JPH06201229A - Refrigerant expansion mechanism having nonreturn function - Google Patents

Refrigerant expansion mechanism having nonreturn function

Info

Publication number
JPH06201229A
JPH06201229A JP5290367A JP29036793A JPH06201229A JP H06201229 A JPH06201229 A JP H06201229A JP 5290367 A JP5290367 A JP 5290367A JP 29036793 A JP29036793 A JP 29036793A JP H06201229 A JPH06201229 A JP H06201229A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
expansion mechanism
outdoor heat
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5290367A
Other languages
Japanese (ja)
Other versions
JP3537849B2 (en
Inventor
Baek Yong Jong
バイク ヤン チュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
Gold Star Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gold Star Co Ltd filed Critical Gold Star Co Ltd
Publication of JPH06201229A publication Critical patent/JPH06201229A/en
Application granted granted Critical
Publication of JP3537849B2 publication Critical patent/JP3537849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Check Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To control refrigerant flow in a predetermined direction, without requiring additional check valves by providing first and second expansion mechanisms disposed between the inlet and outlet of an outdoor heat exchanger. CONSTITUTION: A refrigerant expansion mechanism comprises a compressor, a four-way valve, an indoor side heat exchanger 4, an outdoor side heat exchanger 5, and a refrigerant expansion mechanism A. The refrigerant expansion mechanism A expands high-pressure refrigerant to produce low-pressure refrigerant and controls the refrigerant flow in a specified direction. During a high cooling cycle, where the refrigerant pressure at the outlet 100 of the outdoor side heat exchanger is higher than that at the inlet 200 of the indoor side heat exchanger, the refrigerant can flow, from the outlet 100 of the outdoor side heat exchanger into the inlet 200 of the indoor side heat exchanger, only through a first expansion mechanisms 300 and cannot flow through a second expansion mechanisms 400. Consequently, the refrigerant flow can be controlled in a definite direction, even though no additional check valve is used, resulting in the simplification of structure and manufacturing cost reduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房兼用ヒートポン
プサイクルの冷媒膨張機構に関し、特に逆止機能を有す
る冷媒膨張機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant expansion mechanism for a heat pump cycle that is also used for cooling and heating, and more particularly to a refrigerant expansion mechanism having a check function.

【0002】[0002]

【従来の技術】従来の冷暖房兼用ヒートポンプサイクル
は、図4に示すように、暖房用サイクルとして作動する
場合、冷媒の流れは点線方向のように、圧縮機1から吐
出された高圧冷媒が4方弁3、室内側熱交換器4、暖房
用膨張機構7を通過して低圧冷媒になって室外側熱交換
器5、4方弁3、アキュムレーター2を経て圧縮機1に
復帰する。
2. Description of the Related Art In a conventional heat pump cycle for both heating and cooling, as shown in FIG. 4, when operating as a heating cycle, the flow of the refrigerant is in the direction of the dotted line, and the high pressure refrigerant discharged from the compressor 1 is in four directions. The low-pressure refrigerant passes through the valve 3, the indoor heat exchanger 4, and the heating expansion mechanism 7 to become a low-pressure refrigerant, and returns to the compressor 1 through the outdoor heat exchanger 5, the 4-way valve 3, and the accumulator 2.

【0003】また冷房用サイクルとして作動する場合、
実線方向のように、圧縮機1から吐出された高圧冷媒が
4方弁3、室外側熱交換器5、冷房用膨張機構6、室内
側熱交換器4、4方弁3、アキュムレーター2を経て圧
縮機1に復帰する。
When operating as a cooling cycle,
As indicated by the solid line, the high-pressure refrigerant discharged from the compressor 1 causes the four-way valve 3, the outdoor heat exchanger 5, the cooling expansion mechanism 6, the indoor heat exchanger 4, the four-way valve 3 and the accumulator 2 to flow. After that, it returns to the compressor 1.

【0004】このように冷暖房兼用ヒートポンプではサ
イクル切換によって、冷媒の流れ方向が逆転されると、
一定面積式膨張機構は各々相異なる膨張能力を持ってい
るので図4に示すように冷房用膨張機構と暖房用膨張機
構とを区別して使用している。この時各膨張機構の前後
には冷媒流れ方向を一方向に決めて冷媒流れの逆流、バ
イパスを防止するために逆止バルブ8,9が設置されな
ければならない。
In this way, in the heat pump for both heating and cooling, when the flow direction of the refrigerant is reversed by cycle switching,
Since the constant area type expansion mechanism has different expansion capacities, the cooling expansion mechanism and the heating expansion mechanism are used separately as shown in FIG. At this time, check valves 8 and 9 must be installed in front of and behind each expansion mechanism to prevent the refrigerant from flowing back and bypassing by deciding the refrigerant flow direction in one direction.

【0005】[0005]

【発明が解決しようとする課題】このように従来の冷暖
房兼用ヒートポンプでは冷媒流の逆流、バイパスを防止
するために一定面積式冷媒膨張機構の前後に必ず逆止バ
ルブが設置されなければならないので、逆止バルブの設
置によって製造費用が上昇し、製造工程が複雑になる問
題点があった。
As described above, in the conventional heat pump for both heating and cooling, a check valve must be installed before and after the constant area type refrigerant expansion mechanism in order to prevent backflow and bypass of the refrigerant flow. The installation of the check valve increases the manufacturing cost and complicates the manufacturing process.

【0006】本発明の目的は別の逆止バルブを使用しな
くても冷媒流を一定方向に制御出来る冷暖房兼用ヒート
ポンプの冷媒膨張機構を提供することにある。本発明の
他の目的は構造が簡単で製造原価を低減出来る冷暖房兼
用ヒートポンプの冷媒膨張機構を提供することにある。
An object of the present invention is to provide a refrigerant expansion mechanism for a heat pump for both cooling and heating, which can control the refrigerant flow in a fixed direction without using a separate check valve. Another object of the present invention is to provide a refrigerant expansion mechanism of a heat pump for both heating and cooling, which has a simple structure and can reduce the manufacturing cost.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の冷暖房兼用ヒートポンプの冷媒膨張機構は室
外側熱交換器出口と、冷房モード時室外側熱交換器室内
出口の冷媒圧力より低い圧力の冷媒を収容し、暖房モー
ド時室外側熱交換器出口の冷媒圧力より高い圧力の冷媒
を収容する室内側熱交換器入口と、上記室外側熱交換器
出口と熱交換入口との間に位置された第1膨張機構と第
2膨張機構とを備える。
In order to achieve the above object, the refrigerant expansion mechanism of the heat pump for cooling and heating of the present invention is lower than the refrigerant pressure at the outlet of the outdoor heat exchanger and at the outlet of the outdoor heat exchanger in the cooling mode. Between the indoor heat exchanger inlet that stores the refrigerant at a pressure and the refrigerant that has a higher pressure than the refrigerant pressure at the outdoor heat exchanger outlet during the heating mode, and between the outdoor heat exchanger outlet and the heat exchange inlet It is provided with the 1st expansion mechanism and the 2nd expansion mechanism which were located.

【0008】第1膨張機構は室内側熱交換器入口と連通
された第1チャンバと、室外側熱交換器出口と第1チャ
ンバとを連通する第1オリフィスを有する第1チューブ
と、第1オリフィスと選択的に結合、分離されるように
移動可能で、暖房モード時第1オリフィスと結合される
ように力を受ける第1プラグとを有し、第2膨張機構は
室外側熱交換器出口と連通された第2チャンバと、室内
側熱交換器入口と第2チャンバとを連通する第2オリフ
ィスを有する第2チューブと、第2オリフィスと選択的
に結合、分離されるように移動可能で、冷房モード時第
2オリフィスと結合されるように力を受ける第2プラグ
とを有する。
The first expansion mechanism has a first chamber communicating with the indoor heat exchanger inlet, a first tube having a first orifice communicating the outdoor heat exchanger outlet with the first chamber, and a first orifice. And a first plug that is movable so as to be selectively coupled and separated with a first orifice that receives a force to be coupled with the first orifice in the heating mode, and the second expansion mechanism is connected to the outdoor heat exchanger outlet. A second chamber communicating with the second tube, a second tube having a second orifice communicating with the indoor heat exchanger inlet and the second chamber, and movable so as to be selectively coupled and separated from the second orifice, A second plug that receives a force to be coupled with the second orifice in the cooling mode.

【0009】[0009]

【実施例】本発明の冷暖房兼用ヒートポンプシステムは
図1に示すように、圧縮機1、4方弁3、室内側熱交換
器4、室外側熱交換器5及び冷媒膨張機構Aとからな
る。上記冷媒膨張機構Aは高圧冷媒を膨張させて低圧の
冷媒にして、冷媒の流れを所定方向に制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, the heat pump system for both cooling and heating of the present invention comprises a compressor 1, a four-way valve 3, an indoor heat exchanger 4, an outdoor heat exchanger 5 and a refrigerant expansion mechanism A. The refrigerant expansion mechanism A expands the high-pressure refrigerant into a low-pressure refrigerant to control the flow of the refrigerant in a predetermined direction.

【0010】冷房モード時、実線で示すように、圧縮機
1から吐出された高圧の冷媒が4方弁3を経由して室外
側熱交換器5、冷媒膨張機構Aを通過して低圧の冷媒に
なって室内側熱交換器4、4方弁3、アキュムレーター
2を経由して圧縮機1に復帰することによって冷房サイ
クルが完成される。
In the cooling mode, as shown by the solid line, the high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 3 and the outdoor heat exchanger 5 and the refrigerant expansion mechanism A, and the low-pressure refrigerant. The cooling cycle is completed by returning to the compressor 1 via the indoor heat exchanger 4, the 4-way valve 3, and the accumulator 2.

【0011】暖房モード時、点線で示すように、圧縮機
1から吐出された高圧の冷媒が4方弁3を経由して室内
側熱交換器4、冷媒膨張機構Aを通過して低圧の冷媒に
なって室外側熱交換器5、4方弁3、アキュムレーター
2を経由して圧縮機1に復帰することによって暖房サイ
クルが完成される。
In the heating mode, as shown by the dotted line, the high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 3, the indoor heat exchanger 4 and the refrigerant expansion mechanism A, and the low-pressure refrigerant. Then, the heating cycle is completed by returning to the compressor 1 via the outdoor heat exchanger 5, the 4-way valve 3, and the accumulator 2.

【0012】この時、冷媒膨張機構Aは作動サイクルに
よって冷媒を一方向のみに流れるようにする逆止機能を
有しているので別の逆止バルブが要求されない。
At this time, since the refrigerant expansion mechanism A has a check function for allowing the refrigerant to flow in only one direction in accordance with the operation cycle, another check valve is not required.

【0013】上記冷媒膨張機構Aは、図2及び図3に示
すように、冷房モード下時、室外側熱交換器5から相対
的に高圧の冷媒が流入される室外側熱交換器出口100
と相対的に低圧の冷媒が流出される室内側熱交換器入口
200とを有する。
As shown in FIGS. 2 and 3, the refrigerant expansion mechanism A has an outdoor heat exchanger outlet 100 into which relatively high pressure refrigerant flows from the outdoor heat exchanger 5 in the cooling mode.
And an indoor heat exchanger inlet 200 through which a relatively low-pressure refrigerant flows out.

【0014】上記室外側熱交換器出口100と室内側熱
交換器入口200との間に設置された第1膨張機構30
0は、上記室内側熱交換器入口100と連通された第1
チャンバ310と,上記室外側熱交換器出口100と上
記チャンバ310とを連結する第1オリフィス321を
有する第1チューブ320とを有する。上記第1オリフ
ィス321は上記室外側熱交換器出口側に形成されたポ
ート322と上記室内側熱交換器入口側に形成させたポ
ート323とを有する。
The first expansion mechanism 30 installed between the outdoor heat exchanger outlet 100 and the indoor heat exchanger inlet 200.
0 is the first communicating with the indoor heat exchanger inlet 100.
It has a chamber 310 and a first tube 320 having a first orifice 321 connecting the outdoor heat exchanger outlet 100 and the chamber 310. The first orifice 321 has a port 322 formed on the outlet side of the outdoor heat exchanger and a port 323 formed on the inlet side of the indoor heat exchanger.

【0015】上記第1チャンバを形成する第1ケーシン
グ350は上記第1チューブ320とはねじ結合されて
いる。また上記第1オリフィス321を選択的に開閉す
る第1プラグ330が上記第1チャンバ内に設置され
る。
The first casing 350 forming the first chamber is screwed to the first tube 320. A first plug 330 that selectively opens and closes the first orifice 321 is installed in the first chamber.

【0016】上記第1プラグ330は、冷媒が室外側熱
交換器出口100から室内側熱交換器入口200に流れ
る冷媒の流動時には、上記オリフィス321の室内側熱
交換器入口ポート323を開放することによって、冷媒
が室外側熱交換器出口100からチャンバ310に流れ
るようにし、冷媒流れが逆転される時には、上記第1オ
リフィス321の室内側熱交換器入口ポート323を閉
塞することによって上記室外側熱交換器出口100と上
記チャンバ310との間の冷媒流れを遮断する。
The first plug 330 opens the indoor heat exchanger inlet port 323 of the orifice 321 when the refrigerant flows from the outdoor heat exchanger outlet 100 to the indoor heat exchanger inlet 200. To allow the refrigerant to flow from the outdoor heat exchanger outlet 100 to the chamber 310, and when the refrigerant flow is reversed, the outdoor heat exchanger inlet port 323 of the first orifice 321 is closed to close the outdoor heat exchanger. The refrigerant flow between the exchanger outlet 100 and the chamber 310 is shut off.

【0017】上記第1チャンバ内に設置された第1スプ
リング340は上記第1プラグ330が第1オリフィス
321の室内側熱交換器入口ポート323に結合される
ように上記第1プラグ330に所定の力を加えている。
A first spring 340 installed in the first chamber is installed in the first plug 330 so that the first plug 330 is connected to the indoor heat exchanger inlet port 323 of the first orifice 321. I am applying force.

【0018】かつ上記室外側熱交換器出口100と室内
側熱交換器入口200との間に位置されたもう一つの第
2膨張機構400は、上記室外側熱交換器出口100と
連通された第2チャンバ410と、上記室内側熱交換器
入口200と上記第2チャンバ410とを連結する第2
オリフィス421とを有する第2チューブ420とを有
する。上記第2オリフィス421は上記室内側熱交換器
入口側に形成されたポート422と第2チャンバ側に形
成されたポート423とを有する。上記第2チャンバを
形成する第2ケーシング450は上記第2チューブ42
0とはねじ結合されている。
Further, another second expansion mechanism 400 located between the outdoor heat exchanger outlet 100 and the indoor heat exchanger inlet 200 is connected to the outdoor heat exchanger outlet 100. Two chambers 410 and a second chamber 410 for connecting the indoor heat exchanger inlet 200 and the second chamber 410
A second tube 420 having an orifice 421. The second orifice 421 has a port 422 formed on the indoor heat exchanger inlet side and a port 423 formed on the second chamber side. The second casing 450 that forms the second chamber is the second tube 42.
0 is screwed.

【0019】また上記第2オリフィス421を選択的に
開閉する第2プラグ430が上記第2チャンバ内に設置
される。上記第2プラグ430は、冷媒の逆転流動時に
は上記第2オリフィス421の室外側熱交換器出口ポー
ト423を開放して冷媒が室内側熱交換器入口200か
ら第2チャンバ410に流れるようにし、冷媒の正常流
動時には上記第2オリフィス421の室外側熱交換器出
口ポート423を閉塞して上記室内側熱交換器入口20
0と第2チャンバ410との間の冷媒流れを遮断する。
A second plug 430 that selectively opens and closes the second orifice 421 is installed in the second chamber. The second plug 430 opens the outdoor heat exchanger outlet port 423 of the second orifice 421 during reverse flow of the refrigerant to allow the refrigerant to flow from the indoor heat exchanger inlet 200 to the second chamber 410. During normal flow, the outdoor heat exchanger outlet port 423 of the second orifice 421 is closed to close the indoor heat exchanger inlet 20.
The refrigerant flow between 0 and the second chamber 410 is shut off.

【0020】上記第2チャンバ内に設置された第2スプ
リング440は上記第2プラグ430が上記第2オリフ
ィス421の室外側熱交換器出口ポート423と結合さ
れるようにする方向に上記第2プラグ430を押圧して
いる。
The second spring 440 installed in the second chamber is arranged so that the second plug 430 is connected to the outdoor heat exchanger outlet port 423 of the second orifice 421. 430 is pressed.

【0021】上記構成の作用を説明する。冷房サイクル
が作動して、図2に示すように、圧縮機1から吐出され
た高圧冷媒が4方弁3、室外側熱交換器5を経て冷媒膨
張機構Aに流入されると、第1スプリング340の力に
よって第1オリフィス321の室内側熱交換器入口ポー
ト323と結合されている第1プラグ330は高圧の室
外側熱交換器出口100と低圧の室内側熱交換器入口2
00との間の圧力差によって第1スプリング340の力
を克服して第1オリフィス321の室内側熱交換器入口
ポート323と分離されることによって、高圧冷媒は第
1膨張機構300の第1チューブ320の第1オリフィ
ス321を通じて第1チャンバ310に膨張しながら流
れ出して室内側熱交換器入口200に流出される。
The operation of the above configuration will be described. When the cooling cycle operates and the high-pressure refrigerant discharged from the compressor 1 flows into the refrigerant expansion mechanism A through the four-way valve 3 and the outdoor heat exchanger 5 as shown in FIG. The first plug 330, which is connected to the indoor heat exchanger inlet port 323 of the first orifice 321 by the force of 340, serves as a high pressure outdoor heat exchanger outlet 100 and a low pressure indoor heat exchanger inlet 2
00 due to the pressure difference between the first spring 340 and the indoor heat exchanger inlet port 323 of the first orifice 321 to separate the high pressure refrigerant from the first tube of the first expansion mechanism 300. It expands into the first chamber 310 through the first orifice 321 of 320 and then flows out to the indoor heat exchanger inlet 200.

【0022】かつ第2膨張機構400では、高圧の室外
側熱交換器出口100と連通された第2チャンバ410
と低圧の室内側熱交換器入口200との間の圧力差及び
第2スプリング440の力によって第2プラグ430が
第2チューブ420の第2オリフィス421の室外側熱
交換器出口ポート423と結合されていて第2チャンバ
410と室内側熱交換器入口200との間の冷媒流れを
遮断している。
In the second expansion mechanism 400, the second chamber 410 communicated with the high pressure outdoor heat exchanger outlet 100.
The second plug 430 is coupled to the outdoor heat exchanger outlet port 423 of the second orifice 421 of the second tube 420 by the pressure difference between the low pressure side indoor heat exchanger inlet 200 and the force of the second spring 440. Therefore, the refrigerant flow between the second chamber 410 and the indoor heat exchanger inlet 200 is shut off.

【0023】かつ暖房サイクルが作動すると、図3に示
すように、圧縮機1から吐出された高圧冷媒が4方弁
3、室内側熱交換器4を経て冷媒膨張機構Aに流入され
ると、第2膨張機構400の第2チューブ420の第2
オリフィス421を通じて第2チャンバ410に膨張し
ながら流れ出して室外側熱交換器出口100に流出され
る。
When the heating cycle is activated, as shown in FIG. 3, when the high-pressure refrigerant discharged from the compressor 1 flows into the refrigerant expansion mechanism A through the four-way valve 3 and the indoor heat exchanger 4, Second of the second tube 420 of the second expansion mechanism 400
It flows out while expanding into the second chamber 410 through the orifice 421, and then flows out to the outdoor heat exchanger outlet 100.

【0024】この時、第2スプリング440の力によっ
て第2オリフィス421の室外側熱交換器出口ポート4
23と結合されている第2プラグ430は、高圧の室内
側熱交換器入口200と低圧の室外側熱交換器出口10
0との間の圧力差によって、第2スプリング440の力
を克服して第2オリフィス421の室外側熱交換器出口
ポート423と分離されることによって冷媒が室内側熱
交換器入口200から第2オリフィス421を通じて第
2チャンバ421に流動出来るようになっている。
At this time, the outdoor heat exchanger outlet port 4 of the second orifice 421 is urged by the force of the second spring 440.
The second plug 430, which is connected to the second heat exchanger 23, is connected to the high pressure indoor heat exchanger inlet 200 and the low pressure outdoor heat exchanger outlet 10.
The pressure difference between 0 and 0 overcomes the force of the second spring 440 and separates it from the outdoor heat exchanger outlet port 423 of the second orifice 421, so that the refrigerant flows from the indoor heat exchanger inlet 200 to the second side. The fluid can flow into the second chamber 421 through the orifice 421.

【0025】かつ第1膨張機構300では、高圧の室内
側熱交換器入口200に連通された第1チャンバ310
と低圧の室外側熱交換器出口100との間の圧力差及び
第1スプリング340の力によって第1プラグ330が
第1チューブ320の第1オリフィス321の室内側熱
交換器入口ポート323と結合されていて第1チャンバ
310と室外側熱交換器出口100との間の冷媒流れを
遮断している。
In the first expansion mechanism 300, the first chamber 310 communicated with the high pressure indoor heat exchanger inlet 200.
The first plug 330 is coupled to the indoor heat exchanger inlet port 323 of the first orifice 321 of the first tube 320 by the pressure difference between the low pressure and the outdoor heat exchanger outlet 100 of low pressure and the force of the first spring 340. In addition, the refrigerant flow between the first chamber 310 and the outdoor heat exchanger outlet 100 is shut off.

【0026】結局、室外側熱交換器出口100の冷媒圧
力が室内側熱交換器入口200の冷媒圧力より高い冷房
サイクル時には、冷媒は室外側熱交換器出口100から
第1膨張機構300のみを通じて室内側熱交換器入口2
00に流れることが出来るし、第2膨張機構400を通
じては流れない。室内側熱交換器入口200の冷媒圧力
が室外側熱交換器出口100の冷媒圧力より高い暖房サ
イクル時には、冷媒は室内側熱交換器入口200から第
2膨張機構400のみを通じて室外側熱交換器出口10
0に流れることが出来るし、第1膨張機構300を通じ
ては流れない。
As a result, during the cooling cycle in which the refrigerant pressure at the outdoor heat exchanger outlet 100 is higher than the refrigerant pressure at the indoor heat exchanger inlet 200, the refrigerant flows from the outdoor heat exchanger outlet 100 through the first expansion mechanism 300 only. Inner heat exchanger inlet 2
00, but not through the second expansion mechanism 400. During a heating cycle in which the refrigerant pressure at the indoor heat exchanger inlet 200 is higher than the refrigerant pressure at the outdoor heat exchanger outlet 100, the refrigerant flows from the indoor heat exchanger inlet 200 only through the second expansion mechanism 400 to the outdoor heat exchanger outlet. 10
It can flow to zero and not through the first expansion mechanism 300.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば逆止
機能を有する冷媒膨張機構によって別の逆止バルブを使
用しなくても冷媒の流れを一定方向に制御出来る。従っ
て構造が簡単になって製造原価も低減出来る冷暖房兼用
のヒートポンプを構成することが出来る。
As described above, according to the present invention, the flow of the refrigerant can be controlled in a fixed direction by using the refrigerant expansion mechanism having the check function without using another check valve. Therefore, it is possible to construct a heat pump for both heating and cooling, which has a simple structure and can reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による冷暖房兼用ヒートポンプサイクル
の構成図である。
FIG. 1 is a configuration diagram of a heat pump cycle for both heating and cooling according to the present invention.

【図2】本発明による冷暖房兼用ヒートポンプの冷媒膨
張機構の冷房モード時を示す断面図である。
FIG. 2 is a cross-sectional view showing the refrigerant expansion mechanism of the heat pump for cooling and heating according to the present invention in the cooling mode.

【図3】本発明による冷暖房兼用ヒートポンプの冷媒膨
張機構の暖房モード時を示す断面図である。
FIG. 3 is a cross-sectional view showing the refrigerant expansion mechanism of the heat pump for cooling and heating according to the present invention in the heating mode.

【図4】従来の冷暖房兼用ヒートポンプサイクルの構成
図である。
FIG. 4 is a configuration diagram of a conventional heat pump cycle for both heating and cooling.

【符号の説明】[Explanation of symbols]

1…圧縮機 2…アキュムレーター 3…4方弁 4…室内側熱交換器 5…室外側熱交換器 A…冷媒膨張機構 100…室外側熱交換器出口 200…室内側熱交換器入口 300…第1膨張機構 310…第1チャンバ 320…第1チューブ 321…第1オリフィス 322,423…室外側熱交換器出口ポート 323,422…室内側熱交換器入口ポート 330…第1プラグ 340…第1スプリング 350…第1ケーシング 400…第2膨張機構 410…第2チャンバ 420…第2チューブ 421…第2オリフィス 430…第2プラグ 440…第2スプリング 450…第2ケーシング 1 ... Compressor 2 ... Accumulator 3 ... 4-way valve 4 ... Indoor heat exchanger 5 ... Outdoor heat exchanger A ... Refrigerant expansion mechanism 100 ... Outdoor heat exchanger outlet 200 ... Indoor heat exchanger inlet 300 ... 1st expansion mechanism 310 ... 1st chamber 320 ... 1st tube 321 ... 1st orifice 322, 423 ... Outdoor heat exchanger outlet port 323, 422 ... Indoor heat exchanger inlet port 330 ... 1st plug 340 ... 1st Spring 350 ... 1st casing 400 ... 2nd expansion mechanism 410 ... 2nd chamber 420 ... 2nd tube 421 ... 2nd orifice 430 ... 2nd plug 440 ... 2nd spring 450 ... 2nd casing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 a)室外側熱交換器出口と、 b)冷房モード時室外側熱交換器出口の冷媒圧力より低
い圧力の冷媒を収容し、暖房モード時室外側熱交換器出
口の冷媒圧力より高い圧力の冷媒を収容する室内側熱交
換器入口と、 c)上記室内側熱交換器入口と連通された第1チャン
バと、 上記室外側熱交換器出口と上記チャンバとを連通する
第1オリフィスを有する第1チューブと、 上記第1オリフィスと選択的に結合、分離されるよう
に移動可能で、暖房モード時、上記第1オリフィスと結
合されるように力を受ける第1プラグと、 を有しかつ上記室外側熱交換器出口と室内側熱交換器入
口との間に位置された第1膨張機構と、 d)上記室外側熱交換器出口と連通された第2チャン
バと、 上記室内側熱交換器入口と上記第2チャンバとを連通
する第2オリフィスを有する第2チューブと、 上記第2オリフィスと選択的に結合、分離されるよう
に移動可能で、冷房モード時上記第2オリフィスと結合
されるように力を受ける第2プラグと、 を有しかつ上記室外側熱交換器出口と室内側熱交換器入
口との間に位置された第2膨張機構とからなることを特
徴とする逆止機能を有する冷媒膨張機構。
1. A refrigerant pressure at the outlet of the outdoor heat exchanger in a) and b) a refrigerant having a pressure lower than the refrigerant pressure of the outlet of the outdoor heat exchanger in the cooling mode are contained, and the refrigerant pressure in the outlet of the outdoor heat exchanger in the heating mode An indoor heat exchanger inlet that accommodates a higher pressure refrigerant; c) a first chamber that communicates with the indoor heat exchanger inlet, and a first chamber that communicates the outdoor heat exchanger outlet with the chamber A first tube having an orifice, and a first plug movable so as to be selectively coupled and separated from the first orifice and receiving a force to be coupled to the first orifice in a heating mode, A first expansion mechanism having and located between the outdoor heat exchanger outlet and the indoor heat exchanger inlet; d) a second chamber in communication with the outdoor heat exchanger outlet; The inner heat exchanger inlet and the second chamber A second tube having a second orifice passing therethrough, and a second plug movable so as to be selectively coupled and separated from the second orifice, and receiving a force to be coupled with the second orifice in a cooling mode. And a second expansion mechanism positioned between the outdoor heat exchanger outlet and the indoor heat exchanger inlet, the refrigerant expansion mechanism having a check function.
【請求項2】 請求項1において、 上記第1膨張機構は、上記第1プラグが第1オリフィス
と結合されるように上記第1プラグに所定の力を加える
第1弾性部材を有し、 上記第2膨張機構は、上記第2プラグが第2オリフィス
と結合されるように上記第2プラグに所定の力を加える
第2弾性部材を有することを特徴とする逆止機能を有す
る冷媒膨張機構。
2. The first expansion mechanism according to claim 1, further comprising a first elastic member that applies a predetermined force to the first plug so that the first plug is connected to the first orifice. The second expansion mechanism includes a second elastic member that applies a predetermined force to the second plug so that the second plug is connected to the second orifice. The refrigerant expansion mechanism having a check function.
【請求項3】 a)圧縮機と、 b)室外側熱交換器と、 c)室内側熱交換器と、 d)上記圧縮機から選択的に上記室外側熱交換器と室内
側熱交換器とへの冷媒流れを案内する4方弁と、 e)上記第1膨張機構と、上記第2チューブとからなっ
て上記室外側熱交換器と室内側熱交換器との間に設置さ
れて作動サイクルによって選択的に冷媒を所定方向のみ
に流れるようにする冷媒膨張機構とからなることを特徴
とするヒートポンプシステム。
3. A compressor, b) an outdoor heat exchanger, c) an indoor heat exchanger, d) the outdoor heat exchanger and an indoor heat exchanger selectively from the compressor. A four-way valve that guides the refrigerant flow to and from, and e) is installed between the outdoor heat exchanger and the indoor heat exchanger and consists of the first expansion mechanism and the second tube. A heat pump system, comprising: a refrigerant expansion mechanism that selectively allows the refrigerant to flow only in a predetermined direction according to a cycle.
JP29036793A 1992-11-19 1993-11-19 Refrigerant expansion mechanism with check function Expired - Fee Related JP3537849B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR22817/1992 1992-11-19
KR92022817U KR950003045Y1 (en) 1992-11-19 1992-11-19 Capillary tube

Publications (2)

Publication Number Publication Date
JPH06201229A true JPH06201229A (en) 1994-07-19
JP3537849B2 JP3537849B2 (en) 2004-06-14

Family

ID=19344285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29036793A Expired - Fee Related JP3537849B2 (en) 1992-11-19 1993-11-19 Refrigerant expansion mechanism with check function

Country Status (2)

Country Link
JP (1) JP3537849B2 (en)
KR (1) KR950003045Y1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541311A (en) * 1999-04-12 2002-12-03 ビーピー ケミカルズ リミテッド Gas phase olefin polymerization method and equipment
JP2008196832A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Expansion valve mechanism and passage switching device
WO2014173080A1 (en) * 2013-04-27 2014-10-30 温岭市恒发空调部件有限公司 Bidirectionally communicating expansion valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159491A1 (en) 2014-04-17 2015-10-22 株式会社鷺宮製作所 Throttle device, and refrigeration cycle system including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541311A (en) * 1999-04-12 2002-12-03 ビーピー ケミカルズ リミテッド Gas phase olefin polymerization method and equipment
JP2008196832A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Expansion valve mechanism and passage switching device
WO2014173080A1 (en) * 2013-04-27 2014-10-30 温岭市恒发空调部件有限公司 Bidirectionally communicating expansion valve

Also Published As

Publication number Publication date
KR950003045Y1 (en) 1995-04-19
KR940013147U (en) 1994-06-22
JP3537849B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US5251459A (en) Thermal expansion valve with internal by-pass and check valve
KR100309975B1 (en) Capacity control device
USRE42966E1 (en) Tandem compressors with discharge valve on connecting lines
EP0233073B1 (en) Triple integrated heat pump circuit
US20080209930A1 (en) Heat Pump with Pulse Width Modulation Control
EP1959214B1 (en) Expansion valve mechanism
JP2008537773A (en) Refrigerant cycle with a three-way service valve for use with environmentally friendly refrigerants
JPH04295566A (en) Engine-driven air-conditioning machine
US6446456B2 (en) Heat pump and method for controlling operation thereof
JPH06201229A (en) Refrigerant expansion mechanism having nonreturn function
JPS58221078A (en) Pressure operated valve
EP0844448A2 (en) Bidirectional flow control device
KR100539763B1 (en) Pressure balance apparatus for compressor of airconditioner
EP0682769B1 (en) Starting arrangement for small refrigeration systems
JPH0289966A (en) Heat pump-based hot water-supplying air conditioner
JPS6149584B2 (en)
JP2701945B2 (en) Temperature type subcool control valve
KR100484635B1 (en) Expansion Valve of Heat Pump System for Automobile
JPS6123395B2 (en)
JPH1144469A (en) Choking device and air conditioner
JPH0144796Y2 (en)
KR20050102530A (en) Pressure balance apparatus for compressor of airconditioner
JPS6260586B2 (en)
JP2001235054A (en) Pressure-sensitive switching valve
JPS62141469A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees