JP2001116400A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2001116400A
JP2001116400A JP29782499A JP29782499A JP2001116400A JP 2001116400 A JP2001116400 A JP 2001116400A JP 29782499 A JP29782499 A JP 29782499A JP 29782499 A JP29782499 A JP 29782499A JP 2001116400 A JP2001116400 A JP 2001116400A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
valve
control valve
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29782499A
Other languages
Japanese (ja)
Inventor
Nobuhiko Suzuki
伸彦 鈴木
Shunichi Furuya
俊一 古屋
Yuji Kawamura
祐司 河村
Shunji Muta
俊二 牟田
Kenji Iijima
健次 飯島
Sakae Hayashi
栄 林
Hiroshi Kanai
宏 金井
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP29782499A priority Critical patent/JP2001116400A/en
Publication of JP2001116400A publication Critical patent/JP2001116400A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Safety Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle employing refrigerant having a low critical point such as carbon dioxide CO2, in which stabilized cooling capacity is attained by improving an expansion unit to retard occurrence of intermittent cycle variation under low load regardless of the thermal load. SOLUTION: The expansion unit 5 in a refrigeration cycle is provided with a plurality of pressure reduction regulating valves 16, 17 for varying the conducting state between a high pressure side space 11 and a low pressure side space 12 and the opening characteristics is differentiated for the refrigerant pressure in the high pressure side space 11 by means of the pressure reduction regulating valves 16, 17. The opening characteristics may be differentiated by differentiating the kind or quantity of encapsulated fluid, the variation of valve opening per unit stroke, the force of a spring for urging valve discs 19, 22 in the closing direction or the pressure receiving area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、冷媒として臨界
点の低い冷媒、例えば、二酸化炭素(CO2 )等のよう
に超臨界域で使用可能な冷媒を用いた冷凍サイクルに関
する。
THE INVENTION Field of the Invention The present invention, refrigerant low critical point as the refrigerant, for example, relates to a refrigeration cycle using a refrigerant that can be used in supercritical region as such carbon dioxide (CO 2).

【0002】[0002]

【従来の技術】二酸化炭素(CO2 )を冷媒とする冷凍
サイクルとして、特開平9−264622号公報に開示
される構成が知られている。これは、圧力制御弁によっ
て放熱器の出口側圧力を制御するもので、圧力制御弁
は、冷媒流路内に形成され、前記冷媒流路を上流側空間
と下流側空間とに仕切る隔壁部と、この隔壁部に形成さ
れ、前記上流側空間と前記下流側空間とを連通させる弁
口と、前記上流側空間内に密閉空間を形成し、前記密閉
空間内外の圧力差に応じて変位する変位部材と、前記弁
口を開閉する弁体部とを備え、前記変位部材は、前記上
流側空間内圧力が前記密閉空間内圧力より所定量大きく
なったときに変位し、前記弁体部は前記変位部材が変位
した時に前記弁口を開くように構成したものである。
2. Description of the Related Art As a refrigerating cycle using carbon dioxide (CO 2 ) as a refrigerant, a configuration disclosed in Japanese Patent Application Laid-Open No. 9-264622 is known. This is to control the outlet pressure of the radiator by a pressure control valve, the pressure control valve is formed in the refrigerant flow path, and a partition part that partitions the refrigerant flow path into an upstream space and a downstream space. A valve port formed in the partition wall for communicating the upstream space and the downstream space, and a displacement that forms a sealed space in the upstream space and is displaced according to a pressure difference between the inside and outside of the sealed space. A member and a valve body for opening and closing the valve port, wherein the displacement member is displaced when the pressure in the upstream space becomes larger than the pressure in the closed space by a predetermined amount, and the valve body is The valve port is opened when the displacement member is displaced.

【0003】このような圧力制御弁によれば、放熱器の
出口側圧力が増大した場合には、密閉空間の内部に封入
された冷媒の圧力との差圧によって変位部材が変位して
弁体部を弁口を開口する方向に移動させるので、出口側
圧力を低下させ、また、放熱器の出口側の冷媒温度が高
い場合には、前記密閉空間内の冷媒が膨張することによ
り前記変位部材が変位して弁体部を弁口を閉める方向に
移動させるので、放熱器の出口側圧力が上昇し、圧縮機
の圧縮仕事を増加させることなく、放熱器の出口側圧力
を増加させることができるので、冷凍サイクルの成績係
数の悪化を抑制しつつ冷却能力を確保することができる
ようになっている。
According to such a pressure control valve, when the pressure on the outlet side of the radiator is increased, the displacement member is displaced by the pressure difference between the pressure of the refrigerant sealed in the closed space and the valve body. The part is moved in the direction to open the valve port, so that the outlet side pressure is reduced, and when the refrigerant temperature on the outlet side of the radiator is high, the refrigerant in the closed space expands so that the displacement member Displaces and moves the valve body in the direction to close the valve port, so the outlet pressure of the radiator rises and the outlet pressure of the radiator can be increased without increasing the compression work of the compressor. Therefore, the cooling capacity can be secured while suppressing the deterioration of the coefficient of performance of the refrigeration cycle.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
CO2 のような臨界点の低い冷媒を用いた冷凍サイクル
において、圧縮機を容量可変型にすると共に高圧ライン
の圧力が臨界圧よりも低い亜臨界領域となる低負荷時で
運転される場合には、コンプレッサの吐出量や放熱器及
び凝縮器の負荷が一定(環境条件が一定)である定常運
転時であっても、冷凍サイクルが間欠的に大きな変動を
起こしてしまう現象が確認されている。
[SUMMARY OF THE INVENTION However, in a refrigeration cycle using a low critical point refrigerant as described above in the CO 2, the pressure in the high pressure line while the compressor variable capacity is lower than the critical pressure nitrous When operating at low load in the critical region, the refrigeration cycle is intermittent even during steady-state operation where the discharge rate of the compressor and the load on the radiator and condenser are constant (environmental conditions are constant). A phenomenon that causes large fluctuations has been confirmed.

【0005】このような現象が生じる原因としてはいろ
いろ推定されているが、主たる原因としては、次のよう
に考えられている。即ち、ダイヤフラム式の膨張装置で
あっても、ベローズ式の膨張装置であっても、膨張装置
流入側の冷媒温度に応じて膨張装置に封入されているガ
スが膨張又は収縮して弁体の位置が変位し、また、膨張
装置流入側の冷媒圧力に応じても弁体の位置が変位する
ことから、冷媒温度と冷媒圧力との関係が最適な制御特
性となるように封入ガスを封入することで、流入側の冷
媒温度や冷媒圧力に応じて膨張装置の開度が目標となる
開度となるように調節されている。
Various causes have been estimated as the cause of such a phenomenon, but the main causes are considered as follows. That is, regardless of the diaphragm type expansion device or the bellows type expansion device, the gas sealed in the expansion device expands or contracts in accordance with the refrigerant temperature on the inflow side of the expansion device, and the position of the valve element is increased. Is displaced, and the position of the valve body is displaced according to the refrigerant pressure on the inflow side of the expansion device. Therefore, the sealing gas is sealed so that the relationship between the refrigerant temperature and the refrigerant pressure has optimal control characteristics. The opening degree of the expansion device is adjusted to a target opening degree in accordance with the refrigerant temperature and the refrigerant pressure on the inflow side.

【0006】ところが、低負荷時において容量可変型の
圧縮機を用いる場合には、吐出量がもともと少なくなっ
ており、高圧ラインの圧力が比較的低くなっていること
から膨張装置は閉じようとする方向へ動作する。特に、
このような低負荷時において、ある冷媒温度Tに対して
最適な冷媒圧力Pが得られる状態の位置で膨張装置の開
度が安定している場合に、何らかの原因で冷媒温度がT
よりも相対的に高くなると、低負荷時ではそもそも開度
が小さくなっていることから膨張装置が閉じてしまう。
However, when a variable displacement compressor is used at a low load, the amount of discharge is originally small, and the pressure in the high pressure line is relatively low, so that the expansion device attempts to close. Work in the direction. In particular,
At such a low load, if the opening degree of the expansion device is stable at a position where the optimum refrigerant pressure P is obtained for a certain refrigerant temperature T, the refrigerant temperature may become T
If it is relatively higher than this, the expansion device will be closed at low load because the opening degree is initially small.

【0007】すると、膨張装置を介して低圧ラインへ供
給される冷媒がなくなってしまう。容量可変型の圧縮機
は、低圧圧力に応じて吐出量が制御されるようになって
おり、低圧圧力が低ければ吐出量を少なくし、低圧圧力
が高ければ吐出量を多くする制御が行われることから、
低圧ラインへ供給される冷媒が少なくなると、圧縮機の
吐出量も少なくなってしまう。圧縮機の吐出量が少なく
なると、亜臨界域でサイクルが動作する低負荷時におい
ては、放熱器の凝縮作用によって冷媒の比容積を減らす
作用が冷媒を供給して容積を増やそうとする動作に比べ
て勝ってしまうことから、高圧側の冷媒圧力はしばらく
上昇せず、このため膨張装置の閉じた状態が持続されて
しまうこととなる。
[0007] Then, the refrigerant supplied to the low-pressure line via the expansion device disappears. In the variable displacement compressor, the discharge amount is controlled according to the low pressure, and the discharge amount is reduced if the low pressure is low, and the discharge amount is increased if the low pressure is high. From that
When the amount of the refrigerant supplied to the low-pressure line decreases, the discharge amount of the compressor also decreases. When the discharge rate of the compressor is reduced, the operation of reducing the specific volume of the refrigerant by the condensing action of the radiator at low load where the cycle operates in the subcritical region is smaller than the operation of supplying the refrigerant and increasing the volume Therefore, the refrigerant pressure on the high pressure side does not rise for a while, and the closed state of the expansion device is maintained.

【0008】圧縮機は、このような状態でも少しずつ冷
媒を高圧側へ吐出し続けることから、しばらくすると、
放熱器での凝縮が進行するにつれて放熱器で実際に放熱
作用を行う面積が徐々に少なくなってくるため、放熱器
の凝縮作用によって冷媒の比容積を減らす作用よりも圧
縮機から吐出される冷媒により容積を増やそうとする動
作が勝り、次第に高圧圧力が上昇してくる。すると、開
弁に必要な高圧圧力に達すると、膨張装置が開いて高圧
側の冷媒が低圧側へ一気に流れるようになり、いままで
冷媒の流れが殆ど停滞していたサイクルに急激な冷媒の
流れが生じる。そして、このような一連の動作を以後繰
り返すことにより、間欠的にサイクルが大きく変動して
しまうものと考えられている。
[0008] Even in such a state, the compressor continues to discharge the refrigerant little by little to the high pressure side.
As the condensation in the radiator progresses, the area of the radiator that actually releases the heat gradually decreases, so the refrigerant discharged from the compressor is more effective than reducing the specific volume of the refrigerant by the condensation of the radiator. Thus, the operation of increasing the volume is superior, and the high pressure gradually increases. Then, when the high pressure required to open the valve is reached, the expansion device opens and the refrigerant on the high pressure side flows at a stretch to the low pressure side, and the flow of the refrigerant suddenly flows into a cycle where the flow of the refrigerant has almost stagnated until now. Occurs. Then, it is considered that a cycle fluctuates greatly intermittently by repeating such a series of operations thereafter.

【0009】特に、従来の膨張装置は、1つの弁によっ
て絞りが調節されていたため、熱負荷の高いところを中
心に(高圧ラインの冷媒圧が臨界圧を超える場合を基準
に)膨張装置の開弁特性が設定されていると、低負荷時
(高圧ラインの冷媒圧が臨界圧を下回る場合)において
は膨張装置の開度がもともと小さくなっているため、圧
力変動に対する弁開度の変動が熱負荷に拘わらずにほぼ
一定である場合には、僅かな圧力変動で閉弁してしま
う。即ち、低負荷時において弁体の動きが圧力変動に対
して敏感になり過ぎることから上述した現象を一層誘発
してしまう不都合がある。
In particular, in the conventional expansion device, since the throttle is adjusted by one valve, the expansion device is opened mainly at a position where the heat load is high (based on the case where the refrigerant pressure in the high pressure line exceeds the critical pressure). When the valve characteristics are set, the opening degree of the expansion device is originally small at low load (when the refrigerant pressure in the high pressure line is lower than the critical pressure). If the pressure is almost constant irrespective of the load, the valve will be closed by a slight pressure fluctuation. That is, when the load is low, the movement of the valve body becomes too sensitive to the pressure fluctuation, so that the above-described phenomenon is further caused.

【0010】そこで、この発明においては、二酸化炭素
(CO2 )等の臨界点の低い冷媒を用いた冷凍サイクル
において、膨張装置を改良することにより、熱負荷に拘
わらずに間欠的に生じ得る低負荷時でのサイクル変動を
起こりにくくし、もって安定した冷房能力を得ることが
できる冷凍サイクルを提供することを課題としている。
Therefore, according to the present invention, in a refrigeration cycle using a refrigerant having a low critical point, such as carbon dioxide (CO 2 ), by improving an expansion device, a low-temperature refrigerant which can be generated intermittently regardless of a heat load. It is an object of the present invention to provide a refrigeration cycle that makes it difficult for cycle fluctuations to occur at the time of load and that can obtain a stable cooling capacity.

【0011】[0011]

【課題を解決するための手段】上記課題を達成するため
に、この発明に係る冷凍サイクルは、冷媒を圧縮して運
転条件により高圧ラインを超臨界状態とする圧縮機と、
前記圧縮機によって圧縮された冷媒を冷却する放熱器
と、前記放熱器で冷却された冷媒を減圧する膨張装置
と、前記膨張装置によって減圧された冷媒を蒸発させる
蒸発器とによって少なくとも構成される冷凍サイクルに
おいて、前記膨張装置は、放熱器側と連通する高圧空間
と、蒸発器側と連通する低圧空間と、前記高圧空間と前
記低圧空間との間の連通状態を変化させる複数の弁体
と、前記放熱器側の冷媒条件に感応し、この放熱器側の
冷媒条件に応じてそれぞれの前記弁体の動きを制御する
各弁体に対応した感受要素とを有し、前記高圧空間の冷
媒圧力に対する開度特性を前記弁体とこれに対応する感
受要素とによって構成されるそれぞれの減圧調節弁で異
ならせるようにしたことを特徴としている(請求項
1)。
In order to achieve the above object, a refrigeration cycle according to the present invention comprises: a compressor for compressing a refrigerant to set a high pressure line in a supercritical state depending on operating conditions;
A refrigeration system comprising at least a radiator for cooling the refrigerant compressed by the compressor, an expansion device for decompressing the refrigerant cooled by the radiator, and an evaporator for evaporating the refrigerant decompressed by the expansion device. In the cycle, the expansion device includes a high-pressure space communicating with the radiator side, a low-pressure space communicating with the evaporator side, and a plurality of valve bodies that change a communication state between the high-pressure space and the low-pressure space. Responsive to the refrigerant condition on the radiator side, and having a sensing element corresponding to each valve element for controlling the movement of each valve element according to the refrigerant condition on the radiator side, the refrigerant pressure in the high-pressure space The opening degree characteristics for the pressure-reducing control valve constituted by the valve element and the corresponding sensing element are made different from each other (claim 1).

【0012】したがって、低負荷時において1つの減圧
調節弁が閉塞状態に至っても、他の減圧調節弁の開度特
性は異なっていることから、この他の減圧調節弁によっ
て膨張装置全体としての閉塞状態を回避することがで
き、もって、蒸発器側へ冷媒を供給することが可能にな
るので、低圧ラインの極端な圧力低下や圧縮器の吐出量
の極端な低下を抑えることが可能となる。
Therefore, even if one pressure reducing valve is closed at a low load, the opening characteristics of the other pressure reducing valves are different. Since the state can be avoided and the refrigerant can be supplied to the evaporator side, it is possible to suppress an extreme decrease in pressure in the low pressure line and an extreme decrease in the discharge amount of the compressor.

【0013】減圧調節弁の高圧空間の冷媒圧力に対する
開度特性をそれぞれの減圧調節弁で異ならせる手段とし
ては、それぞれの減圧調節弁に不活性ガス以外の流体を
封入し、各減圧調節弁で封入されている流体の種類や量
を異ならせることで対応するようにしても(請求項2,
3)、それぞれの減圧調節弁の単位ストローク当たりの
弁開度の変化量を異ならせるようにしても(請求項
4)、それぞれの減圧調節弁に弁体を閉弁方向へ付勢す
るスプリングを設け、各弁体に付勢されるスプリングの
付勢力を異ならせるようにしても(請求項5)、それぞ
れの減圧調節弁の感受要素において高圧空間内の冷媒圧
を受ける受圧面積を異ならせるようにしてもよい(請求
項6)。
As means for making the opening degree characteristics of the pressure reducing control valve with respect to the refrigerant pressure in the high pressure space different between the pressure reducing valves, a fluid other than the inert gas is sealed in each pressure reducing valve, and each pressure reducing valve is filled with the fluid. It can be dealt with by changing the type and amount of the enclosed fluid (claim 2,
3) Even if the amount of change in the valve opening per unit stroke of each pressure reducing control valve is made different (claim 4), a spring for urging the valve body in the valve closing direction is provided to each pressure reducing valve. Even if provided, the biasing force of the spring biased to each valve element is made different (claim 5), but the pressure receiving area for receiving the refrigerant pressure in the high pressure space in the sensing element of each pressure reducing control valve is made different. (Claim 6).

【0014】特に、2つの減圧調節弁によって高圧空間
の冷媒圧力に対する開度特性を異ならせる場合であれ
ば、次のようにするとよい。即ち、高圧空間と低圧空間
との間の連通状態を変化させる第1及び第2の弁体を備
え、放熱器側の冷媒条件に感応し、この放熱器側の冷媒
条件に応じて第1の弁体の動きを制御する第1の感受要
素を備えた第1の減圧調節弁と、放熱器側の冷媒条件を
感応し、この放熱器側の冷媒条件に応じて第2の弁体の
動きを制御する第2の感受要素を備えた第2の減圧調節
弁とを有し、第1の減圧調節弁を高圧空間の冷媒圧力の
変動に対する弁開度の変動が所定圧になるまでは殆ど変
化せず、所定圧以上において大きくなる特性に設定し、
第2の減圧調節弁を高圧空間の冷媒圧力の変動に対する
弁開度の変動が所定圧になるまでは第1の減圧調節弁の
開度が所定圧以上で変化する割合よりも小さい割合で大
きくなると共に所定圧以上においては殆ど変化しない特
性に設定するとよい(請求項7)。
In particular, if the opening characteristics of the high-pressure space with respect to the refrigerant pressure are made different by the two pressure-reducing control valves, the following may be performed. That is, the first and second valve bodies for changing the communication state between the high-pressure space and the low-pressure space are provided, and are responsive to the refrigerant condition on the radiator side. A first pressure-reducing control valve having a first sensing element for controlling the movement of the valve body, and sensing the refrigerant condition on the radiator side, and the movement of the second valve body according to the refrigerant condition on the radiator side And a second pressure-reducing control valve having a second sensing element for controlling the pressure-reducing valve. Set to a characteristic that does not change and increases above a predetermined pressure,
Until the change in the valve opening with respect to the change in the refrigerant pressure in the high-pressure space reaches the predetermined pressure, the second pressure-reducing control valve is increased at a smaller rate than the rate at which the opening of the first pressure-reducing control valve changes at or above the predetermined pressure. At the same time, it is preferable to set the characteristic so that it hardly changes at a predetermined pressure or higher.

【0015】このような構成とすれば、膨張装置全体と
しての開度特性は、第1の減圧調節弁の開度特性と第2
の減圧調節弁の開度特性とを加算したものとなることか
ら、高圧空間の冷媒圧力が低い場合には高い場合に比べ
て高圧空間の冷媒圧力の変動に対する開度の変動が小さ
くなる。即ち、高圧圧力が低いほど膨張装置の開度の変
動を鈍くすることができるので、低負荷域で冷凍サイク
ルを運転するような場合においても、膨張装置の閉塞し
まう恐れを低減することができ、このため、低圧圧力の
著しい低下や圧縮機の吐出量の著しい減少を抑えること
ができる。
With this configuration, the opening characteristics of the expansion device as a whole are different from the opening characteristics of the first pressure reducing control valve and the second opening characteristics.
Therefore, when the refrigerant pressure in the high-pressure space is low, the change in the opening degree with respect to the fluctuation in the refrigerant pressure in the high-pressure space is smaller than when the refrigerant pressure in the high-pressure space is high. That is, since the fluctuation of the opening degree of the expansion device can be made slower as the high pressure is lower, even when the refrigeration cycle is operated in a low load region, the risk of the expansion device becoming blocked can be reduced, For this reason, a remarkable decrease in low pressure and a remarkable decrease in the discharge amount of the compressor can be suppressed.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の態様を図
面に基づいて説明する。図1において、冷凍サイクル1
は、冷媒を圧縮する圧縮機2、冷媒を冷却する放熱器
3、高圧ラインと低圧ラインとの冷媒を熱交換する内部
熱交換器4、冷媒を減圧する膨張装置5、冷媒を蒸発気
化する蒸発器6、蒸発器6から流出された冷媒を気液分
離するアキュムレータ7を有して構成されている。この
サイクルでは、圧縮機2の吐出側(D)を放熱器3を介
して内部熱交換器4の高圧通路4aに接続し、この高圧
通路4aの流出側を膨張装置5に接続し、圧縮機2の吐
出側から膨張装置5に至る経路を高圧ライン8としてい
る。また、膨張装置5の流出側は、蒸発器6に接続さ
れ、この蒸発器6の流出側は、アキュムレータ7を介し
て内部熱交換器4の低圧通路4bに接続されている。そ
して、低圧通路4bの流出側を圧縮機2の吸入側(S)
に接続し、膨張装置5の流出側から圧縮機2に至る経路
を低圧ライン9としている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a refrigeration cycle 1
Is a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line, an expansion device 5 for depressurizing the refrigerant, and evaporating the refrigerant. The apparatus has an accumulator 7 for separating the refrigerant flowing out of the evaporator 6 into gas and liquid. In this cycle, the discharge side (D) of the compressor 2 is connected to the high pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high pressure passage 4a is connected to the expansion device 5, The path from the discharge side of No. 2 to the expansion device 5 is a high-pressure line 8. The outlet side of the expansion device 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low-pressure passage 4 b of the internal heat exchanger 4 via an accumulator 7. The outflow side of the low-pressure passage 4b is connected to the suction side (S) of the compressor 2.
And a path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.

【0017】この冷凍サイクル1においては、冷媒とし
てCO2 が用いられており、圧縮機2で圧縮された冷媒
は、高温高圧の超臨界状態の冷媒として放熱器3に入
り、ここで放熱して冷却する。その後、内部熱交換器4
において蒸発器6から流出する低温冷媒と熱交換して更
に冷やされ、液化されることなく膨張装置5へ送られ
る。そして、この膨張装置5において減圧されて低温低
圧の湿り蒸気となり、蒸発器6においてここを通過する
空気と熱交換してガス状となり、しかる後に内部熱交換
器4において高圧ライン8の高温冷媒と熱交換して加熱
され、圧縮機2へ戻される。
In the refrigeration cycle 1, CO 2 is used as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant, and radiates heat there. Cooling. Then, the internal heat exchanger 4
Is cooled further by heat exchange with the low-temperature refrigerant flowing out of the evaporator 6 and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous. It is heated by heat exchange and returned to the compressor 2.

【0018】前記膨張装置5は、図2にも示されるよう
に、ハウジング10に内部熱交換器4の高圧通路4aに
通じる(放熱器側に通じる)高圧空間11と、蒸発器6
に通じる低圧空間12とが仕切壁13によって画成さ
れ、これら高圧空間11と低圧空間12とは仕切壁13
に形成された第1及び第2の2つの連通路14,15に
よって連通されている。
As shown in FIG. 2, the expansion device 5 includes a high-pressure space 11 communicating with the high-pressure passage 4a of the internal heat exchanger 4 in the housing 10 (communicating with the radiator side), and an evaporator 6.
And a low-pressure space 12 communicating with the high-pressure space 11 and the low-pressure space 12.
The first and second communication passages 14 and 15 are connected to each other.

【0019】高圧空間12には、第1及び第2の減圧調
節弁16,17が収納され、第1の減圧調節弁16は、
第1の連通路14の高圧空間11に開口する開口部分に
形成された弁座18に着座する弁体19と、この弁体1
9に接合されて一体をなして動く第1のベローズ20と
から成り、この第1のベローズ20内に第1の封入流体
が封入されている。また、第2の減圧調節弁17は、第
1の減圧調節弁16と同様、第2の連通路15の高圧空
間11に開口する開口部分に形成された弁座21に着座
する弁体22と、この弁体22に接合されて一体をなし
て動く第2のベローズ23とから成り、この第2のベロ
ーズ23内に第2の封入流体が封入されている。
In the high-pressure space 12, first and second pressure-reducing control valves 16 and 17 are accommodated.
A valve body 19 seated on a valve seat 18 formed in an opening portion of the first communication passage 14 opening into the high-pressure space 11;
9 and a first bellows 20 which moves integrally. The first bellows 20 is filled with a first sealed fluid. Similarly to the first pressure-reducing control valve 16, the second pressure-reducing control valve 17 includes a valve body 22 that is seated on a valve seat 21 formed at an opening portion of the second communication passage 15 that opens into the high-pressure space 11. A second bellows 23 joined to the valve body 22 and moving integrally therewith, and a second sealed fluid is sealed in the second bellows 23.

【0020】この例では、各減圧調節弁を構成する弁体
やベローズは同じものが用いられているが、各減圧調節
弁16、17は、高圧空間11の冷媒圧力やベローズ周
囲の冷媒温度に応動するものとなっており、それぞれの
減圧調節弁16、17の開弁圧や弁体19、22の動き
は、ベローズ内部に封入する流体の種類を異ならせるこ
とによって調整されており、高圧空間11の冷媒圧力と
連通路14,15の実質開口面積で示される連通路1
4,15の開度特性は図3に示されるように設定されて
いる。
In this example, the same valve element and bellows are used for each pressure reducing control valve. However, each of the pressure reducing valves 16 and 17 controls the refrigerant pressure in the high pressure space 11 and the refrigerant temperature around the bellows. The opening pressures of the pressure-reducing control valves 16 and 17 and the movements of the valve bodies 19 and 22 are adjusted by changing the type of fluid to be sealed in the bellows. Communication path 1 indicated by the refrigerant pressure of 11 and the substantial opening area of communication paths 14 and 15
The opening degree characteristics of Nos. 4 and 15 are set as shown in FIG.

【0021】即ち、第1の減圧調節弁単体の開度特性
は、図3のαに示されるように、第1の連通路14の実
質開口面積で示される連通路の開度を、高圧圧力の低い
ところで殆ど大きくせず、ある圧力(Px )以上で急に
増加するような特性が得られるように設定されている。
つまり、第1の減圧調節弁16は、高圧空間11の冷媒
圧力の変動に対する弁開度の変動が所定圧(Px )とな
るまでは非常に小さく設定されていると共に所定圧(P
x )以上においては大きくなるように設定されている。
That is, as shown by α in FIG. 3, the opening degree characteristic of the first pressure reducing control valve alone is determined by changing the opening degree of the communication path represented by the substantial opening area of the first communication path 14 to the high pressure pressure. It is set so as to obtain such a characteristic that it is hardly increased at a low temperature and increases rapidly at a certain pressure (Px) or more.
In other words, the first pressure-reducing control valve 16 is set to be very small until the variation of the valve opening with respect to the variation of the refrigerant pressure in the high-pressure space 11 reaches the predetermined pressure (Px).
x) The values are set to be larger in the above.

【0022】これに対して、第2の減圧調節弁単体の開
度特性は、図3のβに示されるように、第2の連通路1
5の実質開口面積で示される連通路の開度を、高圧圧力
の低いところから増加させ、ある圧力(Px )以上で全
開状態とするような特性となるように設定されている。
つまり、第2の減圧調節弁17は、高圧空間11の冷媒
圧力の変動に対する弁開度の変動が所定圧(Px )とな
るまでは第1の減圧調節弁16の所定圧(Px )以上で
の変化割合よりも小さい割合で大きくなると共に所定圧
(Px )以上においては殆ど変化しないような特性に設
定されている。
On the other hand, as shown by β in FIG. 3, the opening degree characteristic of the second pressure reducing control valve
The opening degree of the communication path indicated by the substantial opening area of 5 is set to be such that the opening degree is increased from a low high-pressure pressure and a fully opened state is obtained at a certain pressure (Px) or more.
In other words, the second pressure-reducing control valve 17 is kept at a pressure equal to or higher than the predetermined pressure (Px) of the first pressure-reducing control valve 16 until the fluctuation of the valve opening with respect to the fluctuation of the refrigerant pressure in the high-pressure space 11 becomes the predetermined pressure (Px). Are set so as to increase at a rate smaller than the rate of change and hardly change above a predetermined pressure (Px).

【0023】ここで、第1の封入流体と第2の封入流体
とは、不活性ガスを除いた異なる種類の流体が用いられ
ており、炭酸ガスやその他の臨界点の低い超臨界域で使
用可能な気体、或いは、炭酸ガスと他の気体との混合気
体、液体などを用いてもよい。また、図3のγは、膨張
装置5の全体として見た場合の開度特性、即ち、αとβ
の特性を加算した特性を示している。
Here, as the first sealed fluid and the second sealed fluid, different types of fluids except for an inert gas are used, and are used in a supercritical region having a low critical point such as carbon dioxide gas. A gas that can be used, or a mixed gas of carbon dioxide and another gas, a liquid, or the like may be used. In addition, γ in FIG. 3 is the opening characteristic when the expansion device 5 is viewed as a whole, that is, α and β.
Are added.

【0024】そして、このような特性を有する膨張装置
の制御線を炭酸ガスを冷媒とする冷凍サイクルのモリエ
ル線図上で見ると、図4に示されるように、膨張装置入
口側での制御線(膨張装置入口側での冷媒温度に対して
得られる高圧圧力をプロットした特性線)は、第1の減
圧調節弁単体であれば、図中の破線で示すように設定さ
れ、第2の減圧調節弁単体であれば、図中の細線で示す
ように設定されており、膨張装置全体としては、図中の
太線で示されるように、臨界圧以下では細線で示す第2
の減圧調節弁の制御線にしたがって制御され、臨界圧以
上では、破線で示す第1の減圧調節弁の制御線にしたが
って制御されるようになっている。
When a control line of the expansion device having such characteristics is viewed on a Mollier diagram of a refrigeration cycle using carbon dioxide as a refrigerant, as shown in FIG. 4, a control line on the inlet side of the expansion device is shown. (Characteristic line obtained by plotting the high pressure obtained with respect to the refrigerant temperature at the inlet of the expansion device) is set as shown by a broken line in the drawing if the first pressure reducing control valve is a single unit, and the second pressure reduction is performed. If the control valve is a single unit, it is set as shown by the thin line in the figure. As shown by the thick line in the figure, the second expansion unit shown by the thin line below the critical pressure
Is controlled in accordance with the control line of the first pressure-reducing control valve, and when the pressure is equal to or higher than the critical pressure, the control is performed in accordance with the control line of the first pressure-reducing control valve indicated by a broken line.

【0025】上記構成において、膨張装置全体として
は、高圧空間11の冷媒圧力が低い場合には、図3の太
線に示されるように、高圧圧力の変化に対する全連通路
の開度変化、即ち、全連通路の実質開口面積の変化が小
さくなり、高圧空間11の冷媒圧力が高い場合には大き
くなる。換言すれば、高圧圧力が低い場合には開度の変
動を鈍くすることができるので、圧縮機2として低圧ラ
イン9の圧力によって容量が制御される容量可変型を用
い、且つ、このサイクルを高圧圧力が臨界圧以下となる
亜臨界領域で動作するような低負荷域で運転するような
場合においても、膨張装置5が閉塞しまう恐れを低減す
ることができ、このため、低圧圧力の著しい低下や圧縮
機2の吐出量の著しい減少を抑えることができ、冷凍サ
イクル1が間欠的に大きな変動を起こす現象を抑えるこ
とが可能となり、低負荷時においても冷房能力を安定さ
せることができる。
In the above construction, when the refrigerant pressure in the high-pressure space 11 is low, the opening degree of all the communication passages with respect to the change in the high-pressure pressure, that is, the change in the opening degree of the high-pressure space, that is, The change in the substantial opening area of all the communication paths becomes small, and becomes large when the refrigerant pressure in the high-pressure space 11 is high. In other words, when the high pressure is low, the fluctuation of the opening degree can be reduced. Therefore, a variable displacement type whose capacity is controlled by the pressure of the low pressure line 9 is used as the compressor 2, and this cycle is performed at a high pressure. Even in the case of operating in a low-load region where the pressure is lower than or equal to the critical pressure, the risk of the expansion device 5 being blocked can be reduced. A remarkable decrease in the discharge amount of the compressor 2 can be suppressed, and a phenomenon in which the refrigeration cycle 1 causes intermittent large fluctuation can be suppressed, and the cooling capacity can be stabilized even at a low load.

【0026】このメカニズムを図4で示す特性線図によ
って説明すると、高圧圧力が低い場合には、第2の減圧
調節弁17の制御線で制御されるので、高圧圧力が亜臨
界状態となる低負荷時においては、ある温度Tの等温線
を見ると、この温度Tに対して高圧ライン8の冷媒圧力
は、第1の減圧制御弁16ではP1となるように設定さ
れているが、第2の減圧調節弁では、P1よりも低いP
2(P1>P2)となるように設定されている。このた
め、従来のように第1の減圧調節弁16だけによって制
御したのでは、亜臨界領域においては冷媒温度がTであ
るときに高圧圧力がP1となるように制御されることか
ら、弁体が閉塞して間欠的なサイクル変動を生じてしま
うが、並設された第2の減圧調節弁17は、同じTであ
るときに高圧圧力をP1よりも低いP2となるように制
御しようとするので、第1の減圧調節弁16が閉塞して
しまうP1の時にはさらに高圧圧力を下げようとして開
くことになる。つまり、第1の減圧調節弁16が閉じて
しまった場合でも高圧ラインから低圧ラインへ第2の減
圧調節弁17を介して冷媒を流すことができるので、低
圧圧力の極端な低下や圧縮機2の吐出量の極端な減少を
抑えることができ、冷凍サイクル1が間欠的に大きな変
動を起こす現象を回避することが可能となり、もって、
高圧圧力が亜臨界状態となる低負荷時においても冷房能
力を安定させることができる。
This mechanism will be described with reference to a characteristic diagram shown in FIG. 4. When the high pressure is low, it is controlled by the control line of the second pressure reducing valve 17, so that the high pressure becomes a subcritical state. At the time of load, looking at an isotherm at a certain temperature T, the refrigerant pressure of the high-pressure line 8 is set to P1 at the first pressure reduction control valve 16 with respect to this temperature T. Of the pressure reducing control valve of P
2 (P1> P2). For this reason, if the control is performed only by the first pressure reducing control valve 16 as in the related art, the high pressure is controlled to be P1 when the refrigerant temperature is T in the subcritical region. Is closed and intermittent cycle fluctuations occur, but the second pressure reducing control valve 17 arranged in parallel attempts to control the high pressure to P2 lower than P1 when the same T is set. Therefore, at the time P1 when the first pressure reducing control valve 16 is closed, the first pressure reducing valve 16 is opened to further reduce the high pressure. In other words, even when the first pressure-reducing control valve 16 is closed, the refrigerant can flow from the high-pressure line to the low-pressure line via the second pressure-reducing valve 17. It is possible to suppress an extreme decrease in the discharge amount of the refrigeration cycle, and to avoid a phenomenon in which the refrigeration cycle 1 causes intermittent large fluctuations.
The cooling capacity can be stabilized even at a low load when the high pressure is in a subcritical state.

【0027】以上の構成は、封入される流体の種類を第
1の減圧調節弁16と第2の減圧調節弁17とで異なら
せることによって高圧空間11の冷媒圧力に対する開度
特性をそれぞれ図3のαとβとにするようにしたもので
あるが、封入される流体の量を異ならせることによって
図3のαとβの特性をそれぞれ得るようにしてもよい。
In the above configuration, the type of the fluid to be sealed is made different between the first pressure-reducing control valve 16 and the second pressure-reducing control valve 17, so that the opening degree characteristic of the high-pressure space 11 with respect to the refrigerant pressure is shown in FIG. .Alpha. And .beta., But the characteristics of .alpha. And .beta. In FIG. 3 may be obtained by varying the amount of fluid to be sealed.

【0028】また、それぞれの減圧調節弁16,17の
単位ストローク当たりの弁開弁の変化量を異ならせるこ
とで高圧空間の冷媒圧力に対する開度特性を図3のαと
βの特性を得るようにしてもよい。例えば、図5に示さ
れるように、それぞれの減圧調節弁16,17の弁体形
状を異ならせて図3のαとβの特性を得るようにしたも
の、例えば、第1の減圧調節弁16の弁体19をその基
部から先端に向かうにつれて径が連続的に変化すると共
に径の減少率を徐々に大きくするニードル弁とすること
で、第1の連通路14の開度が小さくなるほど、高圧空
間11の圧力変動に対する開度の変動が小さくなるよう
にしてαの特性を得るようにし、第2の減圧調節弁16
の弁体を図2と同様にボール弁によって形成してβの特
性を得るようにする構成などが考えられる。
By changing the amount of change in the valve opening per unit stroke of each of the pressure-reducing control valves 16 and 17, the opening characteristics of the high-pressure space with respect to the refrigerant pressure are obtained as α and β in FIG. It may be. For example, as shown in FIG. 5, the pressure-reducing control valves 16 and 17 have different valve body shapes to obtain the characteristics of α and β in FIG. 3, for example, the first pressure-reducing control valve 16. The valve body 19 is a needle valve whose diameter continuously changes from its base toward its tip and whose rate of decrease in diameter is gradually increased. As the opening degree of the first communication passage 14 decreases, the pressure increases. The characteristic of α is obtained by reducing the variation of the opening degree with respect to the pressure variation of the space 11, and the second pressure-reducing control valve 16
The valve body may be formed by a ball valve as in FIG. 2 to obtain the characteristic of β.

【0029】減圧調節弁16,17の単位ストローク当
たりの弁開弁の変化量を異ならせる手段としては、その
他に弁座18,21の形状を異ならせるようにしてもよ
く、弁体19,22や弁座18,21の各形状を適宜変
更して組合せることで、同様の特性を得ることも可能で
ある。
As means for changing the amount of change of the valve opening per unit stroke of the pressure reducing control valves 16 and 17, the shape of the valve seats 18 and 21 may be changed. The same characteristics can be obtained by appropriately changing and combining the shapes of the valve seats 18 and 21.

【0030】また、第1及び第2ベローズ20,23内
に弁体19,22を閉弁方向へ付勢するスプリング2
4,25を設け、このスプリングの付勢力(バネ定数)
を変えることで図3のαとβの特性を得るようにしても
よい。例えば、図6に示されるように、第1の減圧調節
弁16のベローズ内に収納されるスプリング24のバネ
定数を大きくし、第2の減圧調節弁17のベローズ内に
収納されるスプリング25のバネ定数を小さくするよう
な構成である。
A spring 2 for urging the valve bodies 19 and 22 in the first and second bellows 20 and 23 in the valve closing direction.
4 and 25 are provided, and the biasing force of this spring (spring constant)
May be obtained to obtain the characteristics of α and β in FIG. For example, as shown in FIG. 6, the spring constant of the spring 24 housed in the bellows of the first pressure reducing control valve 16 is increased, and the spring 25 housed in the bellows of the second pressure reducing valve 17 is increased. The configuration is such that the spring constant is reduced.

【0031】さらに、封入流体の種類と封入量を同じに
した上で高圧空間11において高圧冷媒を受ける受圧面
積を各減圧調節弁16,17で異ならせることで図3の
αとβの特性を得るようにしてもよい。例えば、図7に
示されるように、第2の減圧調節弁17のベローズ径を
第1の減圧調節弁16のベローズ径よりも大きくして第
2の減圧調節弁17の受圧面積を大きくする構成が考え
られる。
Furthermore, the characteristics of α and β in FIG. 3 can be improved by making the type and amount of the filled fluid the same and making the pressure receiving area for receiving the high-pressure refrigerant in the high-pressure space 11 different between the pressure-reducing control valves 16 and 17. It may be obtained. For example, as shown in FIG. 7, a configuration in which the bellows diameter of the second pressure reduction control valve 17 is larger than the bellows diameter of the first pressure reduction control valve 16 to increase the pressure receiving area of the second pressure reduction control valve 17. Can be considered.

【0032】これらの上述した構成においても、図3の
太線で示される特性を得ることができるので、膨張装置
5は、高圧空間11の冷媒圧力が低い場合には、高圧圧
力の変化に対する開度変化、即ち、実質開口面積の変化
が小さくなり、高圧空間11の冷媒圧力が高い場合には
大きくなる。換言すれば、高圧圧力が低い場合には弁開
度の変動を鈍くすることができるので、圧縮機2として
低圧ライン9の圧力によって容量が制御される容量可変
型を用い、且つ、この冷凍サイクルを高圧圧力が臨界圧
以下となる亜臨界領域で動作するような低負荷域で運転
するような場合においても、膨張装置5が閉塞してしま
う恐れを低減することができ、このため、低圧圧力の著
しい低下や圧縮機2の吐出量の著しい減少を抑えること
ができ、冷凍サイクル1が間欠的に大きな変動を起こす
現象を抑えることが可能となり、低負荷時においても冷
房能力を安定させることができる。
In the above-described configuration, the characteristics shown by the bold line in FIG. 3 can be obtained. Therefore, when the refrigerant pressure in the high-pressure space 11 is low, the expansion degree The change, that is, the change in the substantial opening area becomes small, and becomes large when the refrigerant pressure in the high-pressure space 11 is high. In other words, when the high-pressure is low, the fluctuation of the valve opening can be slowed down. Therefore, a variable displacement type whose capacity is controlled by the pressure of the low-pressure line 9 is used as the compressor 2 and this refrigeration cycle Even in the case of operating in a low-load region where the high-pressure is operated in a subcritical region where the high-pressure pressure is equal to or lower than the critical pressure, it is possible to reduce the risk of the expansion device 5 being blocked. Of the compressor 2 and the discharge amount of the compressor 2 can be suppressed, and the phenomenon that the refrigeration cycle 1 causes intermittent large fluctuation can be suppressed, and the cooling capacity can be stabilized even at a low load. it can.

【0033】尚、上述で示した各種の構成は、図3の特
性を得るための構成を例示列挙したものであり、封入流
体の種類や量、弁体や弁座の形状、スプリングの付勢
力、受圧面積を適宜変更して組合せることで、同様の特
性を得ることは可能であり、本発明は、これら列記しな
かった構成をも射程範囲とするものである。また、上述
の構成にあっては、膨張装置の感受要素としてベローズ
を用いた場合の例を示したが、感受要素としてダイヤフ
ラムを用いた膨張装置においても成り立つ構成であり、
同様の作用効果を得ることができる。さらに、上述の構
成では、2つの減圧調節弁を用いた例を示したが、3つ
以上の減圧調節弁を用いた場合でも、高圧空間の冷媒圧
力に対する開度特性をそれぞれの減圧調節弁で異ならせ
ることで、低負荷時に膨張装置の開度が零となる状態を
防ぐことができることは言うまでもない。
The various configurations shown above are examples of configurations for obtaining the characteristics shown in FIG. 3, and the types and amounts of the sealed fluid, the shapes of the valve body and the valve seat, the biasing force of the spring, and the like. It is possible to obtain similar characteristics by appropriately changing the pressure receiving area and combining them, and the present invention also covers the configurations not listed in the scope of the present invention. Further, in the above-described configuration, the example in which the bellows is used as the sensing element of the inflation device has been described.However, the configuration holds also in the inflation device using the diaphragm as the sensing element.
Similar functions and effects can be obtained. Furthermore, in the above-described configuration, an example in which two pressure reduction control valves are used has been described. However, even when three or more pressure reduction control valves are used, the opening degree characteristic with respect to the refrigerant pressure in the high-pressure space is controlled by each pressure reduction control valve. It is needless to say that the difference can prevent a state where the opening degree of the expansion device becomes zero at a low load.

【0034】[0034]

【発明の効果】以上述べたように、この発明によれば、
非電気式の膨張装置において、高圧空間と低圧空間との
間の連通状態を変化させる弁体と放熱器側の冷媒条件に
応じて弁体の動きを制御する感受要素とによって構成さ
れる複数の減圧調節弁を設け、封入されている流体の種
類を異ならせたり、封入されている流体の量を異ならせ
たり、単位ストローク当たりの弁開度の変化量を異なら
せたり、弁体を閉弁方向へ付勢するスプリングの付勢力
を異ならせたり、受圧面積を異ならせること等によって
高圧空間の冷媒圧力に対する開度特性をそれぞれの減圧
調節弁で異ならせるようにしたので、低負荷時において
膨張装置が容易に閉じてしまう不都合を回避して、間欠
的に生じ得る低負荷時でのサイクル変動を起こりにくく
し、もって低負荷時でも冷房能力を安定させることがで
きる。即ち、熱負荷に拘わらずに安定した冷房能力を得
ることが可能となる。
As described above, according to the present invention,
In a non-electric expansion device, a plurality of valve elements that change a communication state between a high-pressure space and a low-pressure space, and a plurality of sensing elements configured to control the movement of the valve element according to refrigerant conditions on the radiator side. Provide a pressure-reducing control valve to change the type of enclosed fluid, vary the amount of enclosed fluid, vary the amount of valve opening change per unit stroke, and close the valve The opening characteristics of the high-pressure space with respect to the refrigerant pressure are made different for each pressure-reducing valve by changing the urging force of the spring that urges in the direction or by changing the pressure receiving area. By avoiding the inconvenience that the device is easily closed, it is possible to reduce the possibility of intermittently occurring cycle fluctuations at a low load, thereby stabilizing the cooling capacity even at a low load. That is, a stable cooling capacity can be obtained regardless of the heat load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、冷媒として超臨界冷媒を用いた本発明
に係る冷凍サイクルの構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention using a supercritical refrigerant as a refrigerant.

【図2】図2は、図1に係る冷凍サイクルの膨張装置を
拡大した断面図である。
FIG. 2 is an enlarged sectional view of an expansion device of the refrigeration cycle according to FIG. 1;

【図3】図3は、本発明に係る冷凍サイクルに用いられ
る膨張装置の高圧空間の圧力に対する開度の変化を示す
特性線図である。
FIG. 3 is a characteristic diagram showing a change in an opening degree with respect to a pressure in a high-pressure space of an expansion device used in a refrigeration cycle according to the present invention.

【図4】図4は、本発明に係る冷凍サイクルの制御線を
付記したモリエル線図である。
FIG. 4 is a Mollier diagram to which control lines of a refrigeration cycle according to the present invention are added.

【図5】図5は、膨張装置の他の構成例を示す拡大断面
図であり、弁体の形状を異ならせた例を示す。
FIG. 5 is an enlarged cross-sectional view showing another configuration example of the expansion device, and shows an example in which the shape of a valve body is changed.

【図6】図6は、膨張装置のさらに他の構成例を示す拡
大断面図であり、弁体を閉弁方向へ付勢するスプリング
の付勢力を異ならせた例を示す。
FIG. 6 is an enlarged cross-sectional view showing still another configuration example of the expansion device, and shows an example in which the biasing force of a spring that biases the valve body in the valve closing direction is made different.

【図7】図7は、膨張装置のさらに他の構成例を示す拡
大断面図であり、受圧面積を異ならせた例を示す。
FIG. 7 is an enlarged cross-sectional view showing still another configuration example of the expansion device, showing an example in which the pressure receiving areas are different.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 2 圧縮機 3 放熱器 5 膨張装置 6 蒸発器 8 低圧ライン 9 高圧ライン 11 高圧空間 12 低圧空間 14 第1の連通路 15 第2の連通路 16 第1の減圧調節弁 17 第2の減圧調節弁 19 第1の弁体 20 第1のベローズ 22 第2の弁体 23 第2のベローズ 24,25 スプリング DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 5 Expansion device 6 Evaporator 8 Low-pressure line 9 High-pressure line 11 High-pressure space 12 Low-pressure space 14 First communication path 15 Second communication path 16 First pressure-reducing valve 17 Second Pressure reducing valve 19 First valve body 20 First bellows 22 Second valve body 23 Second bellows 24, 25 Spring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16K 17/04 F16K 17/04 H (72)発明者 河村 祐司 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 牟田 俊二 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 飯島 健次 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 林 栄 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 金井 宏 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 高野 明彦 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 Fターム(参考) 3H059 AA07 BB05 CA04 CA12 CB04 CD05 CD12 CE05 EE13 FF05 FF11 FF15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16K 17/04 F16K 17/04 H (72) Inventor Yuji Kawamura 39 Chiyo-ji, Higashihara, Oji-gun, Osato-gun, Saitama Address: Inside the Xexel Gangnam Plant (72) Inventor Shunji Muta 39, Higashihara, Chiyo-ji, Odai-gun, Osato-gun, Saitama 39 Inventor Kenji Iijima, Kenji Iijima 39, Higashihara, Odai-gun, Osato-gun, Saitama Prefecture Address: Inside the Xexel Gangnam Plant (72) Inventor: Sakae Hayashi 39, Chiyo-ji, Chiyo, Oga-gun, Osato-gun, Saitama 39 Inventor: Hiroshi Kanai (72) Inventor: Hiroshi Kanai, Chiyo-ji, 39: Chiyo, Onan-gun, Osato-gun, Saitama Address: Inside the Xexel Gangnam Plant (72) Inventor: Akihiko Takano 39, Higashihara, Chiyo, Oyo-gun, Osato-gun, Saitama Formula company Zexel Jiangnan plant in the F-term (reference) 3H059 AA07 BB05 CA04 CA12 CB04 CD05 CD12 CE05 EE13 FF05 FF11 FF15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮して運転条件により高圧ライ
ンを超臨界状態とする圧縮機と、前記圧縮機によって圧
縮された冷媒を冷却する放熱器と、前記放熱器で冷却さ
れた冷媒を減圧する膨張装置と、前記膨張装置によって
減圧された冷媒を蒸発させる蒸発器とによって少なくと
も構成される冷凍サイクルにおいて、 前記膨張装置は、 放熱器側と連通する高圧空間と、 蒸発器側と連通する低圧空間と、 前記高圧空間と前記低圧空間との間の連通状態を変化さ
せる複数の弁体と、 前記放熱器側の冷媒条件に感応し、この放熱器側の冷媒
条件に応じてそれぞれの前記弁体の動きを制御する各弁
体に対応した感受要素とを有し、 前記高圧空間の冷媒圧力に対する開度特性を前記弁体と
これに対応する感受要素とによって構成されるそれぞれ
の減圧調節弁で異ならせるようにしたことを特徴とする
冷凍サイクル。
1. A compressor that compresses a refrigerant to place a high-pressure line in a supercritical state depending on operating conditions, a radiator that cools the refrigerant compressed by the compressor, and depressurizes the refrigerant cooled by the radiator. A refrigerating cycle comprising at least an expansion device and a evaporator for evaporating the refrigerant decompressed by the expansion device, wherein the expansion device has a high-pressure space communicating with the radiator side, and a low-pressure space communicating with the evaporator side. A plurality of valve bodies for changing a communication state between the high-pressure space and the low-pressure space; and a plurality of valves that are responsive to a refrigerant condition on the radiator side, and that each of the valves responds to a refrigerant condition on the radiator side. A sensing element corresponding to each valve body for controlling the movement of the body, and an opening characteristic of the high-pressure space with respect to the refrigerant pressure is reduced by the valve body and the corresponding sensing element. A refrigeration cycle characterized in that it is made different by a control valve.
【請求項2】 それぞれの減圧調節弁には不活性ガス以
外の流体が封入されており、それぞれの減圧調節弁で封
入されている流体の種類を異ならせることで前記高圧空
間の冷媒圧力に対する開度特性を異ならせている請求項
1記載の冷凍サイクル。
2. A fluid other than an inert gas is sealed in each pressure-reducing control valve, and the type of fluid sealed in each pressure-reducing control valve is changed to open the high-pressure space with respect to the refrigerant pressure. 2. The refrigeration cycle according to claim 1, wherein the temperature characteristics are different.
【請求項3】 それぞれの減圧調節弁には不活性ガス以
外の流体が封入されており、それぞれの減圧調節弁で封
入されている流体の量を異ならせることで前記高圧空間
の冷媒圧力に対する開度特性を異ならせている請求項1
記載の冷凍サイクル。
3. A fluid other than an inert gas is sealed in each pressure-reducing control valve, and the pressure of the refrigerant in the high-pressure space is increased by varying the amount of fluid sealed in each pressure-reducing control valve. Claim 1 having different degree characteristics
Refrigeration cycle as described.
【請求項4】 それぞれの減圧調節弁で単位ストローク
当たりの弁開度の変化量を異ならせることで前記高圧空
間の冷媒圧力に対する開度特性を異ならせている請求項
1記載の冷凍サイクル。
4. The refrigeration cycle according to claim 1, wherein the degree of opening of the high-pressure space with respect to the refrigerant pressure is varied by varying the amount of change in the valve opening per unit stroke in each pressure-reducing control valve.
【請求項5】 それぞれの減圧調節弁には、前記弁体を
閉弁方向へ付勢するスプリングがそれぞれ設けられてお
り、各弁体に付勢されるスプリングの付勢力を異ならせ
ることで前記高圧空間の冷媒圧力に対する開度特性を異
ならせている請求項1記載の冷凍サイクル。
5. Each of the pressure-reducing control valves is provided with a spring for biasing the valve body in a valve closing direction, and the biasing force of the spring biased on each valve body is varied to make the valve body have a different biasing force. 2. The refrigeration cycle according to claim 1, wherein the opening degree characteristics of the high-pressure space with respect to the refrigerant pressure are different.
【請求項6】 それぞれの減圧調節弁の感受要素におい
て、前記高圧空間内の冷媒圧を受ける受圧面積を異なら
せることで前記高圧空間の冷媒圧力に対する開度特性を
異ならせている請求項1記載の冷凍サイクル。
6. An opening characteristic of the high-pressure space with respect to the refrigerant pressure in the high-pressure space by varying the pressure-receiving area for receiving the refrigerant pressure in the high-pressure space. Refrigeration cycle.
【請求項7】 前記複数の弁体は、前記高圧空間と前記
低圧空間との間の連通状態を変化させる第1及び第2の
弁体からなり、 前記放熱器側の冷媒条件に感応し、この放熱器側の冷媒
条件に応じて前記第1の弁体の動きを制御する第1の感
受要素を備えた第1の減圧調節弁と、 前記放熱器側の冷媒条件を感応し、この放熱器側の冷媒
条件に応じて前記第2の弁体の動きを制御する第2の感
受要素を備えた第2の減圧調節弁とを有し、 前記第1の減圧調節弁は、前記高圧空間の冷媒圧力の変
動に対する弁開度の変動が所定圧になるまでは殆ど変化
せず、前記所定圧以上において大きくなる特性に設定さ
れており、前記第2の減圧調節弁は、前記高圧空間の冷
媒圧力の変動に対する弁開度の変動が前記所定圧になる
までは前記第1の減圧調節弁の開度が前記所定圧以上で
変化する割合よりも小さい割合で大きくなると共に前記
所定圧以上においては殆ど変化しない特性に設定されて
いることを特徴とする請求項1記載の冷凍サイクル。
7. The plurality of valve bodies include first and second valve bodies that change a communication state between the high-pressure space and the low-pressure space, and are responsive to a refrigerant condition on the radiator side, A first pressure reducing control valve having a first sensing element for controlling the movement of the first valve element according to the refrigerant condition on the radiator side; A second pressure-reducing control valve having a second sensing element for controlling the movement of the second valve body in accordance with the condition of the refrigerant on the container side; The variation of the valve opening degree with respect to the variation of the refrigerant pressure hardly changes until the pressure reaches a predetermined pressure, and is set to a characteristic that increases at or above the predetermined pressure. Until the variation of the valve opening with respect to the variation of the refrigerant pressure reaches the predetermined pressure, the first pressure reducing control valve The refrigeration cycle according to claim 1, wherein the opening degree is set to a characteristic that increases at a rate smaller than the rate at which the opening changes at or above the predetermined pressure and hardly changes at or above the predetermined pressure.
JP29782499A 1999-10-20 1999-10-20 Refrigeration cycle Pending JP2001116400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29782499A JP2001116400A (en) 1999-10-20 1999-10-20 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29782499A JP2001116400A (en) 1999-10-20 1999-10-20 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2001116400A true JP2001116400A (en) 2001-04-27

Family

ID=17851644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29782499A Pending JP2001116400A (en) 1999-10-20 1999-10-20 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2001116400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle
WO2006015820A1 (en) * 2004-08-09 2006-02-16 Linde Kältetechnik Gmbh Refrigeration cycle and method for operating such a refrigeration cycle
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008002706A (en) * 2006-06-20 2008-01-10 Sanden Corp Refrigerating machine
JP2017219167A (en) * 2016-06-10 2017-12-14 株式会社不二工機 Composite valve and refrigeration cycle device including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle
WO2006015820A1 (en) * 2004-08-09 2006-02-16 Linde Kältetechnik Gmbh Refrigeration cycle and method for operating such a refrigeration cycle
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008530501A (en) * 2005-02-18 2008-08-07 キャリア コーポレイション A method for controlling high pressure in a cooling circuit operating intermittently in supercriticality.
AU2005327829B2 (en) * 2005-02-18 2010-05-13 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
EP2273214A3 (en) * 2005-02-18 2011-11-02 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008002706A (en) * 2006-06-20 2008-01-10 Sanden Corp Refrigerating machine
JP2017219167A (en) * 2016-06-10 2017-12-14 株式会社不二工機 Composite valve and refrigeration cycle device including the same

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
US20070209387A1 (en) Expansion valve
JPH11193967A (en) Refrigerating cycle
US5005370A (en) Thermal expansion valve
US6327868B1 (en) Refrigerating cycle
JP2006189240A (en) Expansion device
CN111692770A (en) Ejector and refrigeration system
US6986498B2 (en) Differential pressure valve
US4500035A (en) Expansion valve
US5044170A (en) Refrigeration system and a thermostatic expansion valve best suited for the same
WO2001027543A1 (en) Refrigerating cycle
JP2004142701A (en) Refrigeration cycle
WO2001006183A1 (en) Refrigerating cycle
JP2001116400A (en) Refrigeration cycle
JP2006266568A (en) Expansion valve
JP2001116399A (en) Refrigeration cycle
JP2001324246A (en) Expansion valve and freezing cycle using it
JP3954743B2 (en) Control valve for refrigeration cycle
JP2006292185A (en) Expansion device and refrigerating cycle
JP2001116398A (en) Refrigeration cycle
JP4096796B2 (en) Refrigeration cycle equipment
JPH1163739A (en) Pressure control valve
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JP2001116403A (en) Refrigerating cycle
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve