JP2006266663A - Expansion valve and air conditioner - Google Patents

Expansion valve and air conditioner Download PDF

Info

Publication number
JP2006266663A
JP2006266663A JP2005287319A JP2005287319A JP2006266663A JP 2006266663 A JP2006266663 A JP 2006266663A JP 2005287319 A JP2005287319 A JP 2005287319A JP 2005287319 A JP2005287319 A JP 2005287319A JP 2006266663 A JP2006266663 A JP 2006266663A
Authority
JP
Japan
Prior art keywords
valve body
valve
expansion valve
expansion
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287319A
Other languages
Japanese (ja)
Other versions
JP4831808B2 (en
Inventor
Takayuki Suzuki
孝幸 鈴木
Keisuke Matsuyama
敬介 松山
Nobuyuki Takeuchi
伸行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005287319A priority Critical patent/JP4831808B2/en
Publication of JP2006266663A publication Critical patent/JP2006266663A/en
Application granted granted Critical
Publication of JP4831808B2 publication Critical patent/JP4831808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion valve and an air conditioner having the expansion valve capable of reducing noise made in a throttle passage. <P>SOLUTION: The expansion valve 1 comprises an expansion valve body 2 and a valve element 3, wherein a fluid throttle part is formed by a seat face 21 of the expansion valve body 2 and the side face of the valve element 3, and the opening control of the valve is performed by the displacement of the valve element 3. From the cross-sectional view in the axial direction of the valve element 3, an axial chamfer dimension (a) and a radial chamfer dimension (b) of the seat face 21 are 0.1 mm or less, and the ratio a/b of the axial chamfer dimension (a) to the radial chamfer dimension (b) is a/b<1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、膨張弁および空気調和機に関し、さらに詳しくは、絞り通路にて発生する騒音を低減できる膨張弁、および、かかる膨張弁を有する空気調和機に関する。   The present invention relates to an expansion valve and an air conditioner, and more particularly to an expansion valve that can reduce noise generated in a throttle passage and an air conditioner having such an expansion valve.

膨張弁では、稼働時にて多量の冷媒が絞り通路を通過すると、高周波数の騒音(笛吹音)が発生するという課題がある。これは、絞り通路を通過した冷媒中に渦が発生して成長し、この渦により弁体が振動して騒音が発生すると考えられている。
かかる課題において、従来の膨張弁には、特許文献1に記載される技術が知られている。従来の膨張弁は、高圧側の液冷媒を減圧膨張させる絞り通路穴の開口面積を調整するように変位する弁体と、絞り通路穴を通過した低圧側2相冷媒を蒸発器に送り込む低圧側2層冷媒通路とを備える膨張弁において、低圧側2相冷媒通路は、絞り通路穴側に位置する第1通路と、第1通路の冷媒流れ下流側に位置し、第1通路よりも通路断面積が大きい第2通路とを有しており、第1通路に、第2通路に向かって突出する突出部材を備えることを特徴とする。
In the expansion valve, when a large amount of refrigerant passes through the throttle passage at the time of operation, there is a problem that high-frequency noise (flute sound) is generated. This is thought to be caused by the generation of vortices in the refrigerant that has passed through the throttle passage and the growth of the vortices, which causes the valve body to vibrate and generate noise.
In this problem, a technique described in Patent Document 1 is known for a conventional expansion valve. A conventional expansion valve has a valve body that is displaced so as to adjust an opening area of a throttle passage hole that decompresses and expands the high-pressure side liquid refrigerant, and a low-pressure side that sends low-pressure side two-phase refrigerant that has passed through the throttle passage hole to the evaporator. In the expansion valve including the two-layer refrigerant passage, the low-pressure side two-phase refrigerant passage is located on the first passage located on the throttle passage hole side and on the downstream side of the refrigerant flow in the first passage, and is disconnected from the first passage. A second passage having a large area, and the first passage includes a projecting member projecting toward the second passage.

特開2001-263864号公報JP 2001-263864 A

しかしながら、特許文献1に示すものは弁体で形成される絞り通路を通過した後の第一通路および第二通路における圧力変動を減衰させるものであり、絞り通路での騒音については何ら考慮されていないという問題があった。   However, what is shown in Patent Document 1 is to attenuate pressure fluctuations in the first passage and the second passage after passing through the throttle passage formed by the valve body, and no consideration is given to noise in the throttle passage. There was no problem.

この発明は、上記問題点に鑑み、絞り通路にて発生する騒音を低減できる膨張弁、および、かかる膨張弁を有する空気調和機を提供することを目的とする。   An object of this invention is to provide the expansion valve which can reduce the noise which generate | occur | produces in a throttle passage, and the air conditioner which has this expansion valve in view of the said problem.

上記目的を達成するため、この発明にかかる膨張弁は、膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aおよび径方向の面取り寸法bが0.1mm以下であり、且つ、前記シート面の軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bがa/b<1であることを特徴とする。   In order to achieve the above object, an expansion valve according to the present invention includes an expansion valve main body and a valve body, and a throttle portion for fluid is formed by a seat surface of the expansion valve main body and a side surface of a distal end portion of the valve body. And an expansion valve in which the opening degree of the valve is controlled by the displacement of the valve body, and the axial chamfer dimension a and the radial chamfer dimension b of the seat surface in the axial sectional view of the valve body. Is 0.1 mm or less, and the ratio a / b between the axial chamfer dimension a and the radial chamfer dimension b of the sheet surface is a / b <1.

この膨張弁では、シート面の面取り寸法a,bが適正化されるので、絞り部の通過時にて流れ方向に発生する流体の渦が低減され、また、絞り部の下流側における流体の渦の増幅が低減される。さらに、流体の流れ方向におけるシート面の長さが小さくかつ平坦となるので、絞り部で発生された渦が速やかに拡散して弁体を打つことが少なくなる。これにより、絞り部にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the chamfer dimensions a and b of the seat surface are optimized, the fluid vortex generated in the flow direction when passing through the throttle portion is reduced, and the vortex of the fluid on the downstream side of the throttle portion is reduced. Amplification is reduced. Furthermore, since the length of the seat surface in the fluid flow direction is small and flat, it is less likely that the vortex generated in the throttle portion diffuses quickly and strikes the valve body. Thereby, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced effectively.

また、この発明にかかる膨張弁は、膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aおよび径方向の面取り寸法bが0.1mm以下であることを特徴とする。   The expansion valve according to the present invention includes an expansion valve main body and a valve body, and a throttle part for a fluid is formed by a seat surface of the expansion valve main body and a side surface of a distal end portion of the valve body. An expansion valve in which the opening degree of the valve is controlled by the displacement of the valve body, and an axial chamfer dimension a and a radial chamfer dimension b of the seat surface are 0.1 mm or less in an axial sectional view of the valve body. It is characterized by being.

この膨張弁では、シート面の面取り寸法a,bが適正化されるので、絞り部の通過時にて流れ方向に発生する流体の渦が低減される。また、流体の流れ方向におけるシート面の長さが小さくなるので、絞り部で発生された渦が速やかに拡散して弁体を打つことが少なくなる。これにより、絞り部にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the chamfer dimensions a and b of the seat surface are optimized, fluid vortices generated in the flow direction when passing through the throttle portion are reduced. Further, since the length of the seat surface in the fluid flow direction is reduced, vortices generated in the throttle portion are less likely to diffuse quickly and hit the valve body. Thereby, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced effectively.

また、この発明にかかる膨張弁は、膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bがa/b<1であることを特徴とする。   The expansion valve according to the present invention includes an expansion valve main body and a valve body, and a throttle part for a fluid is formed by a seat surface of the expansion valve main body and a side surface of a distal end portion of the valve body. Of the valve body, the ratio of the axial chamfer dimension a and the radial chamfer dimension b of the seat surface a / b is a / b <1.

この膨張弁では、軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bが適正化されるので、絞り部の下流側における流体の渦の増幅が低減される。すなわち、シート面が平坦となり、絞り部で発生された渦が速やかに弁体から離れる方向に拡散するので、渦の存在密度が低減され、弁体を打つことが少なくなる。これにより、絞り部にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the ratio a / b between the chamfer dimension a in the axial direction and the chamfer dimension b in the radial direction is optimized, amplification of the fluid vortex on the downstream side of the throttle portion is reduced. That is, since the seat surface becomes flat and the vortex generated at the throttle portion diffuses quickly in the direction away from the valve body, the presence density of the vortex is reduced and the valve body is less likely to hit. Thereby, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced effectively.

また、この発明にかかる膨張弁は、前記面取り寸法aが0.1mm以下であることを特徴とする。   The expansion valve according to the present invention is characterized in that the chamfer dimension a is 0.1 mm or less.

この膨張弁では、軸方向のシート面の面取り寸法aが0.1mm以下と小さくされるので、流体の流れ方向におけるシート面の長さが小さくなる。このため、絞り部で発生された渦が速やかに弁体から離れる方向に拡散し、弁体付近の渦密度が低減される。したがって、渦が弁体を打つことが少なくなるので、絞り部にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the chamfer dimension “a” of the seat surface in the axial direction is reduced to 0.1 mm or less, the length of the seat surface in the fluid flow direction is reduced. For this reason, the vortex generated at the throttle portion is quickly diffused away from the valve body, and the vortex density near the valve body is reduced. Therefore, since the vortex is less likely to hit the valve body, there is an advantage that the noise generated in the throttle portion is effectively reduced.

また、この発明にかかる膨張弁は、弁の全閉時にて前記シート面と前記弁体のショルダー面とが接触して流体の絞り部が封止される構成において、前記弁体の軸方向断面視にて、軸方向に対する前記ショルダー面の傾斜角φが前記シート面の傾斜角θに対して略等しく成るように構成される。   Further, the expansion valve according to the present invention has an axial cross section of the valve body in a configuration in which the seat surface and the shoulder surface of the valve body come into contact with each other and the throttle portion of the fluid is sealed when the valve is fully closed. When viewed, the inclination angle φ of the shoulder surface with respect to the axial direction is configured to be substantially equal to the inclination angle θ of the seat surface.

この膨張弁では、軸方向に対する弁体のショルダー面の傾斜角φがシート面の傾斜角θに対して略等しく成るように構成されるので、シート面の形状および寸法が上記のように適正化されたときに、絞り部の下流側における流体の渦の拡散方向がより好適となる。これにより、絞り部R3にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the inclination angle φ of the shoulder surface of the valve body with respect to the axial direction is configured to be substantially equal to the inclination angle θ of the seat surface, the shape and dimensions of the seat surface are optimized as described above. When this is done, the diffusion direction of the fluid vortex on the downstream side of the throttle portion is more suitable. Thereby, there exists an advantage by which the noise which generate | occur | produces in the aperture | diaphragm | squeeze part R3 is reduced effectively.

また、この発明にかかる膨張弁は、前記弁体が挿通する弁通室が前記膨張弁本体内に形成されており、絞り部を通過した流体が前記弁通室内にて膨張する構成において、前記弁体の径方向断面積S1と前記弁通室の径方向断面積S2との比S1/S2がS1/S2≧0.40である。   In the expansion valve according to the present invention, the valve passage chamber through which the valve body is inserted is formed in the expansion valve body, and the fluid that has passed through the throttle portion expands in the valve passage chamber. The ratio S1 / S2 between the radial sectional area S1 of the valve body and the radial sectional area S2 of the valve passage chamber is S1 / S2 ≧ 0.40.

この膨張弁では、弁体の径方向断面積S1と弁通室の径方向断面積S2との比S1/S2が適正化されるので、弁通室内における流体の渦の成長が抑制されて、絞り部にて発生する騒音がより効果的に低減される利点がある。   In this expansion valve, since the ratio S1 / S2 between the radial cross-sectional area S1 of the valve body and the radial cross-sectional area S2 of the valve passage chamber is optimized, the growth of fluid vortices in the valve passage chamber is suppressed, There is an advantage that noise generated in the throttle portion is more effectively reduced.

また、この発明にかかる膨張弁は、前記弁体が挿通する弁通室が前記膨張弁本体内に形成されており、絞り部を通過した流体が前記弁通室内にて膨張する構成において、前記弁体の曲げ固有値が可聴周波数領域以上である。   In the expansion valve according to the present invention, the valve passage chamber through which the valve body is inserted is formed in the expansion valve body, and the fluid that has passed through the throttle portion expands in the valve passage chamber. The bending eigenvalue of the valve body is above the audible frequency range.

この膨張弁では、弁体の曲げ固有値が可聴周波数以上であるので、弁通室内における流体の渦により弁体が振動した場合においても可聴周波数以上の騒音となり、騒音対策として効果的である。   In this expansion valve, since the bending eigenvalue of the valve body is higher than the audible frequency, even when the valve body vibrates due to the vortex of the fluid in the valve passage chamber, the noise becomes higher than the audible frequency, which is effective as a noise countermeasure.

また、この発明にかかる膨張弁は、前記弁体の先端部の側面に軸線方向に交差するように溝が設けられていることを特徴とする。   Further, the expansion valve according to the present invention is characterized in that a groove is provided on the side surface of the distal end portion of the valve body so as to intersect the axial direction.

この膨張弁では、上記発明に加えて、弁体の先端部の側面に軸線方向に交差するように溝が設けられているので、流体が溝によって分解され、発生する渦の大きさを小さくできる。これにより、絞り部に流入する渦の大きさを小さくできるので、絞り部にて発生する騒音が一層効果的に低減される利点がある。   In this expansion valve, in addition to the above-described invention, since the groove is provided on the side surface of the distal end portion of the valve body so as to intersect the axial direction, the fluid is decomposed by the groove, and the size of the generated vortex can be reduced. . Thereby, since the magnitude | size of the vortex | eddy which flows into a throttle part can be made small, there exists an advantage by which the noise which generate | occur | produces in a throttle part is reduced more effectively.

また、この発明にかかる膨張弁は、膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、
前記弁体の先端部の側面に軸線方向に交差するように溝が設けられていることを特徴とする。
The expansion valve according to the present invention includes an expansion valve main body and a valve body, and a throttle part for a fluid is formed by a seat surface of the expansion valve main body and a side surface of a distal end portion of the valve body. An expansion valve in which the opening degree of the valve is controlled by the displacement of
A groove is provided on the side surface of the tip of the valve body so as to intersect in the axial direction.

この膨張弁では、弁体の先端部の側面に軸線方向に交差するように溝が設けられているので、流体が溝によって分解され、発生する渦の大きさを小さくできる。これにより、絞り部に流入する渦の大きさを小さくできるので、絞り部にて発生する騒音が効果的に低減される利点がある。   In this expansion valve, since the groove is provided on the side surface of the tip portion of the valve body so as to intersect the axial direction, the fluid is decomposed by the groove, and the size of the generated vortex can be reduced. Thereby, since the magnitude | size of the vortex | eddy which flows into a throttle part can be made small, there exists an advantage by which the noise which generate | occur | produces in a throttle part is reduced effectively.

また、前記弁体の本体側面、前記膨張弁本体の前記弁体の先端部に対向する先端対向面および前記膨張弁本体の前記弁体の本体側面に対抗する本体対向面の少なくとも1面に、前記弁体の軸線方向に交差するように溝が設けられていることを特徴とする。   Further, on at least one of the main body side surface of the valve body, the front end facing surface facing the front end portion of the valve body of the expansion valve main body, and the main body facing surface facing the main body side surface of the valve body of the expansion valve main body, A groove is provided so as to intersect the axial direction of the valve body.

この発明にかかる膨張弁は、弁体の本体側面、膨張弁本体の弁体の先端部に対向する先端対向面および膨張弁本体の弁体の本体側面に対抗する本体対向面の少なくとも1面に、弁体の軸線方向に交差するように溝が設けられているので、発生する渦の大きさを一層低減し、あるいは、絞り部を通過した渦を速やかに小さくすることができる。例えば、弁体の本体側面および/または膨張弁本体の弁体の本体側面に対抗する本体対向面に溝を設ければ、絞り部を通過した渦を分解し、強制的に小さくする。また、膨張弁本体の弁体の先端部に対向する先端対向面に溝を設ければ、絞り部を通過する流体を分解し発生する渦を小さくする。
これにより、絞り部にて発生する騒音が一層効果的に低減される利点がある。
The expansion valve according to the present invention is provided on at least one of the main body side surface of the valve body, the front end facing surface facing the front end portion of the valve body of the expansion valve main body, and the main body facing surface facing the main body side surface of the valve body of the expansion valve main body. Since the groove is provided so as to intersect the axial direction of the valve body, the size of the generated vortex can be further reduced, or the vortex having passed through the throttle portion can be quickly reduced. For example, if a groove is provided in the main body side surface of the valve body and / or the main body facing surface that opposes the main body side surface of the expansion valve main body, the vortex that has passed through the throttle portion is decomposed and forcibly reduced. Further, if a groove is provided on the tip-facing surface facing the tip of the valve body of the expansion valve body, the vortex generated by decomposing the fluid passing through the throttle is reduced.
Thereby, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced more effectively.

また、この発明にかかる空気調和機は、上記の膨張弁により作動冷媒の絞り機構が構成されることを特徴とする。   The air conditioner according to the present invention is characterized in that the expansion mechanism of the working refrigerant is constituted by the expansion valve.

また、この発明にかかる膨張弁は、弁通室に絞り部を介して連通する通路と、該通路と弁通室との連通状態を前記絞り部で調整する弁体と、を有する膨張弁において、前記弁体に接触する前記絞り部に形成されたシート部の面取り部の傾斜面が、当該傾斜面と接触する弁体の対向面に対し、略平行をなすように形成されることを特徴とする。   An expansion valve according to the present invention is an expansion valve having a passage communicating with the valve passage chamber via a throttle portion, and a valve body for adjusting the communication state between the passage and the valve passage chamber with the throttle portion. The inclined surface of the chamfered portion of the seat portion formed in the throttle portion that contacts the valve body is formed so as to be substantially parallel to the opposing surface of the valve body that contacts the inclined surface. And

この発明にかかる膨張弁では、シート面の面取り寸法a,bが適正化されるので、絞り部の通過時にて流れ方向に発生する流体の渦が低減され、また、絞り部の下流側における流体の渦の増幅が低減される。これにより、絞り部にて発生する騒音が効果的に低減される利点がある。   In the expansion valve according to the present invention, since the chamfer dimensions a and b of the seat surface are optimized, the fluid vortex generated in the flow direction when passing through the throttle portion is reduced, and the fluid on the downstream side of the throttle portion is reduced. Vortex amplification is reduced. Thereby, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced effectively.

以下、この発明の実施形態につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、この実施形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的同一のものが含まれる。また、この実施形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. The constituent elements of this embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same. Further, a plurality of modifications described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.

[第一実施形態]
本発明の第一実施形態について、図1〜図5を用いて説明する。
図1は、この実施形態にかかる膨張弁を示す断面図である。図2〜図4は、図1に記載した膨張弁の絞り部を示す部分拡大図である。図5は、図1に記載した膨張弁の適用例を示すシステム構成図である。
[First embodiment]
1st Embodiment of this invention is described using FIGS.
FIG. 1 is a cross-sectional view showing an expansion valve according to this embodiment. 2-4 is the elements on larger scale which show the throttle part of the expansion valve described in FIG. FIG. 5 is a system configuration diagram showing an application example of the expansion valve described in FIG. 1.

この膨張弁1は、例えば、電子膨張弁であり、膨張弁本体2と、弁体3とを含み構成される(図1参照)。膨張弁本体2内には、通路R1と、通路R2と、絞り部R3と、弁通室R4とが形成される。通路R1は、流体の入口となる通路であり、通路R2は、流体の入口となる通路である。これらの通路R1、R2は、膨張弁本体2内にて弁通室R4に連通する。また、これらの通路R1、R2を介して膨張弁1が外部要素(図5参照)に接続される。   The expansion valve 1 is, for example, an electronic expansion valve, and includes an expansion valve body 2 and a valve body 3 (see FIG. 1). A passage R1, a passage R2, a throttle portion R3, and a valve passage chamber R4 are formed in the expansion valve main body 2. The passage R1 is a passage serving as a fluid inlet, and the passage R2 is a passage serving as a fluid inlet. These passages R1 and R2 communicate with the valve passage chamber R4 in the expansion valve body 2. The expansion valve 1 is connected to an external element (see FIG. 5) through these passages R1 and R2.

絞り部R3は、流体の流路を絞る通路であり、通路R1から弁通室R4に至る途中に形成される。弁体3は、弁体部(弁体の本体)33と、先端部(弁体の先端部)34と、弁体部33および先端部34を連結するショルダー部35とで構成されている。弁体部33は円筒形状をし、ショルダー部35および先端部34は順次先細りに形成された截頭円錐台形状をしている。先端部34の長さは、例えば、略3mmとされている。
弁体部33が外部から膨張弁本体2内に摺動可能に挿入されると共に、弁通室R4を貫通し、先端部34が絞り部R3内に挿入されるように配置されている。
この弁体3は、例えば、ステッピングモータ(図示省略)により駆動されて軸方向に変位できる。
The restricting portion R3 is a passage that restricts the fluid flow path, and is formed on the way from the passage R1 to the valve passage chamber R4. The valve body 3 includes a valve body portion (valve body main body) 33, a distal end portion (a distal end portion of the valve body) 34, and a shoulder portion 35 that connects the valve body portion 33 and the distal end portion 34. The valve body portion 33 has a cylindrical shape, and the shoulder portion 35 and the distal end portion 34 have a truncated conical shape formed in a tapered manner. The length of the tip portion 34 is, for example, approximately 3 mm.
The valve body portion 33 is slidably inserted into the expansion valve main body 2 from the outside, and is disposed so as to penetrate the valve passage chamber R4 and the distal end portion 34 is inserted into the throttle portion R3.
The valve body 3 can be displaced in the axial direction by being driven by, for example, a stepping motor (not shown).

膨張弁本体2の弁通室R4には、弁体3の軸線方向に略直交するシート部22と、弁体部33と対向する本体対向面23と、が設けられている。シート部22には、通路R1と連通し、先端部34が挿通する貫通孔24が設けられている。シート部22の内側部分にはショルダー部と対向するシート面21が形成されている。
貫通孔24の内周面は、先端部34と対向する先端対向面25を構成している。
貫通孔24の径を膨張弁1の口径と称する。ここでは、口径として、例えば、1.8mmとされている。なお、口径はこれに限らず、例えば、2.4mm、3.0mm等種々の大きさがある。
The valve passage chamber R4 of the expansion valve body 2 is provided with a seat portion 22 that is substantially orthogonal to the axial direction of the valve body 3 and a body facing surface 23 that faces the valve body portion 33. The sheet portion 22 is provided with a through hole 24 that communicates with the passage R1 and through which the distal end portion 34 is inserted. A seat surface 21 facing the shoulder portion is formed on the inner portion of the seat portion 22.
The inner peripheral surface of the through hole 24 constitutes a tip facing surface 25 that faces the tip portion 34.
The diameter of the through hole 24 is referred to as the diameter of the expansion valve 1. Here, the aperture is, for example, 1.8 mm. Note that the diameter is not limited to this, and there are various sizes such as 2.4 mm and 3.0 mm.

ここで、膨張弁1は、用いられる流路構成によって通路R1側、通路R2側のいずれから入った流体であっても、その流過流量や圧力状態を調整することができる。例えば後述する冷凍サイクルを構成する冷媒回路に用いられた場合には、暖房時において、この膨張弁1では、流体が通路R1から膨張弁本体2に流入した冷媒が絞り部R3にて流路が絞られることにより、弁通室R4内にて減圧膨張して通路R2から外部に流出することになる。他方、冷房時には四方弁などにより冷媒流路方向を逆転されることにより、通路R2側から流入した冷媒が絞り部R3で減圧された後、通路R1側に流出することになる。   Here, the expansion valve 1 can adjust the flow rate and pressure state of the fluid that has entered from either the passage R1 side or the passage R2 side depending on the flow path configuration used. For example, when used in a refrigerant circuit constituting a refrigeration cycle, which will be described later, in the expansion valve 1 during heating, the refrigerant that has flowed into the expansion valve body 2 from the passage R1 has a flow path at the throttle portion R3. By being throttled, it is decompressed and expanded in the valve passage R4 and flows out from the passage R2. On the other hand, during cooling, the refrigerant flow direction is reversed by a four-way valve or the like, so that the refrigerant flowing from the passage R2 side is decompressed by the throttle portion R3 and then flows out to the passage R1 side.

また、流体の流過時に弁体3の駆動制御による軸方向変位を変えることにより、絞り部R3での流体の流路断面積が調整されて弁の開度制御を行うことができるが、この開度制御により膨張弁1に流入する流体の圧力を中間圧、低圧など必要とされる圧力に調整して流出させることができる。   Further, by changing the axial displacement by the drive control of the valve body 3 when the fluid flows, the flow passage cross-sectional area of the fluid at the throttle portion R3 can be adjusted, and the valve opening degree can be controlled. By controlling the opening degree, the pressure of the fluid flowing into the expansion valve 1 can be adjusted to a required pressure such as an intermediate pressure or a low pressure and can be discharged.

[絞り通路のシート面]
膨張弁1では、絞り部R3の最狭部(流路断面積が最も狭くなる部分)が膨張弁本体2のシート面21、弁体3の先端部34のテーパ面(側面)31およびショルダー部35の周面であるショルダー面32により構成される(図2参照)。そして、弁体3が軸方向に変位すると、シート面21とテーパ面31、シート面21とショルダー面32との隙間が変化して流体の流路断面積が調整される。
[Sheet face of throttle passage]
In the expansion valve 1, the narrowest portion (the portion where the flow path cross-sectional area is the narrowest) of the throttle portion R <b> 3 is the seat surface 21 of the expansion valve body 2, the tapered surface (side surface) 31 of the distal end portion 34 of the valve body 3, and the shoulder portion. It is comprised by the shoulder surface 32 which is the surrounding surface of 35 (refer FIG. 2). When the valve body 3 is displaced in the axial direction, the clearance between the seat surface 21 and the tapered surface 31 and between the seat surface 21 and the shoulder surface 32 is changed to adjust the fluid flow path cross-sectional area.

かかる膨張弁本体2のシート部22は、弁体3の軸方向断面視にて、略直角形状(ピン角形状)となるように構成される(図3参照)。具体的には、シート面21の面取り寸法a,b(軸方向の面取り寸法aおよび径方向の面取り寸法b)が0.1[mm]以下、好ましくは0.05mm以下となるように構成される。なお、かかる構成としても、膨張弁1の開閉耐久性能が維持される。   The seat portion 22 of the expansion valve main body 2 is configured to have a substantially right-angle shape (pin angle shape) in the axial cross-sectional view of the valve body 3 (see FIG. 3). Specifically, the chamfer dimensions a and b (the axial chamfer dimension a and the radial chamfer dimension b) of the sheet surface 21 are 0.1 [mm] or less, preferably 0.05 mm or less. The Even with such a configuration, the opening / closing durability performance of the expansion valve 1 is maintained.

かかる構成では、渦は,流体のスケール(本実施形態の場合は面取り寸法)に対応して小さくなっていくので、絞り部R3の通過時にて流れ方向に発生する流体の渦が低減される。より具体的には、本実施形態では、シート面21の面積を小さくすることによりテーパ面31との間で流過流体が圧縮される領域を減少させる構成を採用している。これにより、絞り部R3にて発生する騒音が効果的に低減される利点がある。   In such a configuration, the vortex becomes smaller corresponding to the fluid scale (in the case of the present embodiment, the chamfer dimension), so that the fluid vortex generated in the flow direction when passing through the throttle portion R3 is reduced. More specifically, in the present embodiment, a configuration is adopted in which the area where the flowing fluid is compressed between the tapered surface 31 and the tapered surface 31 is reduced by reducing the area of the seat surface 21. Thereby, there exists an advantage by which the noise which generate | occur | produces in the aperture | diaphragm | squeeze part R3 is reduced effectively.

また、膨張弁本体2のシート面21は、弁体3の軸方向断面視にて、軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bがa/b<1となるように構成される(図3参照)。すなわち、軸方向に対するシート面21の傾斜角θ(tanθ=b/a)がθが45度以上となるように構成される。なおまた、詳細は後述するが、本実施形態で60度としたθは、θは>60度以上であることがより好ましい。   The seat surface 21 of the expansion valve main body 2 has a ratio a / b between the chamfer dimension a in the axial direction and the chamfer dimension b in the radial direction as a / b <1 in the axial sectional view of the valve body 3. (See FIG. 3). That is, the inclination angle θ (tan θ = b / a) of the seat surface 21 with respect to the axial direction is configured such that θ is 45 degrees or more. In addition, although mentioned later for details, it is more preferable that (theta) set to 60 degree | times in this embodiment is more than 60 degree | times.

かかる構成では、絞り部R3にて発生した流体の渦がシート面21の傾斜方向に沿って弁通室R4内を径方向に拡散する。このとき、シート面21の通路R1側端部がテーパ面31に最接近することになるが、傾斜角を大きくすることにより絞り部R3の下流側における流体の渦の増幅が低減されるので、渦エネルギーによる構造物(弁体3など)の加振が抑制される。これにより、絞り部R3にて発生する騒音が効果的に低減される利点がある。   In such a configuration, the vortex of the fluid generated in the throttle portion R3 diffuses in the valve passage chamber R4 in the radial direction along the inclination direction of the seat surface 21. At this time, the passage R1 side end portion of the seat surface 21 is closest to the tapered surface 31, but by increasing the inclination angle, the fluid vortex amplification on the downstream side of the throttle portion R3 is reduced. Excitation of the structure (valve element 3 etc.) due to vortex energy is suppressed. Thereby, there exists an advantage by which the noise which generate | occur | produces in the aperture | diaphragm | squeeze part R3 is reduced effectively.

[シート面と弁体のテーパ面との関係]
図4(b)に示したように、この膨張弁1の全閉制御時には、シート面21と弁体3のショルダー面32とが接触して絞り部R3が封止される。このため、かかるショルダー面32は、弁体3の軸方向断面視にて、軸方向に対する傾斜角φがシート面21の傾斜角θに対して略等しく成るように構成されることが好ましい。
[Relationship between seat surface and tapered surface of valve body]
As shown in FIG. 4B, when the expansion valve 1 is fully closed, the seat surface 21 and the shoulder surface 32 of the valve body 3 come into contact with each other to seal the throttle portion R3. For this reason, it is preferable that the shoulder surface 32 is configured such that the inclination angle φ with respect to the axial direction is substantially equal to the inclination angle θ of the seat surface 21 in a sectional view of the valve body 3 in the axial direction.

すなわち、前述したように、本実施形態では、弁体3に接触する絞り部R3に形成されたシート部22の面取り部の傾斜面であるシート面21を有する構成を採用しているが、このシート面21と接触する弁体の対向面となるショルダー面32に対し、弁体3の軸方向断面視にて、シート面21が略平行をなすように形成することが好ましい(図4(a)参照)。   That is, as described above, in the present embodiment, a configuration having the seat surface 21 that is the inclined surface of the chamfered portion of the seat portion 22 formed in the throttle portion R3 that contacts the valve body 3 is employed. It is preferable to form the seat surface 21 so that the seat surface 21 is substantially parallel to the shoulder surface 32, which is the opposing surface of the valve body that is in contact with the seat surface 21, in the axial sectional view of the valve body 3 (FIG. 4A). )reference).

かかる構成では、膨張弁1が開いている場合において、通路R1側から流入した流体が絞り部R3の流過に伴いショルダー面32により案内されることになるので、絞り部R3の下流側における流体の流路方向がシート面21の傾斜方向(傾斜角θの方向)に沿うことになる。このため、シート面21およびショルダー面32の形状および寸法が前述したように45度以上、好ましくは60度以上に適正化されれば、絞り部R3を流体が流過する際に生成される渦の成長をショルダー面32で流れの向きを変えることにより抑制することができるので、絞り部R3の下流側における流体の渦の拡散を促進することができる。これにより、絞り部R3にて発生する騒音が効果的に低減される利点がある。   In such a configuration, when the expansion valve 1 is open, the fluid flowing in from the passage R1 side is guided by the shoulder surface 32 as the throttle portion R3 flows, so that the fluid on the downstream side of the throttle portion R3. The flow path direction is along the inclination direction of the sheet surface 21 (direction of the inclination angle θ). Therefore, if the shape and dimensions of the seat surface 21 and the shoulder surface 32 are optimized to 45 degrees or more, preferably 60 degrees or more as described above, the vortex generated when the fluid flows through the throttle portion R3. Can be suppressed by changing the direction of the flow at the shoulder surface 32, so that the diffusion of the vortex of the fluid on the downstream side of the throttle portion R3 can be promoted. Thereby, there exists an advantage by which the noise which generate | occur | produces in the aperture | diaphragm | squeeze part R3 is reduced effectively.

また、かかる構成では、弁の全閉時にてショルダー面32とシート面21とが面接触するので、これらが線接触する従来の膨張弁と比較して、全閉時における絞り部R3のシール性が向上する利点がある。   Further, in such a configuration, the shoulder surface 32 and the seat surface 21 are in surface contact when the valve is fully closed, so that the sealing performance of the throttle portion R3 when fully closed is compared with the conventional expansion valve in which these are in line contact. Has the advantage of improving.

[付加事項]
なお、この膨張弁1では、弁体3の径方向断面積S1(=πd2/4)と弁通室R4の径方向断面積S2(=πD2/4)との比S1/S2がS1/S2≧0.40であることが好ましい。これにより、弁通室R4内における流体の渦の成長が抑制されるので、絞り部R3にて発生する騒音がより効果的に低減される利点がある。
[Additional items]
In the expansion valve 1, the radial cross-sectional area S1 (= πd 2/4) in the radial direction of the Bendori chamber R4 sectional area S2 (= πD 2/4) ratio of S1 / S2 of the valve element 3 is S1 It is preferable that /S2≧0.40. Thereby, since the growth of the vortex of the fluid in the valve passage chamber R4 is suppressed, there is an advantage that the noise generated in the throttle portion R3 is more effectively reduced.

また、この膨張弁1では、膨張弁本体2(特にシート面21の形成部)がステンレススチール製であることが好ましい。かかる構成では、真鍮製の場合と比較して、エロージョン(浸食)に対するシート面21の耐久性が向上するので、上記のように適正化されたシート面21の形状および寸法が好適に維持される利点がある。   Moreover, in this expansion valve 1, it is preferable that the expansion valve main body 2 (especially the formation part of the seat surface 21) is stainless steel. In such a configuration, the durability of the seat surface 21 against erosion (erosion) is improved as compared with the case of brass, so that the shape and dimensions of the seat surface 21 optimized as described above are preferably maintained. There are advantages.

また、この膨張弁1では、弁体3の曲げ固有値が可聴周波数以上であることが好ましい。これにより、弁通室内における流体の渦により弁体が振動した場合においても可聴周波数以上の騒音となり、騒音対策として効果的である。   Moreover, in this expansion valve 1, it is preferable that the bending eigenvalue of the valve body 3 is more than an audible frequency. As a result, even when the valve body vibrates due to the vortex of the fluid in the valve passage chamber, the noise becomes higher than the audible frequency, which is effective as a noise countermeasure.

[空気調和機]
上記の膨張弁1(1A,1B)は、例えば、空気調和機10における冷媒(流体)の絞り機構として用いられる(図4参照)。
[Air conditioner]
Said expansion valve 1 (1A, 1B) is used as a throttle mechanism of the refrigerant | coolant (fluid) in the air conditioner 10, for example (refer FIG. 4).

空気調和機10は、室外に配置される室外ユニット12と、室内に配置される室内ユニット13と、制御ユニット14とを含み構成される。そして、室外ユニット12および室内ユニット13がそれぞれ熱交換器121,131を有しており、これらの熱交換器121,131が相互に配管15により接続されている。空気調和機10は、これらの熱交換器121,131間に冷媒(流体)を循環させて室内および室外にて熱交換を行うことにより、室内の冷房、暖房もしくは冷暖房を行うことができる。   The air conditioner 10 includes an outdoor unit 12 disposed outside, an indoor unit 13 disposed indoors, and a control unit 14. The outdoor unit 12 and the indoor unit 13 have heat exchangers 121 and 131, respectively, and these heat exchangers 121 and 131 are connected to each other by a pipe 15. The air conditioner 10 can perform indoor air conditioning, heating, or air conditioning by circulating a refrigerant (fluid) between the heat exchangers 121 and 131 and exchanging heat indoors and outdoors.

室外ユニット12は、室外熱交換器121と、室外膨張弁1Aと、圧縮機123と、アキュムレータ124と、四方切換弁125とを含み、これらが配管15により接続されて構成されている。室外熱交換器121は、外気との間で冷媒の熱交換を行う機器であり、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室外膨張弁1Aは、冷媒の流路を絞る弁であり、主として、暖房運転時に使用される。また、この室外膨張弁1Aは、その開度調整により配管15内における冷媒の流量を調整できる。圧縮機123は、冷媒を吸入して圧縮し、冷媒の圧力を高める機能を有する。アキュムレータ124は、冷媒の余剰分を一時的に貯蔵して冷媒の流量を調整する機能を有する。四方切換弁125は、室外ユニット12内の配管15の接続を切り換えることにより、暖房運転用の配管構成と冷房用の配管構成とを切り換える機能を有する。   The outdoor unit 12 includes an outdoor heat exchanger 121, an outdoor expansion valve 1A, a compressor 123, an accumulator 124, and a four-way switching valve 125, which are connected by a pipe 15. The outdoor heat exchanger 121 is a device that performs heat exchange of refrigerant with the outside air, and functions as an evaporator during heating operation and as a condenser during cooling operation. The outdoor expansion valve 1A is a valve that restricts the refrigerant flow path, and is mainly used during heating operation. Further, the outdoor expansion valve 1A can adjust the flow rate of the refrigerant in the pipe 15 by adjusting the opening thereof. The compressor 123 has a function of sucking and compressing the refrigerant and increasing the pressure of the refrigerant. The accumulator 124 has a function of temporarily storing excess refrigerant and adjusting the flow rate of the refrigerant. The four-way switching valve 125 has a function of switching between a piping configuration for heating operation and a piping configuration for cooling by switching the connection of the piping 15 in the outdoor unit 12.

室内ユニット13は、室内熱交換器131と、室内膨張弁1Bとを含み、これらが配管15により接続されて構成されている。室内熱交換器131は、室内空気との間で冷媒の熱交換を行う機器であり、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内膨張弁1Bは、冷媒の流路を絞る弁であり、主として、冷房運転時に使用される。また、この室内膨張弁1Bは、その開度調整により配管15内における冷媒の流量を調整できる。なお、この空気調和機10では、複数の室内ユニット13,13が設置されており、これらの室内ユニット13,13が相互に独立して稼働できる。したがって、各室内ユニット13が異なる室内に設置されることにより、各室内の空気が個別に調和される。   The indoor unit 13 includes an indoor heat exchanger 131 and an indoor expansion valve 1B, which are connected by a pipe 15. The indoor heat exchanger 131 is a device that performs heat exchange of refrigerant with room air, and functions as a condenser during heating operation and as an evaporator during cooling operation. The indoor expansion valve 1B is a valve that throttles the refrigerant flow path, and is mainly used during cooling operation. The indoor expansion valve 1B can adjust the flow rate of the refrigerant in the pipe 15 by adjusting the opening degree. In this air conditioner 10, a plurality of indoor units 13, 13 are installed, and these indoor units 13, 13 can operate independently of each other. Therefore, by installing each indoor unit 13 in a different room, the air in each room is harmonized individually.

制御ユニット14は、制御部141と、各種のセンサー(図示省略)とを含み構成される。制御部141は、室外ユニット12および室内ユニット13の各構成要素を制御し、特に、室外膨張弁1Aおよび室内膨張弁1Bの開度制御を行う。各種のセンサーは、室外ユニット12および室内ユニット13の各構成要素、ならびに、配管15の要所に設置されて必要な情報を検出する。   The control unit 14 includes a control unit 141 and various sensors (not shown). The control unit 141 controls each component of the outdoor unit 12 and the indoor unit 13, and in particular, controls the opening degree of the outdoor expansion valve 1A and the indoor expansion valve 1B. The various sensors are installed at the main components of the outdoor unit 12 and the indoor unit 13 and the piping 15 to detect necessary information.

なお、この空気調和機10では、室外ユニット12の膨張弁1Aが、暖房運転時、冷媒の絞り機構として機能する。一方、室内ユニット13の膨張弁1Bが、冷房運転時、冷媒の絞り機構として機能する。   In this air conditioner 10, the expansion valve 1A of the outdoor unit 12 functions as a refrigerant throttling mechanism during heating operation. On the other hand, the expansion valve 1B of the indoor unit 13 functions as a refrigerant throttling mechanism during the cooling operation.

また、ここでは、一例として、暖房運転時の空気調和機10の作用について説明する(図5参照)。なお、この空気調和機10では、四方切換弁125が駆動されて室外ユニット12内の配管構成が切り換えられることにより、暖房運転と冷房運転とが切り換えられる(図示省略)。   Here, as an example, the operation of the air conditioner 10 during heating operation will be described (see FIG. 5). In this air conditioner 10, the heating operation and the cooling operation are switched (not shown) by driving the four-way switching valve 125 and switching the piping configuration in the outdoor unit 12.

暖房運転時では、まず、圧縮機123にて加圧された冷媒が高温高圧のガス状態にて各室内ユニット13、13に供給される。そして、この冷媒が室内熱交換器131内にて凝縮液化して熱を放出する。これにより、熱交換が行われて室内の空気が暖められる。次に、熱交換を行った冷媒が室外ユニット12側に戻され、冷媒の流路が室外膨張弁1Aにて絞られる。すると、冷媒が室外熱交換器121内にて断熱膨張し、蒸発気化して熱を吸収する。そして、この冷媒が四方切換弁125およびアキュムレータ124を通って圧縮機123に帰還する。これにより、冷媒が室外ユニット12および各室内ユニット13、13間を循環して、室内の暖房が行われる。   During the heating operation, first, the refrigerant pressurized by the compressor 123 is supplied to the indoor units 13 and 13 in a high-temperature and high-pressure gas state. The refrigerant condenses and liquefies in the indoor heat exchanger 131 to release heat. Thereby, heat exchange is performed and indoor air is warmed. Next, the heat-exchanged refrigerant is returned to the outdoor unit 12 side, and the refrigerant flow path is throttled by the outdoor expansion valve 1A. Then, the refrigerant adiabatically expands in the outdoor heat exchanger 121, evaporates and absorbs heat. Then, the refrigerant returns to the compressor 123 through the four-way switching valve 125 and the accumulator 124. Thereby, a refrigerant | coolant circulates between the outdoor unit 12 and each indoor unit 13 and 13, and indoor heating is performed.

[第二実施形態]
次に、本発明の第二実施形態について、図6を用いて説明する。
本実施形態にかかる膨張弁1は、弁体3の先端部34の構成が前述した第一実施形態のものと異なり、その他については前述した第一実施形態のものと同じであるので、ここでは相違する先端部34について説明し、その他については重複した説明を省略する。
なお、前述した第一実施形態と同一の部材には同一の符号を付している。
膨張弁(1A、1B)は、例えば、第一実施形態に示される空気調和機10における冷媒(流体)の絞り機構として用いられる(図4参照)。
図6は、この実施形態にかかる膨張弁1を示す断面図である。図7は、図6に記載した膨張弁の弁体3の先端部34を示す部分拡大図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
The expansion valve 1 according to the present embodiment is different from that of the first embodiment described above in the configuration of the distal end portion 34 of the valve body 3, and is otherwise the same as that of the first embodiment described above. The different tip portion 34 will be described, and the redundant description of the other portions will be omitted.
In addition, the same code | symbol is attached | subjected to the member same as 1st embodiment mentioned above.
The expansion valves (1A, 1B) are used, for example, as a refrigerant (fluid) throttling mechanism in the air conditioner 10 shown in the first embodiment (see FIG. 4).
FIG. 6 is a cross-sectional view showing the expansion valve 1 according to this embodiment. FIG. 7 is a partially enlarged view showing the tip 34 of the valve body 3 of the expansion valve shown in FIG.

先端部34のテーパ面31には、断面形状が三角形をした溝4が設けられている。溝4は、スパイラル状に形成されており、テーパ面31の略全域に亘り設けられている。
溝4のピッチPは、少なくとも最大リフト時の半径方向の隙間よりも小さくなるように設定される。ここでは略0.5mmとされている。なお、ピッチPは、小さければ小さいほど良い。
また、溝4の深さはピッチPと略同程度とされている。
溝4におけるスパイラルの傾斜角θは、1周してピッチP分だけずれるように設定されている。なお、傾斜角θは、これに限らず適宜に設定すればよい。
The tapered surface 31 of the distal end portion 34 is provided with a groove 4 having a triangular cross-sectional shape. The groove 4 is formed in a spiral shape and is provided over substantially the entire area of the tapered surface 31.
The pitch P of the grooves 4 is set to be smaller than at least the radial gap at the time of maximum lift. Here, it is approximately 0.5 mm. Note that the smaller the pitch P, the better.
Further, the depth of the groove 4 is approximately the same as the pitch P.
The inclination angle θ of the spiral in the groove 4 is set so as to deviate by a pitch P by one turn. Note that the inclination angle θ is not limited to this and may be set as appropriate.

この弁体33の先端部34では、弁体33の軸線方向に交差する方向に延在した凹部と凸部とが交互に複数形成されていることになる。
したがって、通路R1から絞り部R3に流入する流体は、この凸部と凹部とに交互に作用されて絞り部R3に流入することとなる。
In the distal end portion 34 of the valve body 33, a plurality of concave portions and convex portions extending in a direction crossing the axial direction of the valve body 33 are alternately formed.
Therefore, the fluid flowing from the passage R1 into the throttle portion R3 is alternately acted on the convex portions and the concave portions and flows into the throttle portion R3.

かかる構成では、例えば、通路R1から絞り部R3に流入する流体が溝によって分解され、流体のスケールが小さくなる。このため、発生する渦の大きさは流体のスケールに対応して小さくなっていくので、発生する渦の大きさを小さくできる。
なお、渦の大きさはピッチPの大きさに対応するため、ピッチPは小さいほど好適である。
これにより、絞り部R3に流入する渦の大きさを小さくできるので、絞り部R3にて発生する騒音が効果的に低減される利点がある。
このように、渦の発生段階でその大きさを小さくしているので、前述の第一実施形態との相乗効果によって、絞り部R3にて発生する騒音が一層効果的に低減される利点がある。
In such a configuration, for example, the fluid flowing from the passage R1 into the throttle portion R3 is decomposed by the grooves, and the scale of the fluid is reduced. For this reason, since the magnitude | size of the produced | generated vortex becomes small corresponding to the scale of the fluid, the magnitude | size of the produced | generated vortex can be made small.
Since the size of the vortex corresponds to the size of the pitch P, the smaller the pitch P, the better.
Thereby, since the magnitude | size of the vortex | eddy which flows into throttle part R3 can be made small, there exists an advantage by which the noise which generate | occur | produces in throttle part R3 is reduced effectively.
Thus, since the magnitude | size is made small at the generation | occurrence | production stage of a vortex, there exists an advantage by which the noise generate | occur | produced in the aperture | diaphragm | squeeze part R3 is reduced more effectively by the synergistic effect with above-mentioned 1st embodiment. .

なお、本実施形態では、溝4は加工性の面から断面形状が三角形で、スパイラル状としているが、これに限定されるものではない。
例えば、図8に示されるように、スパイラル状ではなく、それぞれが軸線方向に交差する方向に延在し、テーパ面31を囲繞する複数の溝4を、相互に略平行になるように設けてもよい。
また、断面形状についても、図9に示す半円形、図10に示す四角形等適宜な形状を用いることができる。
さらに、図11に示すように、先端部34を、賛嘆に向かうほど径が小さくなる複数の円筒体が積み重なった状態、すなわち、階段状としてもよい。
In the present embodiment, the groove 4 has a triangular cross section and a spiral shape in terms of workability, but is not limited to this.
For example, as shown in FIG. 8, a plurality of grooves 4 that extend in a direction intersecting the axial direction and surround the tapered surface 31 are provided so as to be substantially parallel to each other, instead of being spiral. Also good.
As for the cross-sectional shape, an appropriate shape such as a semicircle shown in FIG. 9 or a quadrangle shown in FIG. 10 can be used.
Furthermore, as shown in FIG. 11, the distal end portion 34 may have a state in which a plurality of cylindrical bodies whose diameters become smaller toward praise are stacked, that is, stepped.

なお、本実施形態では、溝4はテーパ面31にのみ設けられているが、これに加えて次のように場所に設けるようにしてもよい。
すなわち、先端対向面25の略全面(図6に示す場所A)に、弁体3の軸線方向に交差する方向に延在する溝4を設ける。
このように構成することにより、絞り部R3に流入する流体は一層細かく分解されるので、発生する渦の大きさを一層低減させることができる。このため、絞り部にて発生する騒音が一層効果的に低減される利点がある。
In the present embodiment, the groove 4 is provided only on the tapered surface 31, but in addition to this, the groove 4 may be provided at a place as follows.
That is, the groove 4 extending in the direction intersecting with the axial direction of the valve body 3 is provided on substantially the entire surface (tip A shown in FIG. 6) of the tip facing surface 25.
With this configuration, the fluid flowing into the throttle portion R3 is further finely decomposed, so that the size of the generated vortex can be further reduced. For this reason, there exists an advantage by which the noise which generate | occur | produces in an aperture part is reduced more effectively.

また、本体対向面23の絞り部R3側の部分(図6に示す場所B)および/または弁体部33のショルダー部35側の側面(図6に示す場所C)に、弁体3の軸線方向に交差する方向に延在する溝4を設ける。
このように構成することにより、絞り部を通過した渦を分解し、強制的に小さくすることができるので、絞り部にて発生する騒音が一層効果的に低減される利点がある。
In addition, the axis of the valve body 3 is arranged on the narrowed portion R3 side portion (the location B shown in FIG. 6) of the main body facing surface 23 and / or the side surface (the location C shown in FIG. 6) on the shoulder portion 35 side of the valve body portion 33. A groove 4 extending in a direction crossing the direction is provided.
With this configuration, the vortex that has passed through the throttle portion can be decomposed and forcibly reduced, so that there is an advantage that noise generated in the throttle portion can be more effectively reduced.

本発明の第一実施形態にかかる膨張弁を示す断面図である。It is sectional drawing which shows the expansion valve concerning 1st embodiment of this invention. 図1に記載した膨張弁の絞り部を示す部分拡大図である。It is the elements on larger scale which show the throttle part of the expansion valve described in FIG. 図1に記載した膨張弁の絞り部を示す部分拡大図である。It is the elements on larger scale which show the throttle part of the expansion valve described in FIG. 図1に記載した膨張弁の絞り部を示す部分拡大図である。It is the elements on larger scale which show the throttle part of the expansion valve described in FIG. 図1に記載した膨張弁の適用例を示すシステム構成図である。It is a system block diagram which shows the application example of the expansion valve described in FIG. 本発明の第二実施形態にかかる膨張弁を示す断面図である。It is sectional drawing which shows the expansion valve concerning 2nd embodiment of this invention. 図6に記載した膨張弁の弁体の先端部を示す部分拡大図である。It is the elements on larger scale which show the front-end | tip part of the valve body of the expansion valve described in FIG. 本発明の第二実施形態にかかる膨張弁の先端部の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the front-end | tip part of the expansion valve concerning 2nd embodiment of this invention. 本発明の第二実施形態にかかる膨張弁の先端部の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the front-end | tip part of the expansion valve concerning 2nd embodiment of this invention. 本発明の第二実施形態にかかる膨張弁の先端部の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the front-end | tip part of the expansion valve concerning 2nd embodiment of this invention. 本発明の第二実施形態にかかる膨張弁の先端部の別の実施形態を示す正面図である。It is a front view which shows another embodiment of the front-end | tip part of the expansion valve concerning 2nd embodiment of this invention.

符号の説明Explanation of symbols

1 膨張弁
2 膨張弁本体
21 シート面
23 本体対向面
25 先端部対向面
3 弁体
31 テーパ面
32 ショルダー面
34 先端部
4 溝
10 空気調和機
R1 高圧側通路
R2低圧側通路
R3絞り部
R4弁通室

DESCRIPTION OF SYMBOLS 1 Expansion valve 2 Expansion valve main body 21 Seat surface 23 Main body opposing surface 25 Front end opposing surface 3 Valve body 31 Tapered surface 32 Shoulder surface 34 Front end 4 Groove 10 Air conditioner R1 High pressure side passage R2 Low pressure side passage R3 Restriction portion R4 valve Passing through

Claims (12)

膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、
前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aおよび径方向の面取り寸法bが0.1mm以下であり、且つ、前記シート面の軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bがa/b<1であることを特徴とする膨張弁。
The expansion valve body includes a valve body, and a fluid throttle is formed by the seat surface of the expansion valve body and the side surface of the tip of the valve body, and the opening degree of the valve is controlled by the displacement of the valve body. Expansion valve,
The axial chamfer dimension a and the radial chamfer dimension b of the seat surface are 0.1 mm or less and the axial chamfer dimension a and the diameter of the seat surface in the axial cross-sectional view of the valve body. An expansion valve characterized in that the ratio a / b to the chamfer dimension b in the direction is a / b <1.
膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、
前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aおよび径方向の面取り寸法bが0.1mm以下であることを特徴とする膨張弁。
The expansion valve body includes a valve body, and a fluid throttle is formed by the seat surface of the expansion valve body and the side surface of the tip of the valve body, and the opening degree of the valve is controlled by the displacement of the valve body. Expansion valve,
The expansion valve according to claim 1, wherein a chamfer dimension a in the axial direction and a chamfer dimension b in the radial direction of the seat surface are 0.1 mm or less in an axial sectional view of the valve body.
膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、
前記弁体の軸方向断面視にて、前記シート面の軸方向の面取り寸法aと径方向の面取り寸法bとの比a/bがa/b<1であることを特徴とする膨張弁。
The expansion valve body includes a valve body, and a fluid throttle is formed by the seat surface of the expansion valve body and the side surface of the tip of the valve body, and the opening degree of the valve is controlled by the displacement of the valve body. Expansion valve,
The expansion valve according to claim 1, wherein a ratio a / b between an axial chamfer dimension a and a radial chamfer dimension b of the seat surface is a / b <1 in an axial sectional view of the valve body.
前記面取り寸法aが0.1mm以下であることを特徴とする請求項3に記載の膨張弁。   The expansion valve according to claim 3, wherein the chamfer dimension a is 0.1 mm or less. 弁の全閉時にて前記シート面と前記弁体のショルダー面とが接触して流体の絞り部が封止される構成において、
前記弁体の軸方向断面視にて、軸方向に対する前記ショルダー面の傾斜角φが前記シート面の傾斜角θに対して略等しく成るように構成される請求項1〜4のいずれか一つに記載の膨張弁。
In the configuration where the seat surface and the shoulder surface of the valve body are in contact with each other when the valve is fully closed, and the fluid throttle is sealed,
The tilt angle φ of the shoulder surface with respect to the axial direction is configured to be substantially equal to the tilt angle θ of the seat surface in an axial sectional view of the valve body. The expansion valve described in 1.
前記弁体が挿通する弁通室が前記膨張弁本体内に形成されており、絞り部を通過した流体が前記弁通室内にて膨張する構成において、
前記弁体の径方向断面積S1と前記弁通室の径方向断面積S2との比S1/S2がS1/S2≧0.40である請求項1〜5のいずれか一つに記載の膨張弁。
In the configuration in which the valve passage chamber through which the valve body is inserted is formed in the expansion valve body, and the fluid that has passed through the throttle portion expands in the valve passage chamber.
The expansion according to any one of claims 1 to 5, wherein a ratio S1 / S2 between the radial cross-sectional area S1 of the valve body and the radial cross-sectional area S2 of the valve passage chamber is S1 / S2≥0.40. valve.
前記弁体が挿通する弁通室が前記膨張弁本体内に形成されており、絞り部を通過した流体が前記弁通室内にて膨張する構成において、
前記弁体の曲げ固有値が可聴周波数領域以上である請求項1〜6のいずれか一つに記載の膨張弁。
In the configuration in which the valve passage chamber through which the valve body is inserted is formed in the expansion valve body, and the fluid that has passed through the throttle portion expands in the valve passage chamber.
The expansion valve according to any one of claims 1 to 6, wherein a bending eigenvalue of the valve body is not less than an audible frequency region.
前記弁体の先端部の側面に軸線方向に交差するように溝が設けられていることを特徴とする請求項1〜7のいずれか一つに記載の膨張弁。   The groove | channel is provided in the side surface of the front-end | tip part of the said valve body so that it may cross | intersect an axial direction, The expansion valve as described in any one of Claims 1-7 characterized by the above-mentioned. 膨張弁本体および弁体を含み、前記膨張弁本体のシート面と前記弁体の先端部の側面とにより流体の絞り部が形成されると共に、前記弁体の変位により弁の開度制御が行われる膨張弁であって、
前記弁体の先端部の側面に軸線方向に交差するように溝が設けられていることを特徴とする膨張弁。
The expansion valve body includes a valve body, and a fluid throttle is formed by the seat surface of the expansion valve body and the side surface of the tip of the valve body, and the opening degree of the valve is controlled by the displacement of the valve body. Expansion valve,
An expansion valve characterized in that a groove is provided on the side surface of the tip of the valve body so as to intersect the axial direction.
前記弁体の本体側面、前記膨張弁本体の前記弁体の先端部に対向する先端対向面および前記膨張弁本体の前記弁体の本体側面に対抗する本体対向面の少なくとも1面に、前記弁体の軸線方向に交差するように溝が設けられていることを特徴とする請求項9または10に記載の膨張弁。   The valve on at least one of the main body side surface of the valve body, the front surface facing the front end portion of the valve body of the expansion valve main body, and the main body facing surface of the expansion valve main body facing the main body side surface of the valve body. The expansion valve according to claim 9 or 10, wherein a groove is provided so as to intersect the axial direction of the body. 請求項1〜10のいずれか一つに記載の膨張弁により作動冷媒の絞り機構が構成されることを特徴とする空気調和機。   An air conditioner characterized in that the expansion mechanism according to any one of claims 1 to 10 forms a working refrigerant throttle mechanism. 弁通室に絞り部を介して連通する通路と、該通路と弁通室との連通状態を前記絞り部で調整する弁体と、を有する膨張弁において、
前記弁体に接触する前記絞り部に形成されたシート部の面取り部の傾斜面が、当該傾斜面と接触する弁体の対向面に対し、略平行をなすように形成されることを特徴とする膨張弁。

In the expansion valve having a passage communicating with the valve passage chamber via the throttle portion, and a valve body for adjusting the communication state between the passage and the valve passage chamber with the throttle portion,
The inclined surface of the chamfered portion of the seat portion formed in the throttle portion that contacts the valve body is formed so as to be substantially parallel to the opposing surface of the valve body that contacts the inclined surface. Expansion valve.

JP2005287319A 2005-02-25 2005-09-30 Expansion valve and air conditioner Active JP4831808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287319A JP4831808B2 (en) 2005-02-25 2005-09-30 Expansion valve and air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005051647 2005-02-25
JP2005051647 2005-02-25
JP2005287319A JP4831808B2 (en) 2005-02-25 2005-09-30 Expansion valve and air conditioner

Publications (2)

Publication Number Publication Date
JP2006266663A true JP2006266663A (en) 2006-10-05
JP4831808B2 JP4831808B2 (en) 2011-12-07

Family

ID=37202833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287319A Active JP4831808B2 (en) 2005-02-25 2005-09-30 Expansion valve and air conditioner

Country Status (1)

Country Link
JP (1) JP4831808B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338835A (en) * 2007-07-03 2009-01-07 株式会社不二工机 Electric valve and cooling/warming system
JP2010019406A (en) * 2008-07-14 2010-01-28 Fuji Koki Corp Motor-driven valve
JP2011133157A (en) * 2009-12-24 2011-07-07 Fuji Koki Corp Expansion valve
KR101059004B1 (en) * 2010-12-07 2011-08-23 전기우 Insertion type constant flow valve
EP3029396A1 (en) * 2014-12-02 2016-06-08 TGK CO., Ltd. Expansion valve
JP2016151310A (en) * 2015-02-17 2016-08-22 株式会社不二工機 Motor valve
WO2017221402A1 (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Expansion valve and refrigeration cycle device with same
CN107906805A (en) * 2017-12-18 2018-04-13 温岭市恒发空调部件有限公司 A kind of expansion valve
JP2019044880A (en) * 2017-09-04 2019-03-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2019060498A (en) * 2018-12-26 2019-04-18 株式会社不二工機 Motor-operated valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101073U (en) * 1982-12-27 1984-07-07 太平洋工業株式会社 Needle valve structure of proportional control valve
JPH02166367A (en) * 1988-12-19 1990-06-27 Fuji Koki Seisakusho:Kk Temperature expansion valve
JPH04302784A (en) * 1991-03-30 1992-10-26 Fuji Koki Seisakusho:Kk Flow control valve
JPH0735444A (en) * 1993-07-22 1995-02-07 Tgk Co Ltd Expansion valve
JPH08170753A (en) * 1994-12-19 1996-07-02 Fuji Koki Seisakusho:Kk Electric flow rate control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2002122367A (en) * 2000-10-17 2002-04-26 Denso Corp Control valve
JP2004263841A (en) * 2003-03-04 2004-09-24 Saginomiya Seisakusho Inc Electric control valve
JP2004340260A (en) * 2003-05-15 2004-12-02 Saginomiya Seisakusho Inc Flow control valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101073U (en) * 1982-12-27 1984-07-07 太平洋工業株式会社 Needle valve structure of proportional control valve
JPH02166367A (en) * 1988-12-19 1990-06-27 Fuji Koki Seisakusho:Kk Temperature expansion valve
JPH04302784A (en) * 1991-03-30 1992-10-26 Fuji Koki Seisakusho:Kk Flow control valve
JPH0735444A (en) * 1993-07-22 1995-02-07 Tgk Co Ltd Expansion valve
JPH08170753A (en) * 1994-12-19 1996-07-02 Fuji Koki Seisakusho:Kk Electric flow rate control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2002122367A (en) * 2000-10-17 2002-04-26 Denso Corp Control valve
JP2004263841A (en) * 2003-03-04 2004-09-24 Saginomiya Seisakusho Inc Electric control valve
JP2004340260A (en) * 2003-05-15 2004-12-02 Saginomiya Seisakusho Inc Flow control valve

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014056A (en) * 2007-07-03 2009-01-22 Fuji Koki Corp Motor-operated valve and air conditioning system
CN101338835A (en) * 2007-07-03 2009-01-07 株式会社不二工机 Electric valve and cooling/warming system
JP2010019406A (en) * 2008-07-14 2010-01-28 Fuji Koki Corp Motor-driven valve
JP2011133157A (en) * 2009-12-24 2011-07-07 Fuji Koki Corp Expansion valve
KR101059004B1 (en) * 2010-12-07 2011-08-23 전기우 Insertion type constant flow valve
US9885506B2 (en) 2014-12-02 2018-02-06 Tgk Co., Ltd. Expansion valve
EP3029396A1 (en) * 2014-12-02 2016-06-08 TGK CO., Ltd. Expansion valve
CN105650318A (en) * 2014-12-02 2016-06-08 株式会社Tgk Expansion valve
JP2016109305A (en) * 2014-12-02 2016-06-20 株式会社テージーケー Expansion valve
CN105650318B (en) * 2014-12-02 2019-08-09 株式会社Tgk Expansion valve
JP2016151310A (en) * 2015-02-17 2016-08-22 株式会社不二工機 Motor valve
JPWO2017221402A1 (en) * 2016-06-24 2019-01-31 三菱電機株式会社 Expansion valve and refrigeration cycle apparatus having the same
CN109312970A (en) * 2016-06-24 2019-02-05 三菱电机株式会社 Expansion valve and the refrigerating circulatory device for having the expansion valve
WO2017221402A1 (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Expansion valve and refrigeration cycle device with same
JP2019044880A (en) * 2017-09-04 2019-03-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
CN107906805A (en) * 2017-12-18 2018-04-13 温岭市恒发空调部件有限公司 A kind of expansion valve
CN107906805B (en) * 2017-12-18 2023-07-28 浙江泽顺制冷科技有限公司 Expansion valve
JP2019060498A (en) * 2018-12-26 2019-04-18 株式会社不二工機 Motor-operated valve

Also Published As

Publication number Publication date
JP4831808B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4831808B2 (en) Expansion valve and air conditioner
CN106917913B (en) Motor-driven valve
WO2016002022A1 (en) Expansion valve and refrigeration cycle device
JP6261008B2 (en) Sliding switching valve and refrigeration cycle system
KR20060087228A (en) A noise suppresser of a room cooler with a bunch fluid tube
JP2017025975A (en) Pressure operation valve and refrigeration cycle
JP3928084B2 (en) Expansion valve
JP2017219167A (en) Composite valve and refrigeration cycle device including the same
JP2007051824A (en) Air-conditioner
JP4897428B2 (en) Differential pressure control valve and air conditioner
JP2010078288A (en) Refrigeration system
JP4758186B2 (en) Engine-driven heat pump for simultaneous cooling and heating
JP4769036B2 (en) Throttle device, flow control valve, and air conditioner incorporating the same
JP2007032857A (en) Refrigerating device
WO2012056887A1 (en) Refrigeration cycle apparatus
JP2006349274A (en) Throttle device, flow control valve and air conditioner incorporating them
JP2006098020A (en) Air conditioner and strainer
CN113944772A (en) Check valve and refrigeration cycle system
KR100441058B1 (en) Two-way direction expansion valve with accumulated thin plate
JP2008051147A (en) Flow control valve and air conditioner incorporating this
JP2002107008A (en) Air conditioner
JP2019070449A (en) Motor valve and refrigeration cycle system
JP2002350003A (en) Air conditioner
JP2000105026A (en) Pipeline structure including heat exchanger and air conditioner employing the same
JP6254980B2 (en) Sliding switching valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4831808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250