JPH02166367A - Temperature expansion valve - Google Patents

Temperature expansion valve

Info

Publication number
JPH02166367A
JPH02166367A JP63318549A JP31854988A JPH02166367A JP H02166367 A JPH02166367 A JP H02166367A JP 63318549 A JP63318549 A JP 63318549A JP 31854988 A JP31854988 A JP 31854988A JP H02166367 A JPH02166367 A JP H02166367A
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
temperature
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63318549A
Other languages
Japanese (ja)
Other versions
JPH0571860B2 (en
Inventor
So Tanaka
宗 田中
Sadaichi Okamoto
岡本 貞一
Kenji Yoshiga
健二 吉賀
Kazuhiko Watanabe
和彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI KOKI SEISAKUSHO KK
Fujikoki Corp
Original Assignee
FUJI KOKI SEISAKUSHO KK
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI KOKI SEISAKUSHO KK, Fujikoki Corp filed Critical FUJI KOKI SEISAKUSHO KK
Priority to JP63318549A priority Critical patent/JPH02166367A/en
Priority to US07/452,426 priority patent/US5005370A/en
Publication of JPH02166367A publication Critical patent/JPH02166367A/en
Publication of JPH0571860B2 publication Critical patent/JPH0571860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To make it possible to send refrigerant to an evaporator even when its degree of superheat is small by giving an additional power to a valve disk pushing power based on a superheat signal and an amount of diaphragm deflection when a differential pressure between the upper stream side and the lower stream side of refrigerant is larger than a reference differential pressure which sets a superheat degree at a rest. CONSTITUTION:When a liquid flows at a pressure higher than a certain differential pressure against the power of a power element which affects the opening/ closing of a valve, the size of a valve port 10 is made sufficiently larger in terms of an effective size of a diaphragm 2 of a power element so that the valve may be opened, and a valve disk is designed to be a cone-shaped valve so that the power produced by the flow of a fluid may be taken out effectively, then the apex angle of the cone is determined. Therefore, when the vaporization temperature or the vaporization pressure is lower as a result of deviation from the superheat characteristics a standard state valve lift (valve opening area), the valve can be opened even with a superheat degree signal which has not reached the degree of statical superheat and refrigerant is supplied to an evaporator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍サイクルに使用される温度膨張弁による冷
凍システム制御の方法において特に冷媒をその低蒸発温
度域において蒸発器に流れ込むような制御を行表うに適
する温度膨張弁の構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of controlling a refrigeration system using a temperature expansion valve used in a refrigeration cycle, in particular a method for controlling a refrigerant to flow into an evaporator in its low evaporation temperature range. The present invention relates to a structure of a thermal expansion valve suitable for use in a thermal expansion valve.

〔従来の技術〕[Conventional technology]

空調用に用いられる冷凍システムの代表的な構成を第1
3図に示す、圧縮機207で圧縮された高温の冷媒ガス
は凝縮機208で外界と熱交換して液化し受液器209
を経て、温度膨張弁201で減圧し蒸発器205で外界
と熱交換してガス化し再び圧縮機207に戻る。
The first typical configuration of a refrigeration system used for air conditioning is
As shown in FIG. 3, the high temperature refrigerant gas compressed by the compressor 207 is liquefied by exchanging heat with the outside world in the condenser 208, and then sent to the liquid receiver 209.
After that, the pressure is reduced by the temperature expansion valve 201, and the gas is gasified by exchanging heat with the outside world in the evaporator 205, and then returned to the compressor 207 again.

温度膨張弁201は、高圧の液冷媒を減圧し蒸発しやす
くして蒸発器に送)込む機能を有し、蒸発温度と蒸発器
出口における冷媒過熱蒸気温度との温度差(これを過熱
度と呼ぶ)を信号として、その冷媒供給量を制御する。
The temperature expansion valve 201 has the function of reducing the pressure of high-pressure liquid refrigerant to make it easier to evaporate before sending it to the evaporator. The amount of refrigerant supplied is controlled by using the signal (call) as a signal.

温度膨張弁の基本的な動作は、上記過熱度があらかじめ
設定した静止過熱度に違したとき開閉し、一定の動作過
熱度が保たれるように蒸発器に冷媒を送)込むことを目
的とするフィードバック制御である。
The basic operation of a thermal expansion valve is to open and close when the above-mentioned degree of superheat differs from the preset static superheat degree, and the purpose is to send refrigerant to the evaporator so that a constant operating degree of superheat is maintained. This is feedback control.

従来、冷凍ンステムに゛おいて蒸発器の熱負荷が小さい
ときは上記過熱度信号が小さくなシ、温度膨張弁の設定
した静止過熱度に達し表いから、温度膨張弁は開弁せず
蒸発器には冷媒が供給されない。
Conventionally, in refrigerators, when the heat load on the evaporator is small, the superheat degree signal is small, and the temperature expansion valve does not open and evaporation occurs because the static superheat level set by the temperature expansion valve is reached. No refrigerant is supplied to the device.

このことは蒸発器に流れ込む冷媒が熱交換が不十分のま
ま液状態で圧縮機に戻るととがないので、圧縮機保護と
いう目的も併せもっていたことになる。ところが他方に
おいて上記とは正反対の要求もある。す々わち蒸発圧力
(従って蒸発温度)が低いとき、たとえ過熱度信号が小
さい場合においても、温度膨張弁を閉じないままにして
、蒸発器に冷媒液を送シ込むように冷凍システムを設置
たいという要求である。その例を示せば次の通シである
This also served the purpose of protecting the compressor, since it would be dangerous if the refrigerant flowing into the evaporator returned to the compressor in a liquid state without sufficient heat exchange. However, on the other hand, there are also demands that are exactly the opposite of the above. In other words, when the evaporation pressure (and therefore the evaporation temperature) is low, even if the superheat signal is small, the refrigeration system is installed so that the thermal expansion valve remains open and refrigerant liquid is pumped into the evaporator. It is a request to do so. An example of this is the following passage.

■ 蒸発圧力−蒸発温度が低いとき蒸発器の凍結を防止
するため蒸発器に冷媒を必要以上に送シ込み蒸発器を液
滴状態にすること。
■ Evaporation pressure - To prevent the evaporator from freezing when the evaporation temperature is low, more refrigerant is pumped into the evaporator than necessary to turn the evaporator into a droplet state.

■ 能力可変圧縮機(蒸発圧力を感知し、蒸発圧力の低
いときは圧縮機の能力を制御するもの)を使用する場合
に、熱負荷が小さくなりて温度膨張弁の機能が閉弁して
しまうと能力可変圧縮機への蒸発圧力信号が不安定にな
るためむしろ冷媒を蒸発器に流すこと。
■ When using a variable capacity compressor (one that senses the evaporation pressure and controls the compressor capacity when the evaporation pressure is low), the heat load becomes small and the temperature expansion valve function closes. Since the evaporation pressure signal to the variable capacity compressor becomes unstable, the refrigerant should instead flow to the evaporator.

上記の要求は、従来の温度膨張弁にとりては望ましくな
い性質であるため、従来の温度膨張弁単独では実現が困
難であるので従来の機能に加えて他の付加的機能を付与
しなければ目的を達することができない。
The above requirements are undesirable properties for conventional thermal expansion valves, and are difficult to achieve with conventional thermal expansion valves alone. cannot be reached.

従来上記目的達成のためにとられる技術思想のうち単純
なものは弁座にノツチまたはツリードポートを設ける方
法である。この方法は温度膨張弁と並列に一定流量(高
低圧差の関数)の冷媒を流す通路をもうけ、温度膨張弁
の機能が閉になっても冷媒が一定量流れる仕組みである
Among the technical ideas conventionally used to achieve the above object, a simple method is to provide a notch or a tree port in the valve seat. In this method, a passage is created in parallel with the thermal expansion valve to allow a constant flow rate (a function of the pressure difference) of refrigerant to flow, so that a constant amount of refrigerant flows even when the thermal expansion valve is closed.

この方法は温度膨張弁が本来機能すべき領域においても
制御と無関係の冷媒量を流すことKなるため、温度膨張
弁にその能力を十分発揮させ得ないという欠点がある。
This method has the disadvantage that the temperature expansion valve cannot fully demonstrate its ability because it causes an amount of refrigerant unrelated to the control to flow even in the area where the temperature expansion valve is supposed to function.

実際この方法では上記目的を満足させるに至らないこと
が多い。また定圧膨張弁機能を付加し、蒸発圧力が一定
圧力以下になると温度膨張弁の制御信号いかんにかかわ
らず定圧膨張弁によつて弁開度を制御する構成がある。
In fact, this method often fails to satisfy the above objectives. There is also a configuration in which a constant pressure expansion valve function is added, and when the evaporation pressure falls below a constant pressure, the valve opening degree is controlled by the constant pressure expansion valve regardless of the control signal for the temperature expansion valve.

この実例は実開昭61−153875号に開示されてい
る。
An example of this is disclosed in Japanese Utility Model Application No. 61-153875.

この考え方は、第14図に示すように温度膨張弁として
作用する第1の制御駆動部A(符号26゜27.25,
23.24で構成)と定圧膨張弁として作用する第2の
制御駆動部B(符号21゜22で構成)という二つの弁
開度制御部を有する膨張弁による方法である。
This idea is based on the first control drive unit A (coded 26°27.25,
This is a method using an expansion valve having two valve opening control parts: a second control drive part B (consisting of reference numerals 21 and 22) which acts as a constant pressure expansion valve.

この考え方は、パイノ4ス回路を用いるのではなく同じ
冷媒流路を用いて温度膨張弁機能としては弁体を閉じた
とき、その主通路を概念の上でのパイ・ヤス通路として
使用するのでシステムを簡易化出来るという利点がある
This concept does not use a pin-four circuit, but uses the same refrigerant flow path, and when the valve body is closed as a temperature expansion valve, the main passage is conceptually used as a pin-yasu passage. This has the advantage of simplifying the system.

すなわち蒸発温度が高く蒸発圧力が高いときは、第1の
制御部Aの内容物の圧力は、第2の制御部Bの内容物の
圧力よシ高くその圧力はダイヤフラム22の下側の圧力
及びバイアスばねと拮抗して弁開度制御に有効々力を伝
達手段28を介してダイヤフラム受け29に伝達する。
That is, when the evaporation temperature is high and the evaporation pressure is high, the pressure of the contents in the first control section A is higher than the pressure of the contents in the second control section B. This pressure is equal to the pressure below the diaphragm 22 and It competes with the bias spring and transmits a force effective for valve opening control to the diaphragm receiver 29 via the transmission means 28.

しかし一定圧力すなわち第2の制御部Bに封入された内
容物の圧力よシ低い圧力に第1の制御邦人の圧力が低下
すると第1の制御邦人の圧力は伝達手段28に有効な力
を与えることはない。
However, when the first control pressure decreases to a constant pressure, that is, a pressure lower than the pressure of the contents sealed in the second control part B, the first control pressure applies an effective force to the transmission means 28. Never.

ダイヤフラム22の下側の圧力とバイアスばねを総合し
た力と拮抗するのは第2の制御部Bの圧力となる。
It is the pressure of the second control part B that counteracts the combined force of the pressure on the lower side of the diaphragm 22 and the bias spring.

この結果冷媒の蒸発圧力と駆動部の圧力の関係は蒸発温
度に対してバイアスばねによる調整を含めて一定蒸発温
度よシ低い蒸発温度では過熱度信号と無関係に弁体が開
いていることになる。そこでは蒸発器は液満状態罠なっ
て、蒸発器の能力が削成され凍結が防止される。その代
り圧縮機には液戻シを生じる。しかし通常本システムを
必要とするような小型な簡易冷凍システムに用いられる
圧縮機は回転式のもの故、液戻シは圧縮機にとって不都
合なものではない。
As a result, the relationship between the evaporation pressure of the refrigerant and the pressure of the drive unit is constant, including the adjustment by the bias spring for the evaporation temperature.At lower evaporation temperatures, the valve body opens regardless of the superheat degree signal. . There, the evaporator becomes a full liquid trap, reducing the evaporator's capacity and preventing freezing. Instead, liquid returns to the compressor. However, since the compressor used in a small simple refrigeration system that requires this system is usually of a rotary type, the liquid return is not an inconvenience for the compressor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のシステムは原理的には有効なものと見られるがそ
の構成工種々の問題点がある。
Although the above system appears to be effective in principle, there are various problems with its construction.

その第1は第1の制御邦人のダイヤ72ム24と第2の
制御部Bのダイヤフラム22の間の圧力伝達手段28を
設けなければならないことである。
The first is that pressure transmission means 28 between the diaphragm 24 of the first control section B and the diaphragm 22 of the second control section B must be provided.

すなわちダイヤフラム24の変位をダイヤフラム22の
変位に伝達するにらたシ、圧力伝達手段は制御部Bの外
郭21の内周とすき間なくなめらかに摺動しなくてはな
らない。また、ダイヤフラム22を均一に押し下げるた
めKは圧力伝達手段28の形状は、そのダイヤフラムと
の接触部を大きな径にしなければならず、かつ制御邦人
の圧力を正確に伝達するという要請があるから複雑な形
状を精度よく加工しなければ表らない。
That is, in order to transmit the displacement of the diaphragm 24 to the displacement of the diaphragm 22, the pressure transmitting means must slide smoothly on the inner periphery of the outer shell 21 of the control section B without any gaps. In addition, in order to uniformly push down the diaphragm 22, the shape of the pressure transmitting means 28 is complicated because the contact part with the diaphragm must have a large diameter, and there is a requirement to accurately transmit the pressure of the control person. It will not appear unless the shape is precisely machined.

その第2は制御部Bの封入流体の空間は制御部Aの体積
変動による変動が無視できる程度に大きくなければなら
ない。このととから逆に制御部Aは空間が小さくかつ十
分大きな力を出すためダイヤフラム径を太き(するとい
う矛盾した要求が課されるということである。
Second, the space for the sealed fluid in the control section B must be large enough that fluctuations due to changes in the volume of the control section A can be ignored. Conversely, the control section A is required to have a small space and a large diaphragm diameter in order to generate a sufficiently large force.

第3はダイヤフラムを2枚使用するため製造上溶接とい
う工程の必要な場所を2ケ所有するととによる構造信頼
性に欠ける面がある。
Thirdly, since two diaphragms are used, there is a lack of structural reliability due to the fact that there are two locations that require welding during manufacturing.

本発明は基本的には蒸発圧力−蒸発温度が低いとき蒸発
器に冷媒を必要以上に送シ込み蒸発器を液滴状態にする
ことを上記のように定圧膨張弁の機能を用いないで達成
させることにあシ、通常の状態では温度膨張弁としての
正常な機能を保存することを目的とする。
Basically, the present invention accomplishes this by pumping refrigerant into the evaporator more than necessary when the evaporation pressure and evaporation temperature are low to turn the evaporator into a droplet state without using the constant pressure expansion valve function as described above. The purpose is to preserve its normal function as a temperature expansion valve under normal conditions.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため本発明においては、通常の状
態においては、温度膨張弁の弁開度はパワーエレメント
の封入気体の(気液平衡また社吸着平衡による)圧力と
/やワーエレメントダイヤフラム部下部の圧力差(この
圧力差は過熱度信号に相当する)によって制御されるが
、一方液冷媒が弁体と弁座によつて構成される通路を通
過する際、液冷媒の圧力差が大きいときには、すなわち
蒸発器における冷媒の蒸発温度が温度膨張弁の静止過熱
度設定に用いた蒸発温度よυも低いときには、弁体は流
体の流れの力をうけて、過熱度信号による指令弁開度よ
りも、十分大きい弁開度が得られるように、ダイヤフラ
ム径(すなわち弁を開く力を定める)と弁ポート径(流
体の流れによって弁体が受ける力と冷媒流量を定める)
を式(4)によって選定し、弁体を円錐形状とする。
In order to achieve the above object, in the present invention, under normal conditions, the valve opening degree of the thermal expansion valve is determined by the pressure of the gas enclosed in the power element (based on vapor-liquid equilibrium or adsorption equilibrium) and/or the pressure of the power element diaphragm. It is controlled by the pressure difference at the bottom (this pressure difference corresponds to the superheat degree signal), but when the liquid refrigerant passes through the passage formed by the valve body and valve seat, the pressure difference of the liquid refrigerant is large. Sometimes, that is, when the evaporation temperature of the refrigerant in the evaporator is lower than the evaporation temperature used to set the static superheat of the thermal expansion valve, the valve body receives the force of the fluid flow and adjusts the command valve opening according to the superheat signal. In order to obtain a sufficiently large valve opening, the diaphragm diameter (that is, determines the force that opens the valve) and the valve port diameter (determines the force that the valve body receives from the fluid flow and the refrigerant flow rate)
is selected according to equation (4), and the valve body is made into a conical shape.

(式A) ψ(δ、ΔP )弓(PH−PL)((D12−D2)
−4CILD1sin2θ2)−(F、+に、L)=0 ここにおいて ψ(δ、ΔP)はダイヤフラムが弁体を押す力F1を表
す。(F1=ψ(δ、ΔP))すなわちFlは、過熱度
を圧力換算したΔPとダイヤフラムの撓みδの関数であ
る。
(Formula A) ψ (δ, ΔP) bow (PH-PL) ((D12-D2)
−4CILD1sin2θ2)−(F,+,L)=0 Here, ψ(δ, ΔP) represents the force F1 of the diaphragm pushing the valve body. (F1=ψ(δ, ΔP)) That is, Fl is a function of ΔP obtained by converting the degree of superheat to pressure and the deflection δ of the diaphragm.

Dlは弁ポートODの直径、 D2は弁体を押す力F1を伝達する円筒伝達棒DSの直
径である。〔(伝達棒が顕に冷媒流の力をうけなh構造
をとるときはD2→0とする)〕D2→0によって(P
IE−PL)の影響は最大と々シ第1図に示す流れ方向
に於いては弁体が開弁する方向の推力が最大となる。
Dl is the diameter of the valve port OD, and D2 is the diameter of the cylindrical transmission rod DS that transmits the force F1 that pushes the valve body. [(When the transmission rod takes an h structure that is not significantly affected by the force of the refrigerant flow, set D2→0)] By D2→0, (P
In the flow direction shown in FIG. 1, the thrust force in the direction in which the valve body opens is the maximum.

PMは冷媒の凝縮温度における飽和圧力、PLは冷媒の
蒸発温度における飽和圧力、C1は流量係数、 Lは弁体が閉弁点から軸方向に開弁する際移動する距離
、 K、は上記りだけ移動したときの力に換算するための係
数、 Foは設H点における諸元から定める過熱度調節ばねに
よるカー(D妊、 θ1:円錐弁体上部の頂角MAの円錐の中心軸を含む断
面3角形の半頂角、 θ2:上記円錐弁体下部の流出角FAの半頂角(θ1と
同様な定義による) このように構成して低蒸発温度域において過熱度が小さ
いときくおいても蒸発器にある量の冷媒を供給する温度
膨張弁とする。
PM is the saturation pressure at the condensation temperature of the refrigerant, PL is the saturation pressure at the evaporation temperature of the refrigerant, C1 is the flow coefficient, L is the distance the valve element moves when opening in the axial direction from the valve closing point, and K is the above. Fo is the coefficient for converting the force when the valve body moves by , Fo is the force of the superheat adjustment spring determined from the specifications at point H, θ1: includes the central axis of the cone with the apex angle MA of the upper part of the conical valve Half apex angle of the triangular cross section, θ2: Half apex angle of the outflow angle FA at the lower part of the conical valve body (same definition as θ1) With this configuration, when the degree of superheat is small in the low evaporation temperature range, is also a thermal expansion valve that supplies a certain amount of refrigerant to the evaporator.

更に2段円錐弁体の弁角度を02〉θ1(θ2;−のと
き効果最大)K選定することにより、冷媒シ低蒸発温度
域における上記特性を保存しながらかつ過熱度変化に対
する流量が適正となる温度膨張弁とする。
Furthermore, by selecting the valve angle of the two-stage conical valve body at 02>θ1 (maximum effect when θ2 is −), it is possible to maintain the above-mentioned characteristics of the refrigerant in the low evaporation temperature range while maintaining an appropriate flow rate with respect to changes in the degree of superheating. This is a temperature expansion valve.

本発明は更に上記の技術思想を、その一部を蒸発器から
圧縮機の冷媒通路内にその他の一部を凝縮器から蒸発器
に向う冷媒通路内に置くように温度膨張弁と冷媒進路を
一体化する温度膨張弁のダイヤフラム径及び弁/−)径
ならびに円錐弁体形状を弐Aを用いて選定する構造に適
用することを含む。
The present invention further incorporates the above technical concept into a thermal expansion valve and a refrigerant path so that a part of the valve is placed in the refrigerant path from the evaporator to the compressor, and the other part is placed in the refrigerant path from the condenser to the evaporator. This includes application to a structure in which the diaphragm diameter and valve/-) diameter of the temperature expansion valve to be integrated and the conical valve body shape are selected using 2A.

〔体4−!)e−作用〕 本発明の温度膨張弁は次のように作用する。[Body 4-! )e-effect] The thermal expansion valve of the present invention operates as follows.

設計の標準状態として設定した凝縮温度、蒸発温度にお
いては一定の静止過熱度及び動作過熱度で作動するよう
に弁リフト特性と弁ポート径を式AKもとづいて定めで
あるので感温部からの信号によるΔワーエレメント内の
圧力と/4ワーエレメントのダイヤフラム部下部からの
圧力との圧力差(実際にはバイアスはねの力もくわわっ
ている。)に応じた弁開度が得られ、これによって過熱
度信号にもとづく蒸発器に流れ込む冷媒流量を制御して
いる。
At the condensing and evaporating temperatures set as the standard design conditions, the valve lift characteristics and valve port diameter are determined based on formula AK so that the valve operates at a constant static superheat and operating superheat, so the signal from the temperature sensor The valve opening is obtained according to the pressure difference between the pressure inside the Δwar element and the pressure from the bottom of the diaphragm of the /4 war element (actually, the force of the bias spring is also included). The flow rate of refrigerant flowing into the evaporator is controlled based on the temperature signal.

しかし本発明の温度膨張弁は、パワーエレメントが弁の
開閉に及ぼす力に対して流体がある差圧以上で流れると
きは弁を開く方向に力を与えるようにパワーエレメント
のダイヤフラム有効径に対し弁ポート径を十分大きくと
シかつその流体の流れによる力を有効にとシ出せるよう
に弁体を円錐弁にしかつその円錐頂角を定めているため
第7図に示すように、標準状態の弁リフト(弁開口面積
)過熱度特性からずれて、蒸発温度すなわち蒸発圧力が
低いとき静止過熱度に達しない過熱度信号でありても弁
は開いていて冷媒が蒸発器に供給される。すなわち弁体
に流体の流れの力がその開く方向に働いて過熱度信号に
よらない“弁を開く”機能を付加したことになる。
However, in the temperature expansion valve of the present invention, the effective diameter of the diaphragm of the power element is adjusted so that when fluid flows at a pressure difference higher than a certain pressure, the power element applies force in the direction of opening the valve. The valve body is made into a conical valve and the apex angle of the cone is determined so that the port diameter is sufficiently large and the force generated by the fluid flow can be effectively utilized. Deviating from the lift (valve opening area) superheat characteristic, when the evaporation temperature or evaporation pressure is low, the valve remains open and refrigerant is supplied to the evaporator even if the superheat signal does not reach the static superheat. In other words, the force of the fluid flow acts on the valve element in the opening direction, adding a function of "opening the valve" that is not dependent on the superheat degree signal.

また弁体の冷媒流出側に流出角FAを設けることによ、
9FAの半頂角をVAの半頂角に対しθ2〉θ1に定め
ることにより、02−01のときに比較して過熱度変化
に対する流量増加の割合互aΔP の値を減するように作用する。
In addition, by providing an outflow angle FA on the refrigerant outflow side of the valve body,
By setting the half apex angle of 9FA to the half apex angle of VA such that θ2>θ1, it acts to reduce the value of aΔP in relation to the rate of increase in flow rate with respect to the change in superheating degree compared to the case of 02-01.

〔実施例1〕 本発明の一実施例を第1図に示す。[Example 1] An embodiment of the present invention is shown in FIG.

簡単に第1図について説明すると、弁匡1にはその上方
にダイヤフラム2によシ区画された上部ダイヤフラム室
3と下部ダイヤフラム室4とが設けられている。5は図
示しない感温筒と連結されるキャピラリーである。6は
冷媒入口管、7は冷媒出口管を示す。8はダイヤフラム
2の下面に固定されたストツノ量−で伝達棒9を有する
。冷媒入口管6と出口管7とは弁/−ト10によシ連結
され、この弁ポートに設けられた弁座11に対向して円
錐弁体12を設ける。然して図示の場合この円錐弁体を
高圧側の弁体121と低圧側の弁体12bの二段形弁体
とした。そして夫々の半頂角をVA(θt) e F 
A (’2) テ示す。13は前記円錐弁体く作用する
ばねである。又14は蒸発圧力取入口である。
Briefly referring to FIG. 1, the valve case 1 is provided above with an upper diaphragm chamber 3 and a lower diaphragm chamber 4, which are partitioned by a diaphragm 2. 5 is a capillary connected to a temperature-sensitive tube (not shown). Reference numeral 6 indicates a refrigerant inlet pipe, and 7 indicates a refrigerant outlet pipe. 8 has a transmission rod 9 fixed to the lower surface of the diaphragm 2 with a stopper. The refrigerant inlet pipe 6 and the outlet pipe 7 are connected by a valve port 10, and a conical valve body 12 is provided opposite a valve seat 11 provided at the valve port. However, in the illustrated case, the conical valve body is a two-stage valve body consisting of a high-pressure side valve body 121 and a low-pressure side valve body 12b. And each half apex angle is VA(θt) e F
A ('2) Show te. 13 is a spring that acts on the conical valve body. Further, 14 is an evaporation pressure intake port.

第1図には示していないが蒸発器出口部分を流れるシス
テム冷媒の温度を検知しダイヤフラム2の上側の圧力信
号P、を出力する感温筒が設けである。蒸発圧力PLは
゛ダイヤフラムの下側から作用する圧力で上記P!lと
の差圧をΔp=p、−pLで定義する。
Although not shown in FIG. 1, a temperature sensing tube is provided which detects the temperature of the system refrigerant flowing at the evaporator outlet and outputs a pressure signal P above the diaphragm 2. The evaporation pressure PL is the pressure acting from the bottom of the diaphragm and is the pressure above P! The differential pressure with Δp is defined as Δp=p, -pL.

ダイヤフラムが弁体12を押す力F1はダイヤフラム室
4の差圧ΔPとダイヤフラムの撓みδの関数として近似
できる。すなわち F1=ψ(δ、ΔP)    ・・・(1)このとき円
錐弁体と弁座lとで構成する流路を流体すなわち液冷媒
が流れるとき円錐弁体に作用する推力F2の変化は次の
ように近似できる。
The force F1 by which the diaphragm pushes the valve body 12 can be approximated as a function of the differential pressure ΔP in the diaphragm chamber 4 and the deflection δ of the diaphragm. That is, F1 = ψ (δ, ΔP) ... (1) At this time, when the fluid, that is, liquid refrigerant flows through the flow path composed of the conical valve body and the valve seat l, the change in the thrust force F2 that acts on the conical valve body is as follows. It can be approximated as follows.

F2=−4・C1・LLlD、asi(2・θ2 )−
(Pl!−PL) ”・(2)上記(1) # (2)
を用いて本発明の温度膨張弁の静的平衡式が次のように
得られる。
F2=-4・C1・LLID, asi(2・θ2)−
(Pl!-PL) ”・(2) Above (1) # (2)
The static equilibrium equation of the thermal expansion valve of the present invention can be obtained as follows using .

ψ(δ、ΔP )+ 7(Pa PL) ((DI −
D2 ) 4CILD1sin2θ2)−(F0+に、
L)=O・・・(3) (3)は既出の弐Aである。
ψ(δ, ΔP) + 7(Pa PL) ((DI −
D2) 4CILD1sin2θ2)-(F0+,
L)=O...(3) (3) is the previously mentioned 2A.

記号の意味は既述の通〕である。The meanings of the symbols are as described above.

本実施例においてはD2→Oすなわちダイヤフラム2の
力を伝達する円筒伝達棒があられに冷媒流路に現れない
場合(伝達棒の構成は第14図の30に示すように弁体
を支えるバイアスばねに直接作用するような場合に相当
する)Kついて説明する。
In this embodiment, D2→O, that is, when the cylindrical transmission rod that transmits the force of the diaphragm 2 does not appear in the refrigerant flow path (the configuration of the transmission rod is a bias spring that supports the valve body as shown at 30 in FIG. 14). K (corresponding to the case where it acts directly on) will be explained.

システム冷媒をR12、感温筒封入冷媒RJjを用い凝
縮温度を50℃、40℃及び30℃としたとき弁口径O
Dの直径D1をノぐラメータとして(このときダイヤフ
ラムはベリリウム鋼厚さ0.10冒ダイヤフラム径22
■のものを用いている。)蒸発温度における飽和圧力P
L&冷媒流量の関係を図示すると第7図となる。本実施
例においては弁口径ODを変化させたときそのODにお
いて弁体の開弁方向移動距離LIC対して同一の開口面
積が得られるよう第1の弁角度MAの値#1を設定した
。静止過熱度は感温筒の温度o℃のとき1,800kg
/cN12Gにセットしたので、3.155 に相当す
る。
When the system refrigerant is R12, the temperature-sensitive cylinder-enclosed refrigerant RJj is used, and the condensation temperature is 50°C, 40°C, and 30°C, the valve diameter O
The diameter D1 of D is used as a gauge (in this case, the diaphragm is made of beryllium steel with a thickness of 0.10 and a diaphragm diameter of 22
■I am using one. ) Saturation pressure P at evaporation temperature
The relationship between L and refrigerant flow rate is illustrated in FIG. 7. In this embodiment, the value #1 of the first valve angle MA is set so that when the valve diameter OD is changed, the same opening area is obtained with respect to the movement distance LIC of the valve body in the valve opening direction at that OD. The static superheat degree is 1,800 kg when the temperature of the thermosensor is 0°C.
/cN12G, so it corresponds to 3.155.

第7図の冷媒流量は過熱度3.5Kに相当するときの計
算値を図示している。
The refrigerant flow rate in FIG. 7 is a calculated value corresponding to a superheat degree of 3.5K.

従来の温度膨張弁は感温筒にチャージする冷媒がシステ
ム冷媒と同一の場合低蒸発温度域においては静止過熱度
が大きくなる傾向があった。従って第7図においては弁
口径ODが2−のときの挙動に近い特性をもりていた。
In conventional temperature expansion valves, when the refrigerant charged into the temperature sensing tube is the same as the system refrigerant, the degree of static superheat tends to increase in the low evaporation temperature range. Therefore, in FIG. 7, the behavior was similar to that when the valve diameter OD was 2-.

当然のこととして凝縮温度が高ければPIKも高くなる
ため流量も大きくなる。弁口径が5−以上になるとこの
実施例では同一過熱度のとき、蒸発温度が低くなるに従
って流量が大きくなる。
Naturally, the higher the condensation temperature, the higher the PIK, and therefore the higher the flow rate. In this embodiment, when the valve diameter is 5 or more, the flow rate increases as the evaporation temperature decreases at the same degree of superheat.

弁口径が4露よりも小さいときは蒸発温度が低くなると
流量は減少傾向を示す。本発明による温度膨張弁はその
使用領域と、その使用領域においてどれだけの流量を期
待するかによつて弁口径を選択することができる。凝縮
温度30℃、蒸発温度−20℃で過熱度3.5にで開弁
を期待するには上記の他の諸元を一定とするとODを4
露以上にすればよい。
When the valve diameter is smaller than 4 dews, the flow rate tends to decrease as the evaporation temperature decreases. The valve diameter of the thermal expansion valve according to the present invention can be selected depending on the area of use and how much flow rate is expected in that area of use. To expect the valve to open at a superheat degree of 3.5 at a condensing temperature of 30℃ and an evaporation temperature of -20℃, assuming the other specifications above are constant, the OD must be 4.
It should be more than dew.

上記は静止過熱度の他の条件による影響について言及し
ていない。しかし実際の温度膨張弁においては上記の弁
口径が大きくなるに従い凝縮温度の影響をうけやすくな
る。
The above does not mention the influence of other conditions on static superheat. However, in an actual thermal expansion valve, as the valve diameter increases, it becomes more susceptible to the influence of the condensing temperature.

すなわち弁口径00.凝縮温度に関係するPM及びψ(
δ、ΔP)の中の過熱度変化をあられすΔPは(3)式
を書き換えた式 から予想されるように弁体が閉弁点から軸方向に開弁す
る移動距離LIC関係し、いずれもLを増加させる方向
に寄与する。とのため凝縮温度が増加すると過熱度変化
の度合が大きくなり過ぎる。
That is, the valve diameter is 00. PM and ψ(
δ, ΔP) ΔP is related to the travel distance LIC of the valve body in the axial direction from the valve closing point to the valve opening, as expected from the rewritten formula (3). It contributes to increasing L. Therefore, as the condensing temperature increases, the degree of superheating change becomes too large.

これを抑制するためには、式(4)の分母の第2項の値
を大きくすればよい。式(4)の第2項は第1図の流出
角FAを設けることによって生じた項である。第2項の
値が大きくなると、上記の流量増加を緩和することがで
きる。さかのぼって式(3)にでて来る。/ −4CI L Dlsia (2・θ2 ) (Pg−
PL)の由来は弁体が流体によシ開弁方向に昨月をうけ
るときのスラスト荷重の減少量を表すものである。
In order to suppress this, the value of the second term in the denominator of equation (4) may be increased. The second term in equation (4) is a term generated by providing the outflow angle FA shown in FIG. When the value of the second term becomes large, the above-mentioned increase in flow rate can be alleviated. This can be traced back to equation (3). / -4CI L Dlsia (2・θ2) (Pg-
The origin of PL) represents the amount of decrease in thrust load when the valve body is subjected to fluid in the valve opening direction.

この量は流出角FAの値θ2冨45°のとき最大となる
。従りてこの効果を大きくしたいときはθ2工45°の
近傍を選択することが望ましい。
This amount becomes maximum when the value of the outflow angle FA is θ2=45°. Therefore, when it is desired to increase this effect, it is desirable to select a value near 45° for θ2.

第8図は弁開度0.01■(閉弁点近傍)Kおける静止
過熱度(本実施例ではこれによつて静止過熱度と定義し
た)の変化を、第1のパラメータを暴 凝縮真皮、(30℃、40℃、so℃)第2のノ量2メ
ーターを弁口径として図示した。第8図によれば凝縮温
度が高いとき弁口径ODが大きすぎると蒸発温度によっ
ていちじるしく静止過熱度が変化することがわかる。
Figure 8 shows the change in the static superheat degree (defined as the static superheat degree in this example) at a valve opening of 0.01■ (near the valve closing point), with the first parameter being the wild condensation dermis. , (30° C., 40° C., so.degree. C.) A second flow rate of 2 meters is shown as the valve diameter. According to FIG. 8, it can be seen that when the condensing temperature is high and the valve diameter OD is too large, the static superheat degree changes significantly depending on the evaporation temperature.

これに対して上記の(4)式の分母の第2項によシとれ
を抑制する実施例を第9図に示した。通常の過熱度冷媒
流量曲線において凝縮温度をパラメーターとしてfロッ
トしであるが、流出角θ2(23,5つと弁角度’+(
23,s°)を等しくした場合は−の線流出角(45・
)と弁角度(23,5@)にとりた場合は−−X−一で
sb明瞭に第2項の効果を示している。すなわち流出角
を設けるととにより、過熱度変化の小さいときは弁口径
OD及び本実施例では言及しなかったが圧力伝達素子の
直径Daによつて確保された低蒸発温度域の流量を確保
し00゜DBの選定のみでは不都合を生じる過熱度変化
が大であるときの流量を抑えることができる。
On the other hand, FIG. 9 shows an embodiment in which the shift is suppressed by the second term of the denominator of the above equation (4). In the normal superheat degree refrigerant flow curve, the condensing temperature is used as a parameter and f lot is set, but the outflow angle θ2 (23,5 and the valve angle '+(
23, s°) are equal, the negative line outflow angle (45・s°) is equal to
) and the valve angle (23,5@), sb clearly shows the effect of the second term at -X-1. In other words, by setting the outflow angle, when the superheat degree change is small, the flow rate in the low evaporation temperature range secured by the valve diameter OD and the diameter Da of the pressure transmission element, which was not mentioned in this example, can be ensured. The flow rate can be suppressed when the superheat degree change is large, which would cause problems if only the selection of 00° DB was made.

〔実施例2〕 本実施例においては、他の諸元はほぼ実施例1と同様で
あるが第1図に示すように力の伝達棒9は高圧冷媒流路
にさらされていてあられにその影響をうける。従って弐
A(すなわち(3))の1)2GC具体的な数値を入れ
なければならない場合である。
[Example 2] In this example, other specifications are almost the same as in Example 1, but as shown in FIG. be influenced. Therefore, it is necessary to enter a specific value for 1)2GC of 2A (that is, (3)).

本実施例において、弁口径ODftD1−8m及び10
■とし、実施例1のODK対応した流体受圧面積効果と
本実施例の効果がほぼ等しくなるように作動伝達棒の軸
径DSの直径D2を選定する。
In this example, the valve diameter ODftD1-8m and 10
(2), and the diameter D2 of the shaft diameter DS of the operation transmission rod is selected so that the fluid pressure receiving area effect corresponding to the ODK of the first embodiment is almost equal to the effect of this embodiment.

すなわちり、;0とした実施例1の弁口径をり、。That is, the valve diameter of Example 1 was set to 0.

とし、本実施例の弁口径をDlであられすときD2をD
2=ヤ八コ騨− と定めたときこのD2による結果がD2=Oのときの結
果とかけ離れたものにならないようKD2をとった。ま
た実施例1のときと同様に同一の弁開度に対して同一開
口面積が得られるように円錐弁体の頂角MAの半頂角θ
1を定める。
When the valve diameter of this embodiment is Dl, D2 is D
When we set 2=Yahachikoden-, we chose KD2 so that the result of D2 would not be far different from the result when D2=O. In addition, as in the case of Example 1, the half apex angle θ of the apex angle MA of the conical valve body is
1.

第10図は弁口径8■、過熱度3.5にのときの作動棒
軸径D2をノ臂ラメ−ター(5,81m、 6.25鴎
、 6.61m、 6.93m及び7.19 vm )
としたときの凝縮濃度50℃、40℃及び30℃の場合
の冷媒流量と蒸発温度との関係をプロットしたものであ
る。
Figure 10 shows the operating rod shaft diameter D2 when the valve diameter is 8 mm and the degree of superheat is 3.5, using the armature meters (5.81 m, 6.25 m, 6.61 m, 6.93 m, and 7.19 m). vm)
The relationship between the refrigerant flow rate and the evaporation temperature is plotted when the condensation concentration is 50°C, 40°C, and 30°C.

観点を換えて弁開度を0.01mのときの静止過熱度と
蒸発温度との関係をプロットすると弁口径D1=8■の
ときが第11図である。いずれも実施例1の場合と同様
な挙動を示し第1図に示すように伝達棒が冷媒流路内に
あらたに現れる場合においても本発明の技術思想が妥当
であることを示す。
If we change the viewpoint and plot the relationship between the static superheat degree and the evaporation temperature when the valve opening degree is 0.01 m, we can see FIG. 11 when the valve diameter D1 is 8 mm. In both cases, the behavior is similar to that in Example 1, indicating that the technical concept of the present invention is valid even when the transmission rod newly appears in the refrigerant flow path as shown in FIG.

−過熱度でも流量が増加するのを抑えるためKは流出角
度θ2を02〉θ、にとることによつて可能でD2#6
1a■について示した。いずれもθ2〉θ1〔実施例3
〕 第2図及び第3図を用いて本発明の技術思想を?ツクス
型温度膨張弁に適用した実施例について説明する。
- In order to suppress the increase in flow rate even at the degree of superheating, K is possible by setting the outflow angle θ2 to 02>θ.D2#6
1a■ is shown. Both θ2>θ1 [Example 3
] What is the technical idea of the present invention using Figures 2 and 3? An example applied to a Tux type thermal expansion valve will be described.

ブロックケース300には凝縮器から流入する液冷媒入
口301、蒸発器に冷媒を供給する冷媒出口302、蒸
発器から出る冷媒ガスの入口303及び圧縮機に向う冷
媒ガスの出口304を有している。図中に示した矢印は
冷媒の流れの方向を示す。本実施例においてブロックケ
ースはアルミニウム合金材質を用いた。ケースふた部3
05は、後で述べる温度膨張弁機能を果す部品をブロッ
クケース300内に収納するために設けたブロックケー
ス部頂部に設けた挿入孔306を、上記機能諸部品組付
後、QIJング307によシシールするためのふたであ
る。上記ブロックケース内に収納する温度膨張弁機能を
果す部分はパワーエレメント部308、力の伝達部と円
錐弁体を一体化した弁体309及びバイアスばね310
から成る。・ぐワーエレメント部308は、ノクワーエ
レメントケースsixと底板315とから形成される感
温部分に活性炭312を封入し、更に後に封止される細
管314を通じて一定の温度のときに一定の圧力となる
圧力−温度吸着特性をもつ気体を封入する。本実施例に
おいてはR13を封入した。活性炭の量を加減しかつ活
性炭を冷媒流路内に置く九め更に底板315の中央部に
設けられた気体導通口318が活性炭でふさがれないよ
うにするため金網313を配置した。更に底板315と
ダイヤフラム受け317の中間にダイヤフラム316を
配置してその周縁部を上記パワーエレメントケース31
1及びダイヤフラム受け317の周縁部と共にダイヤフ
ラム受け317を用いてかしめ、かつ半田をもちいて気
密にシールする。ダイヤフラム316はペリリクム鋼厚
さ0.1瓢外径22mのものを用いた。
The block case 300 has a liquid refrigerant inlet 301 that flows in from the condenser, a refrigerant outlet 302 that supplies refrigerant to the evaporator, an inlet 303 for refrigerant gas that exits the evaporator, and an outlet 304 for refrigerant gas that heads toward the compressor. . The arrows shown in the figure indicate the direction of flow of the refrigerant. In this embodiment, the block case is made of aluminum alloy material. Case lid part 3
05, an insertion hole 306 provided at the top of the block case 300 for housing a component that performs the function of a temperature expansion valve, which will be described later, is inserted into the QIJ ring 307 after the functional components are assembled. It is a lid for sealing. The parts housed in the block case that function as a temperature expansion valve are a power element part 308, a valve body 309 that integrates a force transmission part and a conical valve body, and a bias spring 310.
Consists of.・The heating element part 308 has activated carbon 312 sealed in a temperature-sensitive part formed by the heating element case six and the bottom plate 315, and further applies a constant pressure at a constant temperature through a thin tube 314 that will be sealed later. A gas with pressure-temperature adsorption characteristics is enclosed. In this example, R13 was encapsulated. In addition to adjusting the amount of activated carbon and placing the activated carbon in the refrigerant flow path, a wire mesh 313 was placed to prevent the gas communication port 318 provided in the center of the bottom plate 315 from being blocked by the activated carbon. Furthermore, a diaphragm 316 is arranged between the bottom plate 315 and the diaphragm receiver 317, and its peripheral edge is connected to the power element case 31.
1 and the periphery of the diaphragm receiver 317 using the diaphragm receiver 317, and seal the diaphragm receiver 317 airtightly using solder. The diaphragm 316 was made of perilicum steel with a thickness of 0.1 mm and an outer diameter of 22 m.

ダイヤフラム316はその周縁に近い部分に波をもうけ
、ノクワーエレメント内の圧力の変化に応じて所定の撓
みが得られるようKした。ダイヤフラムの撓みδはパワ
ーエレメント内の圧力Plと均圧孔319を通じてダイ
ヤフラム316の下面にかかる圧力PL(このPLは冷
媒ガスの入口SOSから冷媒ガスの出口304に向う冷
媒の圧力である。)との差圧ΔPできt、b、δとΔP
から弁体を下に押す力F1が定まる。
The diaphragm 316 has waves near its periphery so that a predetermined deflection can be obtained in response to changes in the pressure within the knocker element. The deflection δ of the diaphragm is determined by the pressure PL in the power element and the pressure PL applied to the lower surface of the diaphragm 316 through the pressure equalization hole 319 (this PL is the pressure of the refrigerant flowing from the refrigerant gas inlet SOS to the refrigerant gas outlet 304). The differential pressure ΔP can be t, b, δ and ΔP
The force F1 that pushes the valve body downward is determined from .

ダイヤフラム316の上方への変形を制限するために底
板315が設けられている。また下方への変形制限のた
めストッパー320が設けられる。
A bottom plate 315 is provided to limit upward deformation of the diaphragm 316. A stopper 320 is also provided to limit downward deformation.

ダイヤフラムの弁体を押す力F1はストッ/#−320
eカラー321を経由して弁体309に伝えられる。
The force F1 that pushes the valve body of the diaphragm is stop/#-320
It is transmitted to the valve body 309 via the e-collar 321.

カラー321を設けたのはダイヤフラム下部の均圧室に
液冷媒入口301から流入する高圧液冷媒の影響が及ば
ないようにするベローシール322を弁体309に固定
するためである。一体化したカラー321.ペローシー
ル322及び弁体は機能部がデイ323の中央中空部に
配置されスライド可能となっている0機能部−Mfイ3
23には上記中央中空部と交叉し、かつ液冷媒人口30
1と連通する高圧液流入口が設けられている。また機能
部?デイ323の下部は前記中央中空部よりも大きい径
をもつ下部中空部326を有し中央中空部の下部が弁/
−ト324を形成する。下部中空部内にはバイアスコイ
ルばね310が配置され、ノ々イアスばね力は調節ねじ
325により調節される。
The reason why the collar 321 is provided is to fix the bellows seal 322 to the valve body 309 so that the pressure equalizing chamber at the lower part of the diaphragm is not affected by the high-pressure liquid refrigerant flowing from the liquid refrigerant inlet 301. Integrated color 321. The functional part of the Perot seal 322 and the valve body is arranged in the central hollow part of the day 323 and is slidable.
23 intersects with the central hollow part and has a liquid refrigerant population of 30
A high pressure liquid inlet communicating with 1 is provided. Functional department again? The lower part of the day 323 has a lower hollow part 326 having a larger diameter than the central hollow part, and the lower part of the central hollow part has a valve/
- form a sheet 324; A bias coil spring 310 is disposed within the lower hollow part, and the bias spring force is adjusted by an adjustment screw 325.

本実施例においては弁ポート径は6.3−を用いている
。円錐弁体の頂角は中角度20・としたが流出角は45
°とした。また下部中空部の径は10.3−である。(
第3図参照) 本実施例において温度膨張弁機能部はそのノクワーエレ
メント部308の活性炭封入部312がノ々ワーエレメ
ントケース311を経由して冷媒ガスの入口303から
冷媒ガスの出口304に流れる冷媒の温度を感知する。
In this embodiment, the valve port diameter is 6.3-. The apex angle of the conical valve body was set to a medium angle of 20°, but the outflow angle was 45°.
°. Further, the diameter of the lower hollow portion is 10.3-. (
(See Figure 3) In this embodiment, in the temperature expansion valve function part, the activated carbon enclosing part 312 of the nower element part 308 flows from the refrigerant gas inlet 303 to the refrigerant gas outlet 304 via the nower element case 311. Senses the temperature of the refrigerant.

この温度が冷媒の過熱蒸気温度に相当しこの温度にあた
る圧力が吸着平衡によってノ臂ワーエレメント内の圧力
P、となる。−方p、  PL=ΔPおよびダイヤフラ
ムのたわみδに関係するFlが弁体を押す力となるので
それのパイアスカ及び弁の形状によつて決まる流体力に
よって弁開度が定まる。
This temperature corresponds to the superheated vapor temperature of the refrigerant, and the pressure corresponding to this temperature becomes the pressure P in the arm element due to adsorption equilibrium. - way p, PL=ΔP and Fl, which is related to the deflection δ of the diaphragm, acts as a force that pushes the valve body, so the valve opening degree is determined by the fluid force determined by the piascus and the shape of the valve.

このようKして液冷媒入口301から冷媒出口302に
向う冷媒流量を制御する。
In this manner, the flow rate of refrigerant from the liquid refrigerant inlet 301 to the refrigerant outlet 302 is controlled.

本実施例において第3図の円錐弁体と比較のために3図
にあたる部分を第4図に変更した円錐弁体を作成し第3
図の場合と比較した。
In this example, for comparison with the conical valve body shown in Fig. 3, a conical valve body was created in which the part corresponding to Fig. 3 was changed to that shown in Fig. 4.
A comparison was made with the case shown in the figure.

第3図及び第4図は第2図の弁体309と機能部がデイ
323の弁テート部を拡大した説明図である。
FIGS. 3 and 4 are explanatory diagrams in which the valve body 309 and the functional portion of FIG. 2 are enlarged views of the valve body 323.

第4図にあたる流出角を別個に設けない円錐弁体の場合
、凝縮圧力をo H7c、F〜15 kg/1ya2ま
で変化させても蒸発圧カー弁ストロークの関係は第6図
に示すようにほとんど一定である。しかし第3図に示し
たように1円錐弁体の流出角を式囚の第3項が最大とな
るように02=45’にすると第5図に示すように、蒸
発圧カー弁ストロークの関係は、凝縮圧力が高く々ると
勾配の絶対値が小さくカシ、必要以上に流量が流れ過ぎ
るという傾向が抑制される。
In the case of a conical valve body without a separate outflow angle as shown in Figure 4, even if the condensing pressure is changed from oH7c,F to 15 kg/1ya2, the relationship between the evaporation pressure and Kerr valve stroke is almost the same as shown in Figure 6. constant. However, as shown in Fig. 3, if the outflow angle of one conical valve body is set to 02 = 45' so that the third term in the equation becomes maximum, the relationship between the evaporation pressure and Kerr valve stroke as shown in Fig. 5. When the condensing pressure is high, the absolute value of the gradient becomes small, and the tendency for the flow rate to flow more than necessary is suppressed.

〔発明の効果〕〔Effect of the invention〕

本発明にもとづく温度膨張弁によれば、これを冷媒回路
に用いて、従来の温度膨張弁と同様に蒸発器の入口にと
シつけ、かつ従来の温度膨張弁に他の付加素子ノ4イパ
ス回路あるいは特別の部品を付加することなく通常の状
態においては従来の過熱度制御にもとづく温度膨張弁と
しての機能を果させかつ低蒸発温度域(すなわち低蒸発
圧力域)では、上記過熱度制御とはことカシ、静止過熱
度に達しない(過熱度の小さい)ときにおいても冷媒を
蒸発器に送夛込む機能を果させることができる。
According to the thermal expansion valve according to the present invention, it can be used in a refrigerant circuit and installed at the inlet of an evaporator in the same way as a conventional thermal expansion valve, and it can be installed without any additional elements in addition to the conventional thermal expansion valve. Under normal conditions, it functions as a temperature expansion valve based on conventional superheat control without adding any circuits or special parts, and in the low evaporation temperature range (i.e., low evaporation pressure range), it functions as a temperature expansion valve based on the above superheat control. In fact, even when the degree of static superheating has not been reached (the degree of superheating is small), the function of pumping refrigerant to the evaporator can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度膨張弁の一実施例の°概略の断面
図、第2図は本発明の他の実施例の縦断面図、第3図は
第2図の弁体と弁ポート部分の拡大図、第4図は第3図
の構成の特性を比較するため作成した比較サンダルのt
g2図の弁体と弁/−)部分の拡大図、第5図は第3の
実施例の特性を示す蒸発圧カー弁ストロークの関係を示
すグラフ、第6図は$2図の弁体と弁ポート部分を第4
図のように構成したときの特性を示す蒸発圧カー弁スト
四−りの関係を示すグラフ、第7図は本発明温度膨張弁
の一実施例の特性を示す凝縮温度を変えたときの弁口径
をパラメータとする蒸発温度−冷媒流量の関係を示すグ
ラフ、第8図は本発明温度膨張弁の一実施例の特性を示
す凝縮温度を変えたときの弁口径をノ々ラメータとする
蒸発温度−静止過熱度の関係を示すグラフ、第9図は本
発明温度膨張弁の一実施例の円錐弁体に流出角を設けた
ときの特性変化を説明するための過熱度−冷媒流量の関
係を示すグラフ、第10図は本発明の第2の実施例(但
しDI=8mのとき)の第7図に相当するグラフ、第1
1図は本発明の第2の実施例(但しD1=8瓢のとき)
の第8図に相当するグラフ、第12図は本発明の第2の
実施例(但しDI=8ms+のとき)の第9図に相当す
るグラフ、第13図は空調用に用いられる冷凍システム
の構成図、第14図は従来の定圧膨張弁−温度膨張弁を
一体化した膨張弁の縦断面図である。 2・・・ダイヤフラム、 O・・・弁I−ト、 2・・・弁 体O
Fig. 1 is a schematic sectional view of one embodiment of the temperature expansion valve of the present invention, Fig. 2 is a longitudinal sectional view of another embodiment of the invention, and Fig. 3 is the valve body and valve port of Fig. 2. An enlarged view of the part, Figure 4 is a comparison sandal created to compare the characteristics of the configuration shown in Figure 3.
Fig. 5 is a graph showing the relationship between the evaporation pressure Kerr valve stroke showing the characteristics of the third embodiment, and Fig. 6 is an enlarged view of the valve body and the valve /-) part in Fig. g2. 4th valve port part
Figure 7 is a graph showing the relationship between the evaporation pressure Kerr valve and the four valves showing the characteristics when configured as shown in the figure. A graph showing the relationship between evaporation temperature and refrigerant flow rate using the diameter as a parameter. Figure 8 shows the characteristics of an embodiment of the thermal expansion valve of the present invention. Evaporation temperature when changing the condensing temperature and using the valve diameter as a parameter. - A graph showing the relationship between the static superheat degree and FIG. 9, which shows the relationship between the superheat degree and the refrigerant flow rate to explain the change in characteristics when an outflow angle is set in the conical valve body of an embodiment of the thermal expansion valve of the present invention. The graph shown in FIG. 10 is a graph corresponding to FIG. 7 of the second embodiment of the present invention (when DI=8m),
Figure 1 shows the second embodiment of the present invention (when D1=8 gourds)
12 is a graph corresponding to FIG. 9 of the second embodiment of the present invention (when DI=8ms+), and FIG. 13 is a graph of a refrigeration system used for air conditioning. The configuration diagram, FIG. 14, is a longitudinal sectional view of an expansion valve that integrates a conventional constant pressure expansion valve and a temperature expansion valve. 2...Diaphragm, O...Valve I-to, 2...Valve body O

Claims (5)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、蒸発器及び膨張機構を主構成要
素とする冷媒を用いる熱交換システムに設置する蒸発器
の効率を高めるために、過熱度信号によって弁開度を制
御する温度膨張弁において、弁座と組み合う弁体の冷媒
の流れる上流側とその下流側の圧力差が 温度膨張弁の静止過熱度を設定する際に基準とした圧力
差よりも大きくなるとき、 実際の過熱度信号がその設定静止過熱度以下になっても
一定量以上の冷媒流量が蒸発器に供給できるように、 過熱度信号と膨張弁のパワーエレメントのダイヤフラム
のたわみ量との関数である弁体を押す力に、更に、流体
が流れの方向に弁体を押す力を付加するように、ダイヤ
フラム径と弁ポート口径を選定し、かつ弁体形状を円錐
弁体として流体の流れによる付加的抑制力を利用するこ
とを特徴とする温度膨張弁。
(1) Temperature expansion in which the valve opening degree is controlled by a superheat degree signal in order to increase the efficiency of the evaporator installed in a heat exchange system that uses a refrigerant whose main components are a compressor, condenser, evaporator, and expansion mechanism. In a valve, when the pressure difference between the upstream side where refrigerant flows and the downstream side of the valve body that combines with the valve seat is larger than the pressure difference that was used as a reference when setting the static superheat degree of the thermal expansion valve, the actual superheat degree is determined. Pushes the valve body, which is a function of the superheat degree signal and the amount of deflection of the diaphragm of the power element of the expansion valve, so that a refrigerant flow rate above a certain amount can be supplied to the evaporator even if the signal falls below the set static superheat degree. In addition to this force, the diaphragm diameter and valve port diameter are selected so that the fluid adds a force that pushes the valve body in the direction of flow, and the shape of the valve body is conical to reduce the additional restraining force due to the fluid flow. A temperature expansion valve characterized in that it is used.
(2)上記円錐弁体の弁体形状において、冷媒流の低圧
側への流出する近傍の弁角度を冷媒流の高圧側からの流
入する近傍の弁角度よりも大きい弁角度をもつように定
めた2段円錐弁体にすることを特徴とする請求項1記載
の温度膨張弁。
(2) In the valve body shape of the conical valve body, the valve angle near where the refrigerant flow outflows to the low pressure side is set to be larger than the valve angle near where the refrigerant flow flows in from the high pressure side. 2. The thermal expansion valve according to claim 1, wherein the temperature expansion valve is a two-stage conical valve body.
(3)圧縮機、凝縮器及び膨張機構を主構成要素とする
冷媒を用いる熱交換システムに設置する蒸発器の効率を
高めるために過熱度信号によって弁開度を制御する温度
膨張弁において、高圧側から温度膨張弁に流入する冷媒
の弁体を押す力に及ぼす影響をさけるため弁体と、弁体
にパワーエレメントからの押す力を伝達する力の伝達棒
とを連接し、流体が弁体を押す方向に加わる力を相殺す
る機構を有し、かつ弁体を円錐弁体形状として、その冷
媒流の低圧側への流出する近傍の弁開度を冷媒流の高圧
側からの流入する近傍の弁開度よりも大きい弁角度をも
つように定めた2段円錐弁体にすることを特徴とする温
度膨張弁。
(3) In order to increase the efficiency of the evaporator installed in a heat exchange system using a refrigerant whose main components are a compressor, a condenser, and an expansion mechanism, high pressure In order to avoid the influence of the refrigerant flowing into the temperature expansion valve from the side on the force pushing the valve body, the valve body is connected to a force transmission rod that transmits the pushing force from the power element to the valve body, so that the fluid flows into the valve body. It has a mechanism that offsets the force applied in the pushing direction, and the valve body is shaped like a conical valve body, and the opening degree of the valve near the outflow of the refrigerant flow to the low pressure side is adjusted to the vicinity of the inflow of the refrigerant flow from the high pressure side. A temperature expansion valve characterized by having a two-stage conical valve body having a valve angle larger than the valve opening degree.
(4)凝縮器と連通する第1の流路、 この第1の流路と弁座を有する弁室を介し、かつ蒸発器
と連通する第2の流路、 これ等両流路と隔壁を介して設けられ蒸発器と連通する
第3の流路、 この第3の流路と感温作動室を介して連通し、かつ圧縮
機と連通する第4の流路を有するブロックケースと、 前記感温作動室内に設置され、前記第3の流路と第4の
流路とを通過する冷媒の温度変化に応答して圧力が変化
する封入物を、 パワーエレメントケースとダイヤフラムとにより形成さ
れた室内に密封充填した感温部と、前記ダイヤフラムの
作動により、弁体にその変位を伝達する伝達棒を有し、 かつ前記弁体内に設けられた弁座に対向する円錐弁体と
、 この弁体を常時弁座側に偏位させるばねよりなる温度膨
張弁において、 弁座と組み合う弁体の冷媒の流れる上流側とその下流側
の圧力差が、 温度膨張弁の静止過熱度を設定する際に基準とした圧力
差よりも大きくなるとき、 実際の過熱度信号が、その設定静止過熱度以下になって
も一定量以上の冷媒流量が蒸発器に供給できるように、 過熱度信号と膨張弁のパワーエレメントのダイヤフラム
のたわみ量との関数である弁体を押す力に、 更に、流体が流れる方向に弁体を押す力を付加するよう
に、ダイヤフラム径と弁ポート口径を選定し、かつ弁体
形状を円錐弁体として流体の流れによる付加的抑制力を
利用することを特徴とする温度膨張弁。
(4) A first flow path that communicates with the condenser; a second flow path that communicates with the evaporator through the first flow path and a valve chamber having a valve seat; a block case having a third flow path provided through the evaporator and communicating with the evaporator; a fourth flow path communicating with the third flow path through the temperature-sensitive working chamber and communicating with the compressor; An enclosure formed by a power element case and a diaphragm is installed in the temperature-sensitive operating chamber and whose pressure changes in response to changes in the temperature of the refrigerant passing through the third flow path and the fourth flow path. a temperature-sensing section sealed in a chamber; a conical valve body having a transmission rod that transmits displacement to the valve body by the operation of the diaphragm; and a conical valve body facing a valve seat provided in the valve body; In a thermal expansion valve consisting of a spring that constantly biases the body toward the valve seat, the pressure difference between the upstream side of the valve body that engages the valve seat and the downstream side of the valve body through which refrigerant flows sets the static superheat degree of the thermal expansion valve. When the pressure difference becomes larger than the reference value, the superheat degree signal and the expansion valve are adjusted so that a refrigerant flow rate of a certain amount or more can be supplied to the evaporator even if the actual superheat degree signal becomes less than the set static superheat degree. The diaphragm diameter and valve port diameter are selected so as to add a force pushing the valve disc in the direction of fluid flow to the force pushing the valve disc, which is a function of the amount of deflection of the diaphragm of the power element. A temperature expansion valve characterized by having a conical valve body shape and utilizing an additional restraining force due to fluid flow.
(5)上記円錐弁体の弁体形状において冷媒流が低圧側
へ流出する近傍の弁角度を、冷媒流が高圧側から流入す
る近傍の弁角度よりも大きい弁角度をもつように定めた
2段円錐弁体とすることを特徴とする請求項(4)記載
の温度膨張弁。
(5) In the valve body shape of the conical valve body, the valve angle near where the refrigerant flow flows out to the low pressure side is determined to be larger than the valve angle near where the refrigerant flow flows in from the high pressure side. The temperature expansion valve according to claim 4, characterized in that it is a stepped conical valve body.
JP63318549A 1988-12-19 1988-12-19 Temperature expansion valve Granted JPH02166367A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63318549A JPH02166367A (en) 1988-12-19 1988-12-19 Temperature expansion valve
US07/452,426 US5005370A (en) 1988-12-19 1989-12-19 Thermal expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318549A JPH02166367A (en) 1988-12-19 1988-12-19 Temperature expansion valve

Publications (2)

Publication Number Publication Date
JPH02166367A true JPH02166367A (en) 1990-06-27
JPH0571860B2 JPH0571860B2 (en) 1993-10-08

Family

ID=18100370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318549A Granted JPH02166367A (en) 1988-12-19 1988-12-19 Temperature expansion valve

Country Status (2)

Country Link
US (1) US5005370A (en)
JP (1) JPH02166367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496203B1 (en) * 1997-04-11 2005-09-14 가부시기가이샤 후지고오키 Thermal expansion valve
JP2006266663A (en) * 2005-02-25 2006-10-05 Mitsubishi Heavy Ind Ltd Expansion valve and air conditioner

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238219A (en) * 1992-03-13 1993-08-24 Sporlan Valve Company Thermostatic expansion valve
US5243829A (en) * 1992-10-21 1993-09-14 General Electric Company Low refrigerant charge detection using thermal expansion valve stroke measurement
JP3305039B2 (en) * 1993-04-22 2002-07-22 株式会社不二工機 Temperature expansion valve
US5364066A (en) * 1993-07-15 1994-11-15 Sporlan Valve Company Dual port valve with stepper motor actuator
JPH11287536A (en) 1998-04-02 1999-10-19 Fujikoki Corp Expansion valve
US6816669B2 (en) 2001-06-08 2004-11-09 Algas-Sdi International Llc Vaporizer with capacity control valve
US6957013B2 (en) * 2001-06-08 2005-10-18 Algas-Sdi International Llc Fluid heater
DE202006000385U1 (en) * 2006-01-11 2006-03-02 Hans Güntner GmbH refrigeration plant
US8291719B2 (en) * 2007-10-09 2012-10-23 Be Aerospace, Inc. Thermal control system and method
ATE511067T1 (en) 2007-11-13 2011-06-15 Danfoss As EXPANSION VALVE
US20110162398A1 (en) * 2008-09-10 2011-07-07 United Technologies Corporation Refrigerant powered valve for a geothermal power plant
CN101852307B (en) * 2009-03-30 2011-09-28 浙江春晖智能控制股份有限公司 Thermostatic expansion valve
US20110023513A1 (en) * 2009-07-28 2011-02-03 Hamilton Sundstrand Corporation Expansion valve for a refrigerant system
US20110079286A1 (en) * 2009-10-01 2011-04-07 Hamilton Sundstrand Corporation Expansion Valve
JP5535997B2 (en) * 2011-08-05 2014-07-02 株式会社鷺宮製作所 Seal structure and temperature expansion valve
CN102538316B (en) * 2011-12-04 2014-07-09 浙江三花汽车零部件有限公司 Thermal expansion valve
JP5891968B2 (en) * 2012-06-22 2016-03-23 株式会社デンソー Decompressor
CN104748457B (en) * 2013-12-27 2017-12-15 浙江三花制冷集团有限公司 A kind of heating power expansion valve and its core assembly
DE102014107279A1 (en) * 2014-05-23 2015-11-26 Otto Egelhof Gmbh & Co. Kg expansion valve
JP6007965B2 (en) * 2014-12-15 2016-10-19 ダイキン工業株式会社 Air conditioner
KR102409471B1 (en) * 2014-12-22 2022-06-16 가부시키가이샤 호리바 에스텍 Fluid heater
WO2017077769A1 (en) * 2015-11-06 2017-05-11 株式会社日立製作所 Valve structure, and hydraulic device, fluid machine, and machine, each having same
CN112562482B (en) * 2020-12-09 2023-05-12 常州市筑友展示科技股份有限公司 Expansion valve show rack of convenient teaching

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538861A (en) * 1947-10-01 1951-01-23 Detroit Lubricator Co Refrigeration expansion valve
US2701451A (en) * 1952-05-09 1955-02-08 Gen Motors Corp Expansion valve for refrigerating apparatus
US3196630A (en) * 1961-07-31 1965-07-27 Alco Valve Co Constant horsepower control valve
DE2723365C3 (en) * 1977-05-24 1981-07-02 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Multi-way solenoid valve with a tubular valve housing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496203B1 (en) * 1997-04-11 2005-09-14 가부시기가이샤 후지고오키 Thermal expansion valve
JP2006266663A (en) * 2005-02-25 2006-10-05 Mitsubishi Heavy Ind Ltd Expansion valve and air conditioner

Also Published As

Publication number Publication date
JPH0571860B2 (en) 1993-10-08
US5005370A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
JPH02166367A (en) Temperature expansion valve
US4979372A (en) Refrigeration system and a thermostatic expansion valve best suited for the same
EP1659352A2 (en) Expansion device
US20080011363A1 (en) Pressure Control Valve
JPH06307740A (en) Temperature expansion valve
JP3995828B2 (en) Temperature expansion valve
US7434419B2 (en) Pressure control valve for refrigeration cycle
JP2006220407A (en) Expansion valve for refrigeration cycle
US4032070A (en) Thermostatic expansion valve for refrigeration installations
JP2010112616A (en) Thermal expansion valve
US4500035A (en) Expansion valve
US5044170A (en) Refrigeration system and a thermostatic expansion valve best suited for the same
KR20010076283A (en) Temperature expansion valve
JPS6170355A (en) Expansion valve for refrigerator
JP2006266568A (en) Expansion valve
US4712384A (en) Integrated evaporator and thermal expansion valve assembly
JP3954743B2 (en) Control valve for refrigeration cycle
US4236669A (en) Thermostatic expansion valve with lead-lag compensation
JP2006292185A (en) Expansion device and refrigerating cycle
JP2001116400A (en) Refrigeration cycle
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
JP3987983B2 (en) Thermal expansion valve
JP2001116399A (en) Refrigeration cycle
JPH05118711A (en) Expansion valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees