室、他方の連通路を経て他方の通孔に流れると共に一
方の通孔、一方の連通路、他方の弁室、他方のブリード
ポートを経て他方の通孔に流れるから、通常の制御量よ
りも更に小さい容量の液冷媒を常時流し続け得る。
However, the liquid refrigerant flows through one valve chamber and the other communication passage through the one bleed port to the other communication hole, and passes through one communication hole, one communication passage, the other valve chamber and the other bleed port to the other bleed port. Since the refrigerant flows through the through-hole, a smaller volume of liquid refrigerant than the normal control amount can be constantly flowed.

これに対し、液冷媒が所定の温度迄過冷却されると、
過冷却の度合に応じて一方の感温筒内の封入ガス圧力が
低下する為一方のベローズ室内の圧力は低下し、他方の
調節ばね圧により他方の弁体は前記とは逆に開弁し、過
冷却の度合に応じた弁開度を維持しつつ、液冷媒を室外
の熱交換器に供給する。
In contrast, when the liquid refrigerant is supercooled to a predetermined temperature,
Depending on the degree of supercooling, the pressure of the gas in one of the temperature-sensitive cylinders decreases, so the pressure in one of the bellows chambers decreases, and the other adjusts the spring pressure to open the other valve opposite to the above. The liquid refrigerant is supplied to the outdoor heat exchanger while maintaining the valve opening in accordance with the degree of supercooling.

冷房運転時は液冷媒は室外の熱交換器と連通する他方
の通孔から他方の均圧孔を経て他方の中間室に導入さ
れ、他方のピストンを介して他方の弁体を他方の調節ば
ねに抗して移動し他方の弁座に着座させて閉弁する。
During the cooling operation, the liquid refrigerant is introduced from the other through hole communicating with the outdoor heat exchanger to the other intermediate chamber through the other pressure equalizing hole, and the other valve body is connected to the other adjusting spring via the other piston. And seats on the other valve seat to close the valve.

同時に他方の通孔に設けられた他方の感温筒内の高圧
の封入ガスはキャピラリーチューブを介して他方のベロ
ーズ室内に導かれ、このベローズ室内の高圧のガス圧に
より他方のストッパー,ダイヤフラム及び一方のストッ
パー,一方のステム、一方のピストンを介して一方の弁
体を同様に閉弁する。
At the same time, the high-pressure sealed gas in the other temperature-sensitive cylinder provided in the other through-hole is guided into the other bellows chamber via the capillary tube, and the other stopper, the diaphragm and one of the other are pressed by the high-pressure gas pressure in the bellows chamber. Similarly, one valve body is closed via the stopper, one stem, and one piston.

然し乍ら冷媒は他方のブリードポートにより他方の弁
室,一方の連通路を経て一方の通孔に流れると共に他方
の連通路、一方の弁座、一方のブリードポートを経て一
方の通孔に流れるから、通常の制御量よりも更に小さい
容量の液冷媒を常時流し続け得る。
However, the refrigerant flows through the other bleed port through the other valve chamber and the one communication passage into one through hole, and flows through the other communication passage, one valve seat and one bleed port into one through hole. The liquid refrigerant having a smaller volume than the normal control amount can be continuously flowed.

これに対し、液冷媒が所定の温度迄過冷却されると、
過冷却の度合に応じて他方の感温筒内の封入ガス圧力が
低下する為他方のベローズ室内の圧力は低下し、一方の
調節ばね圧により一方の弁体は前記とは逆に開弁し、過
冷却の度合に応じた弁開度を維持しつつ液冷媒を室内の
熱交換器に供給する。
In contrast, when the liquid refrigerant is supercooled to a predetermined temperature,
The pressure in the other bellows chamber decreases because the pressure of the sealed gas in the other temperature-sensitive cylinder decreases in accordance with the degree of subcooling, and one of the valve bodies opens in the opposite manner to the above due to the adjustment spring pressure of the other. The liquid refrigerant is supplied to the indoor heat exchanger while maintaining the valve opening in accordance with the degree of supercooling.

〔実施例〕〔Example〕

次に本発明の実施例を図面について説明する。第1図
において、101は圧縮機、102は冷媒の流れ方向を切り換
える四方弁、103はアキュムレータ、104は室内熱交換
器、105は室外熱交換器である。106は吸入管で107は吐
出管を示す。冷房運転時は第1図の破線で示す方向に冷
媒は流れ、室外熱交換器105の出口の過冷却度を感温筒2
4aで感知し、室内熱交換器104に流入する液冷媒の流量
をサブクール制御弁100が調整する。
Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 101 is a compressor, 102 is a four-way valve for switching the flow direction of the refrigerant, 103 is an accumulator, 104 is an indoor heat exchanger, and 105 is an outdoor heat exchanger. 106 is a suction pipe and 107 is a discharge pipe. During the cooling operation, the refrigerant flows in the direction shown by the broken line in FIG.
The subcool control valve 100 senses at 4a and adjusts the flow rate of the liquid refrigerant flowing into the indoor heat exchanger 104.

又暖房運転時は実線で示す方向に冷媒は流れ、室内熱
交換器104の出口の過冷却を感温筒24bで感知した室外熱
交換器105に流入する液冷媒の流量をサブクール制御弁1
00が調整する。
During the heating operation, the refrigerant flows in the direction indicated by the solid line, and the subcool control valve 1 controls the flow rate of the liquid refrigerant flowing into the outdoor heat exchanger 105 when the supercooling at the outlet of the indoor heat exchanger 104 is detected by the temperature sensing tube 24b.
00 adjust.

次にサブクール制御弁100の詳細を第2図について説
明する。一方の弁本体1aには室内の熱交換器104と連通
する一方の通孔2aを有し、前記一方の弁本体1aと対向す
る他方の弁本体1bには室外の熱交換器105と連通する他
方の通孔2bを有する。
Next, the details of the subcool control valve 100 will be described with reference to FIG. One of the valve bodies 1a has one through hole 2a communicating with the indoor heat exchanger 104, and the other valve body 1b facing the one valve body 1a communicates with the outdoor heat exchanger 105. It has the other through hole 2b.

各弁本体1a,1bには夫々受け3a,3bがねじ等により固定
されて居り、各受けは互いに対接固定したダイヤフラム
4を挾持している。
Receptacles 3a and 3b are fixed to the valve bodies 1a and 1b by screws and the like, respectively, and sandwich the diaphragm 4 fixedly opposed to each other.

各弁本体内には前記ダイヤフラム4の有効径と略等し
い径の夫々ピストン5a,5bを摺動するように設けられて
いる。前記ダイヤフラム4の両面には互いに対向してス
トッパー6a,6bが設けられ、各ストッパー6a,6bと前記各
ピストン5a,5bとの間には夫々ステム7a,7bの各両端が固
定されている。
In each valve body, a piston 5a, 5b having a diameter substantially equal to the effective diameter of the diaphragm 4 is provided so as to slide. Stoppers 6a and 6b are provided on both sides of the diaphragm 4 so as to face each other, and both ends of stems 7a and 7b are fixed between the stoppers 6a and 6b and the pistons 5a and 5b, respectively.

前記受け3a,3bには互いに内方に突出し、中央部に夫
々開口8a,8bを有する隔壁9a,9bが設けられている。これ
等隔壁9a,9bと前記各ピストン5a,5bとの間に各ステム7
a,7bを包囲するように夫々ベローズ10a,10bが設けられ
ている。
The receivers 3a, 3b are provided with partitions 9a, 9b projecting inward from each other and having openings 8a, 8b at the center, respectively. Each stem 7 is located between the partition walls 9a, 9b and the pistons 5a, 5b.
Bellows 10a and 10b are provided so as to surround a and 7b, respectively.

このように各ピストン5a,5bと各隔壁9a,9bとの間には
夫々中間室11a,11bを形成し、又各隔壁9a,9bと各ストッ
パー6a,6bとの間に夫々ベローズ室12a,12bを形成する。
更に各隔壁9a,9bと各ピストン5a,5bとの間にはばね13a,
13bを介挿している。各ピストン5a,5bの夫々各通孔側に
夫々弁体14a,14bの各一端を固定し他端には夫々ばね受1
5a,15bを設けて夫々対向するばね受け16a,16bとの間に
夫々調節ばね17a,17bを介挿している。
Thus, the intermediate chambers 11a, 11b are formed between the pistons 5a, 5b and the partition walls 9a, 9b, respectively, and the bellows chambers 12a, 11b are formed between the partition walls 9a, 9b and the stoppers 6a, 6b, respectively. Form 12b.
Further, a spring 13a is provided between each partition 9a, 9b and each piston 5a, 5b.
13b is inserted. One end of each of the valve bodies 14a and 14b is fixed to each through hole side of each of the pistons 5a and 5b, and
Adjustment springs 17a, 17b are interposed between opposing spring receivers 16a, 16b, respectively, provided with 5a, 15b.

然して各ばね受け16a,16bは夫々外部から調整可能な
調整ねじ18a,18bと螺合している。これ等調整ねじ18a,1
8bにより夫々調節ばね17a,17bの弾力を調節し得るよう
になっている。
However, each spring receiver 16a, 16b is screwed with an externally adjustable adjusting screw 18a, 18b, respectively. These adjustment screws 18a, 1
The elasticity of the adjusting springs 17a and 17b can be adjusted by 8b.

前記各ばね受15a,15b、各弁体14a,14b、ステム7a,7b
及びピストン5a,5bには夫々均圧孔19a,19bが穿設され、
各通孔2a,2bと各中間室11a,11bとを連通している。
The spring supports 15a, 15b, the valve bodies 14a, 14b, the stems 7a, 7b
And equalizing holes 19a, 19b are drilled in the pistons 5a, 5b, respectively.
Each through hole 2a, 2b communicates with each intermediate chamber 11a, 11b.

20aと20bは各弁本体1a,1bに設けられた夫々弁室であ
って、21aと21bは前記各通孔2a,2bとこれ等弁室20a,20b
を連通するブリードポートを示す。22aと22bとは夫々弁
座である。
Reference numerals 20a and 20b denote valve chambers provided in the respective valve bodies 1a and 1b, and reference numerals 21a and 21b denote the respective through holes 2a and 2b and the valve chambers 20a and 20b.
The bleed port which communicates with is shown. 22a and 22b are valve seats, respectively.

前記各通孔2a,2bと各弁室20a,20bとは夫々連通路23a,
23bを介して連通している。
Each of the through holes 2a, 2b and each of the valve chambers 20a, 20b are connected to a communication passage 23a,
It communicates via 23b.

又前記各通孔2a,2bには夫々感温筒24a,24bを接して設
け、各感温筒の各キャピラリーチューブ25a,25bを夫々
前記ベローズ室12a,12bに連結している。
Temperature-sensitive tubes 24a, 24b are provided in contact with the through holes 2a, 2b, respectively, and the capillary tubes 25a, 25b of the temperature-sensitive tubes are connected to the bellows chambers 12a, 12b, respectively.

次に本発明制御弁の作用を説明する。先づ暖房運転時
は室内熱交換器104が凝縮器となり、室外熱交換器105が
蒸発器となり実線矢印で示す方向に冷媒が流れる。この
為通孔2aを通る高圧の液冷媒は均圧孔19aを通って中間
室11aに導かれ、ばね13aの弾力と共に調節ばね17aの弾
力に抗してピストン5aを第2図において上昇し、弁体14
aを弁座22aに着座させて閉弁する。この時、室内熱交換
器104から流出する液冷媒が過冷却されていない状態で
は感温度24a内の封入ガスは高圧になって居り、キャピ
ラリーチューブ25aを介してベローズ室12a内の圧力が高
くなり、この圧力とばね13bの弾性と相俟ってピストン5
bが弁室20bの圧力と調節ばね17bの弾力に打勝って第2
図において下降し、弁体14bを弁座22bに着座させて閉弁
する。
Next, the operation of the control valve of the present invention will be described. First, during the heating operation, the indoor heat exchanger 104 becomes a condenser, and the outdoor heat exchanger 105 becomes an evaporator, and the refrigerant flows in the direction indicated by the solid line arrow. For this reason, the high-pressure liquid refrigerant passing through the through hole 2a is guided to the intermediate chamber 11a through the equalizing hole 19a, and rises the piston 5a in FIG. 2 against the elasticity of the adjusting spring 17a together with the elasticity of the spring 13a, Valve element 14
a is seated on the valve seat 22a and the valve is closed. At this time, when the liquid refrigerant flowing out of the indoor heat exchanger 104 is not supercooled, the sealed gas within the temperature sensitive 24a is at a high pressure, and the pressure in the bellows chamber 12a is increased via the capillary tube 25a. This pressure, together with the elasticity of the spring 13b,
b overcomes the pressure of the valve chamber 20b and the elasticity of the adjusting spring 17b, and the second
In the figure, the valve body 14b is lowered, and the valve body 14b is seated on the valve seat 22b to close the valve.

このように制御弁100が閉弁状態にあってもブリード
ポート21a,21bを設けてあるから、通孔2aを流れる液冷
媒は一方では通孔2a,ブリードポート21a,弁室20a,連通
路23bを経て通孔2bに流れ、又他方では通孔2a,連通路23
a,弁室20b,ブリードポート21bを経て通孔2bに流れ、制
御弁100が通常制御するよりも小さい容量の液冷媒を常
時流し続ける事ができる。
As described above, since the bleed ports 21a and 21b are provided even when the control valve 100 is in the closed state, the liquid refrigerant flowing through the through hole 2a receives the through hole 2a, the bleed port 21a, the valve chamber 20a, and the communication passage 23b. Through the through hole 2b, and on the other hand, the through hole 2a and the communication passage 23.
a, the refrigerant flows into the through-hole 2b via the valve chamber 20b and the bleed port 21b, so that the liquid refrigerant having a smaller volume than the control valve 100 normally controls can always flow.

これに対して室内熱交換器104から流出する液冷媒が
所定の温度迄過冷却されると、過冷却の度合に応じて感
温筒24a内の封入ガス圧力が低下するので弁室20bの圧力
と調節ばね17bの弾力とによりピストン5bは第2図にお
いて上昇し、従って弁体14bは弁座22bから離間し、開弁
する。この時均圧孔19aから中間室11aに導かれている高
圧の液冷媒により前述のようにピストン5aが上昇してい
るので弁体14aは閉弁している。
On the other hand, when the liquid refrigerant flowing out of the indoor heat exchanger 104 is supercooled to a predetermined temperature, the pressure of the sealed gas in the thermosensitive cylinder 24a decreases according to the degree of supercooling, so that the pressure in the valve chamber 20b is reduced. The piston 5b rises in FIG. 2 due to the spring force of the adjusting spring 17b, so that the valve element 14b separates from the valve seat 22b and opens. At this time, as described above, the piston 5a is raised by the high-pressure liquid refrigerant guided to the intermediate chamber 11a from the pressure equalizing hole 19a, so that the valve body 14a is closed.

このようにして弁体14bは過冷却の度合に応じた弁開
度を維持しつつ液冷媒を通孔2a、連通路23aを経て通孔2
bより室外熱交換器に供給する。
In this way, the valve element 14b maintains the valve opening in accordance with the degree of subcooling, while passing the liquid refrigerant through the communication hole 23a and the communication passage 23a.
Supply to the outdoor heat exchanger from b.

次に四方弁102を切換えて冷房運転にすると、室外熱
交換器105が凝縮器となり室内熱交換器104が蒸発器とな
るので、液冷媒は点線矢印のように流れ、通孔2bよりサ
ブクール制御弁100に流入する。通孔2bより流入した高
圧の液冷媒は均圧孔19bを経て中間室11b内に流入するの
で中間室11bは高圧となりばね13bの弾力と共に調節ばね
17bの弾力に抗してピストン5bを第2図において下降
し、弁体14bを弁座22bを着座させて閉弁する。この時、
室外熱交換器105から流入する液冷媒が過冷却されてい
ない状態では感温筒24b内の封入ガス圧は高圧になって
居り、キャピラリーチューブ25bを介してベローズ室12b
内の圧力が高くなり、この圧力とばね13aの弾力と相俟
ってピストン5aが弁室20aの圧力と調節ばね17aの弾力に
打勝って第2図において上昇し弁体14aを弁座22aに着座
させて閉弁する。
Next, when the four-way valve 102 is switched to the cooling operation, the outdoor heat exchanger 105 becomes a condenser and the indoor heat exchanger 104 becomes an evaporator, so that the liquid refrigerant flows as indicated by a dotted arrow, and the subcool control is performed through the through hole 2b. Flow into valve 100. The high-pressure liquid refrigerant flowing from the through hole 2b flows into the intermediate chamber 11b through the pressure equalizing hole 19b, so that the intermediate chamber 11b becomes high pressure and the adjusting spring together with the elasticity of the spring 13b.
The piston 5b is lowered in FIG. 2 against the elasticity of 17b, and the valve body 14b is closed with the valve seat 22b seated. At this time,
In a state where the liquid refrigerant flowing from the outdoor heat exchanger 105 is not supercooled, the gas pressure in the thermosensitive cylinder 24b is high, and the bellows chamber 12b is connected via the capillary tube 25b.
The piston 5a overcomes the pressure of the valve chamber 20a and the elasticity of the adjusting spring 17a, and rises in FIG. 2 to move the valve body 14a to the valve seat 22a. And close the valve.

このように制御弁100が閉弁状態にあってもブリード
ポート21a,21bが設けてあるから、通孔2bを流れる液冷
媒は一方では通孔2b,ブリードポート21b,弁室20b,連通
路23aを経て通孔2aに流れ、又他方では通孔2b,連通路23
b,弁室20a,ブリードポート21aを経て通孔2aに流れ、制
御弁100が通常制御するよりも小さい容量の液冷媒を常
時流し続ける事ができる。
As described above, since the bleed ports 21a and 21b are provided even when the control valve 100 is in the closed state, the liquid refrigerant flowing through the through hole 2b receives the through hole 2b, the bleed port 21b, the valve chamber 20b, and the communication passage 23a. Through the through hole 2a, and on the other hand, the through hole 2b and the communication passage 23.
b, through the valve chamber 20a and the bleed port 21a, flows into the through-hole 2a, and can constantly flow the liquid refrigerant having a smaller volume than the control valve 100 normally controls.

これに対して室外熱交換器105から流出する液冷媒が
所定の温度迄過冷却されると、過冷却の度合に応じて感
温筒24b内の封入ガス圧力が低下するので弁室20aの圧力
と調節ばね17aの弾力とによりピストン5aは第2図にお
いて下降し、従って弁体14aは弁座22aから離間して開弁
する。
On the other hand, when the liquid refrigerant flowing out of the outdoor heat exchanger 105 is supercooled to a predetermined temperature, the pressure of the gas sealed in the temperature-sensitive cylinder 24b decreases according to the degree of supercooling, so that the pressure in the valve chamber 20a is reduced. The piston 5a is lowered in FIG. 2 due to the elasticity of the adjusting spring 17a and the valve body 14a is separated from the valve seat 22a and opened.

この時均圧孔19bから中間室11bに導かれている高圧の
液冷媒によりピストン5bが下降しているので弁体14bは
閉弁している。
At this time, since the piston 5b is lowered by the high-pressure liquid refrigerant guided to the intermediate chamber 11b from the pressure equalizing hole 19b, the valve body 14b is closed.

このようにして弁体14aは過冷却の度合に応じた弁開
度を維持しつつ液冷媒を通孔2b,連通路23bを経て通孔2a
より室内熱交換器に供給する。
In this way, the valve element 14a maintains the valve opening in accordance with the degree of subcooling, while passing the liquid refrigerant through the communication hole 23b and the communication passage 23b.
More to the indoor heat exchanger.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、液冷媒の流れ方向の正
逆に応じてダイヤフラムを挾んで対峙するそれぞれの弁
が適正に作動するので、冷暖房いずれの運転に切換わっ
てもサブクール制御弁の出入口が逆転するだけで、マニ
ホールドチェック弁等の付属品や複雑な配管が不用とな
り経済的にも有利であるばかりでなく、一枚のダイヤフ
ラムを挾んで上下全く対称に部品構成されている為、工
場での部品管理や中間組立品の管理が容易であり、又可
逆弁なので配管取付に於いてもサブクール制御弁の出入
口方向を考慮する必要がない。金属性ベローズを用いる
ことにより、気密性に優れた二つのダイヤフラム室を持
つことができる。
As described above, according to the present invention, the respective valves opposing each other across the diaphragm operate properly according to the forward and reverse directions of the flow direction of the liquid refrigerant, so that the subcool control valve can be operated regardless of the operation mode. Since the inlet and outlet are only reversed, accessories such as a manifold check valve and complicated piping are not necessary, which is economically advantageous.In addition, since the parts are configured completely symmetrically with one diaphragm in between, It is easy to manage parts and intermediate assemblies in the factory, and because it is a reversible valve, there is no need to consider the direction of the inlet and outlet of the subcool control valve even when installing piping. By using the metal bellows, it is possible to have two diaphragm chambers having excellent airtightness.

ダイヤフラム有効径とピストン径を略同一にしている
ので、感温筒内のガス圧力に対し高圧の液冷媒圧力が略
比較的に対応し、適正な過冷却制御を実現する。
Since the effective diameter of the diaphragm and the diameter of the piston are substantially the same, the high-pressure liquid refrigerant pressure substantially corresponds to the gas pressure in the temperature-sensitive cylinder, thereby realizing appropriate supercooling control.

弁、ステム、ピストンに均圧孔を穿設することにより
高圧の液冷媒を中間室に導き、使用しない側の弁を完全
に閉弁できるので、他方の弁が精度よく過冷却制御を実
現する。
By drilling equalizing holes in the valve, stem, and piston, high-pressure liquid refrigerant is guided to the intermediate chamber, and the unused valve can be completely closed, so that the other valve accurately realizes supercooling control. .

中間室にばねを内設させることにより、冷暖房切換時
に未使用側の弁の閉弁動作が円滑かつ素早く行なわれ
る。
By providing a spring in the intermediate chamber, the valve closing operation of the unused valve is smoothly and quickly performed at the time of switching between the cooling and the heating.

本体にブリードポートを設けているので、圧縮機の運
転停止後すぐに吸込み圧力と吐出圧力が平衡できる。又
過冷却不足の為、弁閉状態で圧縮機が運転されてもブリ
ードポートにより油が圧縮機に戻るので、圧縮機の焼付
きによるトラブルがない。
Since the bleed port is provided in the main body, the suction pressure and the discharge pressure can be balanced immediately after the operation of the compressor is stopped. Also, even if the compressor is operated in a valve closed state due to insufficient cooling, the oil returns to the compressor through the bleed port, so that there is no trouble due to seizure of the compressor.

調節ねじを外部に突出させている為、ヒートポンプの
運転状況を見ながら、運転を止めることなく容易に過冷
却量の調整ができる。又本発明制御弁は小型に設計でき
て経済的である等幾多の利点を有する。
Since the adjusting screw is projected outside, the supercooling amount can be easily adjusted without stopping the operation while observing the operation state of the heat pump. Further, the control valve of the present invention has many advantages such as being compact and economical.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のサブクール制御弁を使用した場合の回
路図で第2図は本発明の一実施例のサブクール制御弁の
詳細断面図である。 1a,1b……弁本体、2a,2b……通孔、3a,3b……受け、4
……ダイヤフラム、5a,5b……ピストン、6a,6b……スト
ッパー、7a,7b……ステム、9a,9b……隔壁、10a,10b…
…ベローズ、11a,11b……中間室、12a,12b……ベローズ
室、13a,13b……ばね、14a,14b……弁体、17a,17b……
調節ばね、18a,18b……調整ねじ、19a,19b……均圧孔、
20a,20b……弁室、21a,21b……ブリードポート、22a,22
b……弁座、23a,23b……連通路、24a,24b……感温筒、2
5a,25b……キャピラリーチューブ、101……圧縮機、102
……四方弁、104……室内熱交換器、105……室外熱交換
器。
FIG. 1 is a circuit diagram when the subcool control valve of the present invention is used, and FIG. 2 is a detailed sectional view of the subcool control valve of one embodiment of the present invention. 1a, 1b: Valve body, 2a, 2b: Through hole, 3a, 3b: Receiver, 4
…… Diaphragm, 5a, 5b …… Piston, 6a, 6b …… Stopper, 7a, 7b …… Stem, 9a, 9b …… Partition, 10a, 10b…
... Bellows, 11a, 11b ... Intermediate chamber, 12a, 12b ... Bellows chamber, 13a, 13b ... Spring, 14a, 14b ... Valve, 17a, 17b ...
Adjusting springs, 18a, 18b …… Adjusting screws, 19a, 19b …… Equalizing holes,
20a, 20b …… Valve room, 21a, 21b …… Bleed port, 22a, 22
b ... valve seat, 23a, 23b ... communication passage, 24a, 24b ... temperature-sensitive cylinder, 2
5a, 25b …… Capillary tube, 101 …… Compressor, 102
…… Four-way valve, 104 …… Indoor heat exchanger, 105 …… Outdoor heat exchanger.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方において室内の熱交換器と他方におい
て室外の熱交換器と夫々連通する通孔を有する弁本体を
互いに対向して設け、両弁本体に夫々内側に開口を有す
る隔壁を突設した筒状の受けを固定し、両受け間にダイ
ヤフラムを介挿して両受けを密着固定すると共にこれ等
両受け間にダイヤフラムを挾むように対向してストッパ
ーを内設し、前記両弁本体内を摺動するように前記ダイ
ヤフラムの有効径と略等しい径の夫々ピストンを対向し
て設け、前記両受けの隔壁と各ピストン間に夫々ばねを
介在し、各ピストンと両ストッパー間に夫々ステムを植
設し、これ等ステムを包囲するように前記両受けの各隔
壁と各ピストンとの間に夫々ベローズを設けて各受け、
ストッパー間にベローズ室を構成し、各ピストンの夫々
ステムと対向する側に夫夫弁体を各ピストンと各弁本体
とによって形成された弁室内において各弁本体に設けら
れた弁座に対向する如く突設し、各弁体を常時夫々ピス
トン側に偏位し、且外部より夫々調整可能な調節ばねを
各弁本体内に設け、前記各通孔と各ピストン、弁本体、
受けの隔壁によって構成された中間室とを連通する如く
各弁体,ステム及びピストンを通ずる均圧孔を設け、各
通孔と各弁室を連通するブリードポートを夫々弁本体に
穿設し、前記各通孔に接して設けられた各感温筒を夫々
キャピラリーチューブを介して前記各ベローズ室へ連通
すると共に各通孔を夫々連通路を介して前記各弁室に連
通してなる温度式サブクール制御弁。
1. A valve body having through holes communicating with an indoor heat exchanger on one side and an outdoor heat exchanger on the other side is provided opposite to each other, and both valve bodies have a partition wall having an opening inside. The cylindrical receiver provided is fixed, the diaphragm is interposed between the two receivers, and the two receivers are tightly fixed together.Furthermore, the stoppers are installed facing each other so as to sandwich the diaphragm between these two receivers. Pistons each having a diameter substantially equal to the effective diameter of the diaphragm are provided so as to face each other, a spring is interposed between the partition walls of the two receivers and each piston, and a stem is provided between each piston and both stoppers. Implanted, each bellows is provided between each partition and each piston of the two receivers so as to surround these stems, each receiver,
A bellows chamber is formed between the stoppers, and each of the pistons opposes a valve seat provided on each valve main body in a valve chamber formed by each piston and each valve main body on a side facing each stem of each piston. Protruding as described above, each valve body is always deviated toward the piston side, and an adjusting spring which can be individually adjusted from the outside is provided in each valve body, and each through hole and each piston, valve body,
A pressure equalizing hole that passes through each valve element, stem and piston is provided so as to communicate with the intermediate chamber formed by the receiving partition, and a bleed port that communicates each through hole with each valve chamber is formed in the valve body, A temperature type in which each of the temperature sensing cylinders provided in contact with each of the through holes communicates with each of the bellows chambers through a capillary tube, and each of the through holes communicates with each of the valve chambers through each of the communication passages. Subcool control valve.
JP1265001A 1989-10-13 1989-10-13 Temperature type subcool control valve Expired - Lifetime JP2701945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1265001A JP2701945B2 (en) 1989-10-13 1989-10-13 Temperature type subcool control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265001A JP2701945B2 (en) 1989-10-13 1989-10-13 Temperature type subcool control valve

Publications (2)

Publication Number Publication Date
JPH03129272A JPH03129272A (en) 1991-06-03
JP2701945B2 true JP2701945B2 (en) 1998-01-21

Family

ID=17411192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265001A Expired - Lifetime JP2701945B2 (en) 1989-10-13 1989-10-13 Temperature type subcool control valve

Country Status (1)

Country Link
JP (1) JP2701945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245142A (en) * 2013-05-29 2013-08-14 上海交通大学 Expansion valve having two-way valve functions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253226A (en) * 2009-04-24 2010-11-11 Chieko Sakai Mat for care with urinal and toilet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245142A (en) * 2013-05-29 2013-08-14 上海交通大学 Expansion valve having two-way valve functions
CN103245142B (en) * 2013-05-29 2015-05-27 上海交通大学 Expansion valve having two-way valve functions

Also Published As

Publication number Publication date
JPH03129272A (en) 1991-06-03

Similar Documents

Publication Publication Date Title
US5251459A (en) Thermal expansion valve with internal by-pass and check valve
US4852364A (en) Expansion and check valve combination
US4788828A (en) Control device for use in a refrigeration circuit
JPS5999194A (en) Flange fitting type temperature automatic expansion valve
US5515695A (en) Refrigerating apparatus
US5836349A (en) Bidirectional flow control device
JPH06307740A (en) Temperature expansion valve
KR19980024054A (en) Expansion valve
KR20180085352A (en) Expansion valve
US3683637A (en) Flow control valve
US4978062A (en) Thermostatic expansion valve with bi-directional flow
JP2701945B2 (en) Temperature type subcool control valve
US5277364A (en) Dual capacity thermal expansion valve
US4712384A (en) Integrated evaporator and thermal expansion valve assembly
JP2001241808A (en) Expansion valve
CN204460866U (en) Two-way thermal expansion valve
JPH08296929A (en) Two-way constant pressure expansion valve
JP2701942B2 (en) Temperature type subcool control valve
CN105823276B (en) Two-way thermal expansion valve
JPH0584429B2 (en)
CN112757863B (en) Fluid management assembly, thermal management assembly and thermal management system
US11808498B2 (en) Bulbless thermal expansion valve
JPH0422229Y2 (en)
JPH06201229A (en) Refrigerant expansion mechanism having nonreturn function
JPS6260586B2 (en)