JP2000346494A - Temperature type expansion valve - Google Patents
Temperature type expansion valveInfo
- Publication number
- JP2000346494A JP2000346494A JP11163321A JP16332199A JP2000346494A JP 2000346494 A JP2000346494 A JP 2000346494A JP 11163321 A JP11163321 A JP 11163321A JP 16332199 A JP16332199 A JP 16332199A JP 2000346494 A JP2000346494 A JP 2000346494A
- Authority
- JP
- Japan
- Prior art keywords
- valve body
- valve
- passage
- evaporator
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/068—Expansion valves combined with a sensor
- F25B2341/0683—Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
Landscapes
- Lift Valve (AREA)
- Temperature-Responsive Valves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は空気調和装置、冷凍
装置等の冷凍サイクルに用いられる冷媒用の温度式膨張
弁に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature type expansion valve for a refrigerant used in a refrigeration cycle of an air conditioner, a refrigeration system or the like.
【0002】[0002]
【従来の技術】従来広く用いられているボックス型膨張
弁を自動車等の空気調和装置の冷凍サイクル中に配置し
た状態の縦断面図を図5に示す。図5において、膨張弁
10は角柱の例えばアルミニウム製の弁本体30と、冷
凍サイクル11においてコンデンサ5、エバポレータ8
に向かう冷媒の通る第1の通路32、及びエバポレータ
8からコンプレッサ4に向かう冷媒の通る第2の通路3
4が弁本体30に上下に離間して形成されている。さら
に、第1の通路32に設けられたオリフィス32a及び
弁室35と、このオリフィス32aを通過する冷媒量を
制御する通路32の上流側に配置された球状の弁体32
bと、弁体32bをオリフィス32a方向に弁部材32
cを介して押圧するばね32dの調節ねじ39を有す
る。調節ねじ39は弁本体30の下部の端面より第1の
通路32の弁室35に連通する装着穴30aに進退可能
にねじ込まれており、Oリング39aが調節ねじ39に
装着され、弁本体30と気密状態が確保されている。こ
の調節ねじ39と押圧ばね32dとにより、弁体32b
のオリフィス32aに対する開口度が調節される。2. Description of the Related Art FIG. 5 is a longitudinal sectional view showing a state in which a box type expansion valve which has been widely used in the past is arranged in a refrigeration cycle of an air conditioner of an automobile or the like. In FIG. 5, an expansion valve 10 has a prismatic valve body 30 made of, for example, aluminum, a condenser 5 and an evaporator 8 in a refrigeration cycle 11.
Passage 32 through which the refrigerant flows toward the compressor 4 and second passage 3 through which the refrigerant flows from the evaporator 8 to the compressor 4
4 are formed on the valve body 30 so as to be vertically separated from each other. Further, an orifice 32a and a valve chamber 35 provided in the first passage 32, and a spherical valve body 32 disposed upstream of the passage 32 for controlling the amount of refrigerant passing through the orifice 32a.
b and the valve element 32b in the direction of the orifice 32a.
c has an adjusting screw 39 for the spring 32d which presses through the c. The adjusting screw 39 is screwed from the lower end face of the valve body 30 into a mounting hole 30a communicating with the valve chamber 35 of the first passage 32 so as to be able to advance and retreat. An O-ring 39a is mounted on the adjusting screw 39, and the valve body 30 And the airtight state is secured. The adjusting screw 39 and the pressing spring 32d make the valve body 32b
Of the orifice 32a with respect to the orifice 32a is adjusted.
【0003】なお、321はレシーバ6から送り出され
て、エバポレータ8に向かう冷媒が流入する入口ポート
であり、入口ポート321に弁室35が連続しており、
322はエバポレータ8に流入する冷媒の出口ポートで
ある。弁本体30にはエバポレータ8の出口温度に応じ
て、弁体32bに対して駆動力を与えてオリフィス32
aの開閉を行うために小径の孔37と、この孔37より
径が大径の孔38が、第2の通路34を貫通してオリフ
ィス32aと同軸に形成され、弁本体30の上端には感
熱部となるパワーエレメント部36が固定されるねじ孔
361が形成されている。[0003] Reference numeral 321 denotes an inlet port through which the refrigerant sent out from the receiver 6 and flowing toward the evaporator 8 flows, and the valve chamber 35 is continuous with the inlet port 321.
322 is an outlet port for the refrigerant flowing into the evaporator 8. A driving force is applied to the valve body 30 in accordance with the outlet temperature of the evaporator 8 to the valve body 32b, and the orifice 32
A hole 37 having a smaller diameter for opening and closing a, and a hole 38 having a larger diameter than the hole 37 are formed coaxially with the orifice 32 a through the second passage 34, and are provided at the upper end of the valve body 30. A screw hole 361 to which the power element portion 36 serving as a heat sensitive portion is fixed is formed.
【0004】パワーエレメント部36は、ステンレス製
のダイアフラム36aと、このダイアフラム36aを挾
んで互いに溶接により密着して設けられ、その上下に二
つの気密な感温室を形成する上部圧力作動室36b、及
び下部圧力作動室36cをそれぞれ構成する上カバー3
6dと下カバー36hと、上部圧力作動室36bにダイ
アフラム駆動流体となる所定冷媒を封入するための封切
管36iとを備え、下カバー36hはパッキン40を介
してねじ孔361に螺着される。下部圧力作動室36c
は、オリフィス32aの中心線に対して、同心的に形成
された均圧孔36eを介して第2の通路34に連通され
ている。第2の通路34には、エバポレータ8からの冷
媒蒸気が流れ、通路34は気相冷媒の通路となり、その
冷媒蒸気の圧力が均圧孔36eを介して下部圧力作動室
36cに負荷されている。なお、342はエバポレータ
8から送り出される冷媒の入る入口ポート、341はコ
ンプレッサ4へ送り出される冷媒の出口となる出口ポー
トである。The power element section 36 is provided with a stainless steel diaphragm 36a and an upper pressure working chamber 36b which is provided in close contact with each other with the diaphragm 36a therebetween by welding and forms two airtight temperature sensing chambers above and below the diaphragm. Upper cover 3 which constitutes each lower pressure working chamber 36c
6d, a lower cover 36h, and a sealing tube 36i for sealing a predetermined refrigerant serving as a diaphragm driving fluid in the upper pressure working chamber 36b. The lower cover 36h is screwed into the screw hole 361 via the packing 40. Lower pressure working chamber 36c
Is connected to the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the orifice 32a. Refrigerant vapor from the evaporator 8 flows through the second passage 34, and the passage 34 serves as a passage for a gas-phase refrigerant, and the pressure of the refrigerant vapor is applied to the lower pressure working chamber 36c via the equalizing hole 36e. . In addition, 342 is an inlet port into which the refrigerant sent from the evaporator 8 enters, and 341 is an outlet port as an outlet of the refrigerant sent to the compressor 4.
【0005】さらに下部圧力作動室36c内にダイアフ
ラム36aの下面中央部に当接する大径の皿状に形成さ
れた頂部37gを有し、かつ第2の通路34を貫通して
大径の孔38内に摺動可能に配置されて、エバポレータ
8の冷媒出口温度を下部圧力作動室36cへ伝達すると
共に、上部圧力作動室36b及び下部圧力作動室36c
の圧力差に伴うダイアフラム36aの変位に応じて、大
径38内を摺動して駆動力を与えるアルミ製の感温棒3
6fと、小径の孔37内に摺動可能に配置されて、感温
棒36fの変位に応じて弁体32bを付勢手段32dの
弾性力に抗して押圧する感温棒36fより細径のステン
レス製の作動棒37fからなり、感温棒36fの頂部3
7gは、ダイアフラム36aの受け部としてダイアフラ
ム36aの下面に当接し、感温棒36fの下端は作動棒
37fの上端と当接し、作動棒37fの下端は弁体32
bと当接しており、感温棒36fと作動棒37fとで弁
体駆動部材が構成されている。Further, the lower pressure working chamber 36c has a large-diameter dish-shaped top portion 37g in contact with the center of the lower surface of the diaphragm 36a, and the large-diameter hole 38 penetrates through the second passage 34. And slidably disposed therein, to transmit the refrigerant outlet temperature of the evaporator 8 to the lower pressure operating chamber 36c, and also to transmit the refrigerant pressure to the upper pressure operating chamber 36b and the lower pressure operating chamber 36c.
The aluminum temperature sensing rod 3 that slides in the large diameter 38 to provide a driving force in accordance with the displacement of the diaphragm 36a due to the pressure difference
6f and a smaller diameter than the temperature sensing rod 36f which is slidably disposed in the small diameter hole 37 and presses the valve body 32b against the elastic force of the urging means 32d according to the displacement of the temperature sensing rod 36f. Of the temperature sensing rod 36f.
7g contacts the lower surface of the diaphragm 36a as a receiving portion of the diaphragm 36a, the lower end of the temperature sensing rod 36f contacts the upper end of the operating rod 37f, and the lower end of the operating rod 37f is
b, and the valve element driving member is constituted by the temperature sensing rod 36f and the operating rod 37f.
【0006】したがって、均圧孔36eには、ダイアフ
ラム36aの下面から第1の通路32のオリフィス32
aまで延出した弁体駆動部材が、同心的に配置されてい
ることになる。なお、作動棒37fの部分37eは、オ
リフィス32aの内径より細く形成されて、オリフィス
32a内を挿通し、冷媒はオリフィス32a内を通過す
る。また、感温棒36fには第1の通路32と、第2の
通路34との気密性を確保するための密封部材としてO
リング36gが備えられている。Therefore, the orifice 32 of the first passage 32 is inserted into the pressure equalizing hole 36e from the lower surface of the diaphragm 36a.
The valve element driving member extending to a is concentrically arranged. The portion 37e of the operating rod 37f is formed thinner than the inner diameter of the orifice 32a, passes through the inside of the orifice 32a, and the refrigerant passes through the inside of the orifice 32a. Further, the temperature sensing rod 36f has an O as a sealing member for ensuring airtightness between the first passage 32 and the second passage 34.
A ring 36g is provided.
【0007】圧力作動ハウジング36dの上方の圧力作
動室36b中には、公知のダイアフラム駆動流体が充填
されていて、ダイアフラム駆動流体には第2の通路34
や第2の通路34に連通されている均圧孔36eに露出
された弁体駆動部材及びダイアフラム32aを介して、
第2の通路34を流れているエバポレータ8の冷媒出口
からの冷媒の熱が伝達される。A known diaphragm driving fluid is filled in the pressure operating chamber 36b above the pressure operating housing 36d, and a second passage 34 is provided in the diaphragm driving fluid.
And the valve drive member and the diaphragm 32a exposed to the pressure equalizing hole 36e communicating with the second passage 34,
The heat of the refrigerant from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 is transmitted.
【0008】上方の圧力作動室36b中のダイアフラム
駆動流体は、上記伝達された熱に対応してガス化し、圧
力をダイアフラム36aの上面に負荷する。ダイアフラ
ム36aは上記上面に負荷されたダイアフラム駆動ガス
の圧力と、ダイアフラム36aの下面に負荷された圧力
との差により上下に変位する。ダイアフラム36aの中
心部の上下への変化は、弁体駆動部材を介して弁体32
bに伝達され弁体32bをオリフィス32aの弁座に対
して接近または離間させる。この結果、冷媒流量が制御
されることとなる。[0008] The diaphragm driving fluid in the upper pressure working chamber 36b gasifies in response to the transferred heat, and applies pressure to the upper surface of the diaphragm 36a. The diaphragm 36a is displaced up and down due to the difference between the pressure of the diaphragm driving gas applied to the upper surface and the pressure applied to the lower surface of the diaphragm 36a. The change of the center of the diaphragm 36a in the vertical direction is controlled by the valve element
b to move the valve body 32b toward or away from the valve seat of the orifice 32a. As a result, the flow rate of the refrigerant is controlled.
【0009】即ち、エバポレータ8の出口側つまりエバ
ポレータから送り出される低圧の気相冷媒の温度が上部
圧力作動室36bに伝達されるため、その温度に応じて
上部圧力作動室36bの圧力が変化し、エバポレータ8
の出口温度が上昇する。つまりエバポレータの熱負荷が
増加すると、上部圧力作動室86bの圧力が高くなり、
それに応じて感温棒36fつまり弁体駆動部材が下方へ
駆動されて弁体32bを下げるため、オリフィス32a
の開度が大きくなる。これによりエバポレータ8への冷
媒の供給量が多くなり、エバポレータ8の温度を低下さ
せる。逆に、エバポレータ8から送り出せる冷媒の温度
が低下する。つまりエバポレータの熱負荷が減少する
と、弁体32bが上記と逆方向に駆動され、オリフィス
32aの開度が小さくなり、エバポレータへの冷媒の供
給量が少なくなり、エバポレータ8の温度を上昇させる
のである。That is, since the temperature of the low-pressure gas-phase refrigerant sent from the outlet side of the evaporator 8, that is, from the evaporator, is transmitted to the upper pressure working chamber 36b, the pressure of the upper pressure working chamber 36b changes according to the temperature. Evaporator 8
Outlet temperature rises. That is, when the heat load of the evaporator increases, the pressure of the upper pressure working chamber 86b increases,
Accordingly, the temperature sensing rod 36f, that is, the valve body driving member is driven downward to lower the valve body 32b, so that the orifice 32a
The degree of opening increases. Thus, the supply amount of the refrigerant to the evaporator 8 increases, and the temperature of the evaporator 8 decreases. Conversely, the temperature of the refrigerant that can be sent out from the evaporator 8 decreases. That is, when the heat load of the evaporator decreases, the valve element 32b is driven in the opposite direction to the above, the opening degree of the orifice 32a decreases, the supply amount of the refrigerant to the evaporator decreases, and the temperature of the evaporator 8 increases. .
【0010】かかる従来の温度式膨張弁においては、感
温棒36fは比較的大径の部材であり、この部材と作動
棒とで弁体駆動部材が構成されている。而して、上記弁
体駆動部材を小径のロッド部材で構成した従来の温度式
膨張弁もあり、このロッド部材を用いた従来の温度式膨
張弁を図6に示す。図6に示す膨張弁の動作は図5に示
す膨張弁と同一であり、図5と同一符号は同一又は均等
部分を示し、図5とは弁体駆動部材の構成とOリング3
6gの構成が異なる。即ち、第1の通路32と第2の通
路34間には、大径の穴38が設けられ、この穴38に
摺動自在に挿入される細径の棒状のロッド部材316
は、ダイアフラム36aの作動を弁体32bに伝達す
る。In such a conventional thermal expansion valve, the temperature sensing rod 36f is a member having a relatively large diameter, and the member and the operating rod constitute a valve body driving member. Thus, there is a conventional thermal expansion valve in which the valve element driving member is formed of a small-diameter rod member. A conventional thermal expansion valve using this rod member is shown in FIG. The operation of the expansion valve shown in FIG. 6 is the same as that of the expansion valve shown in FIG. 5, the same reference numerals as those in FIG. 5 indicate the same or equivalent parts, and FIG.
6g is different. That is, a large-diameter hole 38 is provided between the first passage 32 and the second passage 34, and the small-diameter rod-shaped rod member 316 is slidably inserted into the hole 38.
Transmits the operation of the diaphragm 36a to the valve body 32b.
【0011】感温機構を有する感温部318は、感温棒
361fと、ダイアフラム36aがその表面に当接し、
ダイアフラム36aの受け部となる大径のストッパ部3
12と、ストッパ部312の裏面に一端面が当接し、か
つ他端面の中央部が突起部315に形成されて下部圧力
作動室36c内に摺動自在に挿入される大径部314
と、この大径部314の突起部315の内部にて一端面
が嵌合し、他端面が作動棒に相当する部分371fを介
して弁体32bに当接して連続する一体構成のロッド部
材316とからなる。ロッド部材316を構成する感温
棒361fは、第2の通路内に露出して冷媒蒸気からの
熱が伝達される。A temperature sensing portion 318 having a temperature sensing mechanism has a temperature sensing rod 361f and a diaphragm 36a in contact with its surface.
Large-diameter stopper portion 3 serving as a receiving portion for diaphragm 36a
12 and a large diameter portion 314 in which one end surface abuts against the back surface of the stopper portion 312 and the center portion of the other end surface is formed in a projection 315 and is slidably inserted into the lower pressure working chamber 36c.
One end face is fitted inside the protruding portion 315 of the large diameter portion 314, and the other end face is in contact with the valve body 32b via a portion 371f corresponding to an operating rod, and is a continuous rod member 316. Consists of The temperature sensing rod 361f constituting the rod member 316 is exposed in the second passage, and heat from the refrigerant vapor is transmitted.
【0012】棒状の部材即ち、感温棒361fであるロ
ッド部材316は、パワーエレメント部36のダイアフ
ラム36aの変位に応じて通路34を横切って進退自在
に駆動されるので、ロッド部316に沿って通路321
と通路34間を連通するクリアランス(隙間)が形成さ
れることとなり、この連通を防止するため、ロッド部3
16の外周に密着するOリング40を大径の穴38内に
配置し、両通路間にOリングが存在するようにしてお
り、しかも、Oリング40がコイルバネ32d及び通路
321の冷媒圧力により長手方向(パワーエレメント部
36の存在する方向)に作用する力を受けて、移動しな
いようにするため戻り止めナットとしてプッシュナット
41がOリング40に接して大径の穴38内に配置され
るようにロッド部316に取付けられている。The rod-shaped member, that is, the rod member 316, which is the temperature sensing rod 361f, is driven across the passage 34 in accordance with the displacement of the diaphragm 36a of the power element 36 so as to be able to advance and retreat. Passage 321
A clearance (gap) communicating between the rod portion 3 and the passage 34 is formed.
An O-ring 40 is disposed in the large-diameter hole 38 so that the O-ring exists between the two passages, and the O-ring 40 is elongated by the coil spring 32 d and the refrigerant pressure in the passage 321. A push nut 41 as a detent nut is in contact with the O-ring 40 and is disposed in the large-diameter hole 38 so as not to move by receiving a force acting in the direction (the direction in which the power element portion 36 exists). Is attached to the rod part 316.
【0013】なお、図5及び図6に示す従来の温度式膨
張弁において、封切管36iの代りに栓体を用いてダイ
アフラム駆動流体を封入する構成としてもよいのは勿論
である。In the conventional temperature type expansion valve shown in FIGS. 5 and 6, it is a matter of course that the diaphragm driving fluid may be sealed using a plug instead of the sealing tube 36i.
【0014】[0014]
【発明が解決しようとする課題】上述した従来の温度式
膨張弁においては、エバポレータに向かう冷媒が通る第
1の通路と、エバポレータからコンプレッサに向かう冷
媒が通る第2の通路間の気密性を確保するためのシール
部材としてOリング又はOリングと止め輪が用いられて
いる。このため、図5における温度式膨張弁では、弁体
駆動部材に対し、別体のシール部材であるOリングを装
着する必要があり、Oリングの装着が面倒であり、Oリ
ングを装着した後、弁体駆動部材を弁本体に組込まねば
ならず、組立工数を要するという問題があり、また図6
における温度式膨張弁では、Oリングと止め輪の複数部
品を必要とし、部品コストを要し、かつ組立工数が大幅
に増大し、組立コストも高価になるという問題がある。In the above-mentioned conventional thermal expansion valve, the airtightness between the first passage through which the refrigerant flows toward the evaporator and the second passage through which the refrigerant flows from the evaporator to the compressor is ensured. An O-ring or an O-ring and a retaining ring are used as a sealing member for the sealing. For this reason, in the temperature type expansion valve in FIG. 5, it is necessary to attach an O-ring which is a separate seal member to the valve element driving member, and the O-ring is troublesome to attach. In addition, there is a problem that the valve body driving member must be incorporated in the valve body, which requires an assembling man-hour.
In the temperature type expansion valve, there is a problem that a plurality of parts such as an O-ring and a snap ring are required, parts costs are required, the number of assembling steps is greatly increased, and assembling costs are also increased.
【0015】本発明は、かかる問題を解消すべくなされ
たもので、その目的とするところは組立が簡単で大幅な
組立工数の低減と、組立コストの削減が可能であり、さ
らには部品コストを大幅に低減した温度式膨張弁を提供
することにある。The present invention has been made in order to solve such a problem. It is an object of the present invention to simplify the assembling, greatly reduce the number of assembling steps, and reduce the assembling cost. It is to provide a greatly reduced temperature type expansion valve.
【0016】[0016]
【課題を解決するための手段】前記目的を達成すべく、
本発明に係る電動弁は、エバポレータに向かう冷媒が通
過する第1の通路と、エバポレータからコンプレッサに
向かう冷媒が通過する第2の通路とが弁本体内に形成さ
れ、上記第2の通路の冷媒の温度に応じて、弁体駆動部
材により上記弁本体内の弁体を駆動して上記エバポレー
タに流入する冷媒流量を制御する温度式膨張弁におい
て、上記第1と第2の通路間をシールするシール部材
が、上記弁体駆動部材又は上記弁本体内の上記弁体駆動
部材の摺動部にあらかじめ具備されて構成されているこ
とを特徴としている。In order to achieve the above object,
In the motor-operated valve according to the present invention, the first passage through which the refrigerant flowing toward the evaporator passes and the second passage through which the refrigerant flowing from the evaporator toward the compressor passes are formed in the valve body, and the refrigerant in the second passage is formed. A temperature type expansion valve for controlling a flow rate of refrigerant flowing into the evaporator by driving a valve element in the valve body by a valve element driving member in accordance with the temperature of the first element and sealing between the first and second passages. It is characterized in that a seal member is provided in advance on a sliding portion of the valve element driving member or the valve element driving member in the valve body.
【0017】また、本発明に係る電動弁は、エバポレー
タに向かう冷媒の通る第1の通路及びエバポレータから
コンプレッサに向かう冷媒の通る第2の通路を有する弁
本体と、上記弁本体に設けられたパワーエレメント部内
のダイアフラムの変位によって、弁開度を制御する弁体
を駆動する棒状の部材とからなり、上記通路間をシール
するシール部材が、あらかじめ上記棒状の部材に具備さ
れて構成されたことを特徴としている。[0017] An electric valve according to the present invention comprises a valve body having a first passage through which a refrigerant flows toward an evaporator and a second passage through which a refrigerant flows from the evaporator to a compressor; and a power supply provided in the valve body. A rod-shaped member that drives a valve body that controls a valve opening degree by displacement of a diaphragm in an element portion, and a seal member that seals between the passages is provided in advance in the rod-shaped member. Features.
【0018】さらにまた、本発明に係る電動弁における
好ましい具体的態様としては、上記棒状の部材に具備さ
れるシール部材が焼付けにより固着されたゴム材である
ことを特徴としている。Further, in a preferred specific embodiment of the motor-operated valve according to the present invention, the seal member provided on the rod-shaped member is a rubber material fixed by baking.
【0019】また、本発明に係る電動弁は、エバポレー
タに向かう液冷媒の通る第1の通路と、エバポレータか
らコンプレッサに向かう気相冷媒の通る第2の通路を有
する弁本体と、上記第1の通路中に設けられるオリフィ
スと、このオリフィスを通路する冷媒量を調節する弁体
と、上記気相冷媒の温度を感知して変位するダイアフラ
ムを有する上記弁本体に設けられたパワーエレメント部
と、このダイアフラムの変位により上記弁体を駆動する
感温棒機能を有する棒状の部材とを備えた膨張弁におい
て、上記棒状の部材は、第1と第2の通路間に存在する
穴内に摺動自在に配設されると共に、上記穴の内面にシ
ール部材があらかじめ具備されて構成されたことを特徴
としている。The motor-operated valve according to the present invention includes a valve body having a first passage through which a liquid refrigerant flows toward an evaporator, a second passage through which a gas-phase refrigerant flows from the evaporator to a compressor, and the first valve. An orifice provided in the passage, a valve body for adjusting the amount of refrigerant passing through the orifice, a power element provided on the valve body having a diaphragm that senses and displaces the temperature of the gas-phase refrigerant, And a rod-shaped member having a temperature-sensitive rod function for driving the valve body by displacement of the diaphragm, wherein the rod-shaped member is slidably inserted into a hole existing between the first and second passages. In addition to the above, a seal member is provided in advance on the inner surface of the hole.
【0020】このように、本発明に係る温度式膨張弁
は、感温部となる棒状の部材又はこの棒状の部材が摺動
する弁本体内にあらかじめシール材を具備しているの
で、組立工数が低減できることとなり、組立コストの削
減を可能とした通路間のシールを実現できる。さらには
最少の部品数を用いて弁体内に形成された通路面をシー
ルすることができる。As described above, the temperature type expansion valve according to the present invention is provided with the sealing member in advance in the rod-shaped member serving as the temperature sensing portion or the valve body in which the rod-shaped member slides. Can be reduced, and a seal between passages that can reduce the assembly cost can be realized. Furthermore, the passage surface formed in the valve body can be sealed using a minimum number of parts.
【0021】[0021]
【発明の実施の形態】以下、図面により本発明に係る温
度式膨張弁の実施形態について説明する。図1は本発明
の温度式膨張弁の断面図、図2は図1の右側面図であ
る。本実施の形態における全体を符号100で示す温度
式膨張弁は、略角柱形状の弁本体110を有し、その作
用は従来の図3に示す膨張弁と同一であり、説明は省略
する。弁本体110は、例えばアルミニウム合金を中空
押出し成形して得られた素材に機械加工を施して製造さ
れる。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a thermal expansion valve according to an embodiment of the present invention. FIG. 1 is a sectional view of the thermal expansion valve of the present invention, and FIG. 2 is a right side view of FIG. The thermal expansion valve according to the present embodiment, which is generally denoted by reference numeral 100, has a substantially prismatic valve body 110, and its operation is the same as that of the conventional expansion valve shown in FIG. The valve body 110 is manufactured by subjecting a material obtained by, for example, hollow extrusion molding of an aluminum alloy to machining.
【0022】図示しないレシーバからの高圧冷媒が流入
する弁本体に形成される高圧冷媒の入口120は、細径
の穴121を介して弁室122に連通される。弁室12
2は、オリフィス126を介して第1の冷媒通路130
に連通される。弁室122内には、ボール形状の弁体1
90が配設される。弁体190は支持部材202により
支持され、支持部材202は、スプリング200を介し
て弁体190をオリフィス126の弁座に向けて付勢す
る。スプリング200は、弁室122を封止するナット
部材204により支持される。A high-pressure refrigerant inlet 120 formed in the valve body into which the high-pressure refrigerant flows from a receiver (not shown) is connected to a valve chamber 122 through a small-diameter hole 121. Valve room 12
2 is connected to the first refrigerant passage 130 through the orifice 126.
Is communicated to. In the valve chamber 122, a ball-shaped valve element 1 is provided.
90 are provided. The valve body 190 is supported by a support member 202, and the support member 202 urges the valve body 190 toward a valve seat of the orifice 126 via a spring 200. The spring 200 is supported by a nut member 204 that seals the valve chamber 122.
【0023】第1の冷媒通路130から流出した冷媒
は、図示しない蒸発器へ供給され外気との間で熱交換を
行なう。蒸発器から戻された冷媒は、弁本体110に設
けられる第2の冷媒通路140を通り、冷媒システムを
構成する図示しない圧縮機、凝縮器の回路へ流れる。The refrigerant flowing out of the first refrigerant passage 130 is supplied to an evaporator (not shown) and exchanges heat with the outside air. The refrigerant returned from the evaporator flows through a second refrigerant passage 140 provided in the valve body 110 to a circuit of a compressor and a condenser (not shown) constituting the refrigerant system.
【0024】第2の冷媒通路140内を直径方向に貫通
する弁体駆動部材180は、ロッド部材即ち細径の棒状
の部材であって、その上端部がパワーエレメント部15
0内のダイアフラム160の受け部となるストッパ17
0に係止される。弁体駆動部材180の下端部は弁体1
90に接し、弁体190をオリフィス126の弁座から
離れる方向に付勢する。The valve element driving member 180 penetrating through the second refrigerant passage 140 in the diameter direction is a rod member, that is, a small-diameter rod-shaped member, and the upper end portion thereof has a power element portion 15.
Stopper 17 serving as a receiving portion of diaphragm 160 inside 0
Locked to zero. The lower end of the valve drive member 180 is the valve 1
90, and urges the valve body 190 in a direction away from the valve seat of the orifice 126.
【0025】弁体110の上部には、パワーエレメント
150がねじ部156を用いて固着される。パワーエレ
メント150内にはダイアフラム160が挾持されてお
り、ダイアフラム160の上方の室である上部圧力空間
152には、作動ガスが充填され、下方の室である下部
圧力空間153内にはストッパ170が摺動可能に配置
され、栓体である封止部材154により封止される。A power element 150 is fixed to the upper part of the valve element 110 using a screw 156. A diaphragm 160 is sandwiched in the power element 150, an upper pressure space 152, which is a chamber above the diaphragm 160, is filled with a working gas, and a stopper 170 is provided in a lower pressure space 153, which is a lower chamber. It is slidably disposed and sealed by a sealing member 154 that is a plug.
【0026】第2の冷媒通路140を流れる冷媒の圧力
は、ストッパ170の下面に受圧され、また、冷媒の温
度は弁体駆動部材180とストッパ170を介して、パ
ワーエレメント150の上部圧力空間152側に伝達さ
れる。そして、上部圧力空間152内のガス圧を受ける
ダイアフラム160の作動に応じてストッパ170、弁
体駆動部材180を介して弁体190は、弁座126と
の間の開度が調節され、必要な量の冷媒が蒸発器に供給
される。なお、図2において、114は幅寸法を削減し
た外側面を示す。The pressure of the refrigerant flowing through the second refrigerant passage 140 is received by the lower surface of the stopper 170, and the temperature of the refrigerant is transmitted through the valve driving member 180 and the stopper 170 to the upper pressure space 152 of the power element 150. Transmitted to the side. The opening of the valve element 190 between the valve seat 126 and the stopper 170 is adjusted via the stopper 170 and the valve element driving member 180 in accordance with the operation of the diaphragm 160 which receives the gas pressure in the upper pressure space 152, and the necessary degree is adjusted. An amount of refrigerant is supplied to the evaporator. In FIG. 2, reference numeral 114 denotes an outer side surface with a reduced width dimension.
【0027】而して、棒状の部材である弁体駆動部材1
80は弁本体110内を摺動するが、第1の冷媒通路1
30と第2の冷媒通路140の連通を阻止するべく、弁
本体110に形成された第1と第2の通路間に存在する
大径の穴181内にシール材を配置するため、弁体駆動
部材180の外面にシール材として図3に示す如く、例
えばNBR(アクリロ・ニトリル・ブタジェンゴム)あ
るいはHNBR(水素化アクリロ・ニトリル・ブタジェ
ンゴム)等のゴム材220があらかじめ装着されてい
る。このゴム材220は、弁体駆動部材180として、
例えば直径2.4mmのステンレス材に焼付けられて、
あらかじめ弁体駆動部材180に装置されているのであ
る。即ち、弁体駆動部材180に例えば0.05mmの
深さに設けられた凹部182を形成し、この凹部182
に接着剤にて上記ゴム材220を固定するか、あるいは
接着剤を用いずにゴム材を圧着により固定し、次いで、
上型と下型の型を用いることに、例えば175℃〜18
0℃の温度にて、上記ゴム材を焼付けして強固に装着す
るのである。Thus, the valve element driving member 1 which is a rod-shaped member
80 slides in the valve body 110, but the first refrigerant passage 1
In order to prevent the communication between the second coolant passage 140 and the second coolant passage 140, the seal member is arranged in the large-diameter hole 181 formed between the first and second passages formed in the valve body 110. As shown in FIG. 3, a rubber member 220 such as NBR (acrylonitrile / butadiene rubber) or HNBR (hydrogenated acrylonitrile / butadiene rubber) is mounted on the outer surface of the member 180 in advance as shown in FIG. This rubber material 220 is used as the valve body driving member 180.
For example, it is baked on a stainless steel material with a diameter of 2.4 mm,
It is previously installed on the valve body driving member 180. That is, a concave portion 182 provided at a depth of, for example, 0.05 mm is formed in the valve body driving member 180, and the concave portion 182 is formed.
To fix the rubber material 220 with an adhesive, or fix the rubber material by pressing without using an adhesive,
By using the upper mold and the lower mold, for example, 175 ° C. to 18
At a temperature of 0 ° C., the rubber material is baked and firmly mounted.
【0028】このように、弁体駆動部材180には、あ
らかじめシール材220が装着されているので、この弁
体駆動部材180を弁本体110に形成された大径の穴
181に組込むことにより、必然的に第1と第2の通路
間のシールを実現して、膨張弁100の組立を行うこと
ができることとなり、組立工数の低減が可能となり部品
コスト及び組立コストの削減を図ることができる。As described above, since the sealing member 220 is mounted on the valve body driving member 180 in advance, by incorporating the valve body driving member 180 into the large-diameter hole 181 formed in the valve body 110, Inevitably, the seal between the first and second passages is realized, so that the expansion valve 100 can be assembled, the number of assembly steps can be reduced, and the parts cost and the assembly cost can be reduced.
【0029】以上の説明では、感温部である弁体駆動部
材にシール材をあらかじめ具備する場合について述べた
が、本発明はこれに限らず、上記弁体駆動部材の弁本体
内の摺動部にシール材をあらかじめ具備せしめる場合に
も適用できる。In the above description, a case has been described in which the sealing member is provided in advance in the valve body driving member, which is the temperature sensing part. However, the present invention is not limited to this, and the sliding of the valve body driving member in the valve body is performed. The present invention can also be applied to a case where a sealing material is provided in advance in a portion.
【0030】図4は、その場合の本発明の他の実施の形
態を示す断面図であり、図3とはシール材を装着する構
成が相違するのみであり、他の基本的構成及び動作は同
一であるので、図4においては弁体駆動部材180’、
弁本体110、弁本体110に形成される大径の穴18
1’及びシール材230のみを示している。FIG. 4 is a cross-sectional view showing another embodiment of the present invention in that case. FIG. 4 is different from FIG. 3 only in the configuration in which the sealing material is mounted, and the other basic configuration and operation are the same. Since they are the same, in FIG.
Valve body 110, large diameter hole 18 formed in valve body 110
Only 1 'and the sealing material 230 are shown.
【0031】図において、大径の穴181’内の内面に
形成された凹溝にあらかじめ前述したゴム材がシール材
230として具備されており、シール材230が大径の
穴181’内に装着された状態で感温部である弁体駆動
部材180’を弁本体110に組込むことにより、弁体
駆動部材180’の外面にシール材230が装着された
こととなり、必然的に第1と第2の通路間のシールを実
現した膨張弁の組立を行うことができるのである。した
がって、弁本体内に形成された弁体駆動部材の摺動部に
あらかじめシール材を具備するので、組立工数の低減と
組立コストの削減が可能となる。In the figure, the above-mentioned rubber material is previously provided as a sealing material 230 in a concave groove formed on the inner surface of the large-diameter hole 181 ', and the sealing material 230 is mounted in the large-diameter hole 181'. In this state, the valve member driving member 180 ', which is a temperature sensing portion, is incorporated into the valve body 110, so that the sealing member 230 is attached to the outer surface of the valve member driving member 180'. The expansion valve that achieves the seal between the two passages can be assembled. Therefore, since the sealing member is provided in advance on the sliding portion of the valve body driving member formed in the valve body, the number of assembly steps and the assembly cost can be reduced.
【0032】[0032]
【発明の効果】以上述べた如く、本発明においては、感
温部である弁体駆動部材又は弁体駆動部材の摺動部にあ
らかじめシール材を具備した状態で温度膨張弁の組立を
行うことができるので、組立工数の低減が可能となり、
組立コストの削減を図ることができる。また、弁本体内
の通路間のシールを最少の部品数により実現でき、組立
工数の低減が可能となるので、大幅な組立コストの削減
を実現できる。As described above, according to the present invention, the temperature expansion valve is assembled with the sealing member provided in advance on the valve driving member or the sliding portion of the valve driving member, which is the temperature sensing portion. Can reduce the number of assembly steps,
Assembly cost can be reduced. In addition, the seal between the passages in the valve body can be realized with the minimum number of parts, and the number of assembling steps can be reduced, so that a significant reduction in assembling cost can be realized.
【図1】本発明の膨張弁の断面図。FIG. 1 is a sectional view of an expansion valve according to the present invention.
【図2】図1の右側面図。FIG. 2 is a right side view of FIG.
【図3】要部の説明図。FIG. 3 is an explanatory diagram of a main part.
【図4】要部の説明図。FIG. 4 is an explanatory diagram of a main part.
【図5】従来の膨張弁の断面図。FIG. 5 is a cross-sectional view of a conventional expansion valve.
【図6】従来の膨張弁の断面図。FIG. 6 is a sectional view of a conventional expansion valve.
100 膨張弁 110 弁本体 120 高圧冷媒入口 130 第1の冷媒通路 140 第2の冷媒通路 150 パワーエレメント 160 ダイアフラム 180 弁体駆動部材 181 穴 190 弁体 220 ゴム材 REFERENCE SIGNS LIST 100 expansion valve 110 valve main body 120 high-pressure refrigerant inlet 130 first refrigerant passage 140 second refrigerant passage 150 power element 160 diaphragm 180 valve body driving member 181 hole 190 valve body 220 rubber material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 公道 東京都世田谷区等々力7丁目17番24号 株 式会社不二工機内 Fターム(参考) 3H052 AA01 BA26 CD01 EA01 EA04 EA11 3H057 AA04 BB38 CC06 DD04 EE03 FA22 FC05 HH02 HH18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor: Kondo Yano 7-17-24, Todoroki, Setagaya-ku, Tokyo F-term inside Fuji Machine Co., Ltd. 3H052 AA01 BA26 CD01 EA01 EA04 EA11 3H057 AA04 BB38 CC06 DD04 EE03 FA22 FC05 HH02 HH18
Claims (4)
1の通路と、エバポレータからコンプレッサに向かう冷
媒が通過する第2の通路とが弁本体内に形成され、上記
第2の通路の冷媒の温度に応じて、弁体駆動部材により
上記弁本体内の弁体を駆動して上記エバポレータに流入
する冷媒流量を制御する温度式膨張弁において、上記第
1と第2の通路間をシールするシール部材が、上記弁体
駆動部材又は上記弁本体内の上記弁体駆動部材の摺動部
にあらかじめ具備されて構成されていることを特徴とす
る温度式膨張弁。A first passage through which a refrigerant flowing toward an evaporator passes and a second passage through which a refrigerant flowing from the evaporator toward a compressor passes are formed in a valve body. Accordingly, in a temperature-type expansion valve that controls a flow rate of refrigerant flowing into the evaporator by driving a valve element in the valve body by a valve element driving member, a seal member that seals between the first and second passages is provided. A temperature-type expansion valve, which is provided in advance in a sliding portion of the valve body driving member or the valve body driving member in the valve body.
通路及びエバポレータからコンプレッサに向かう冷媒の
通る第2の通路を有する弁本体と、上記弁本体に設けら
れたパワーエレメント部内のダイアフラムの変位によっ
て、弁開度を制御する弁体を駆動する棒状の部材とから
なり、上記通路間をシールするシール部材が、あらかじ
め上記棒状の部材に具備されて構成されたことを特徴と
する温度式膨張弁。2. A valve body having a first passage through which a refrigerant flows toward an evaporator and a second passage through which a refrigerant flows from the evaporator toward a compressor, and a displacement of a diaphragm in a power element portion provided in the valve body. A temperature-type expansion valve comprising a rod-shaped member for driving a valve body for controlling a valve opening, wherein a seal member for sealing between the passages is provided in advance in the rod-shaped member.
が焼付けにより固着されたゴム材であることを特徴とす
る請求項1記載の温度式膨張弁。3. The thermal expansion valve according to claim 1, wherein the sealing member provided on the rod-shaped member is a rubber material fixed by baking.
の通路と、エバポレータからコンプレッサに向かう気相
冷媒の通る第2の通路を有する弁本体と、上記第1の通
路中に設けられるオリフィスと、このオリフィスを通路
する冷媒量を調節する弁体と、上記気相冷媒の温度を感
知して変位するダイアフラムを有する上記弁本体に設け
られたパワーエレメント部と、このダイアフラムの変位
により上記弁体を駆動する感温棒機能を有する棒状の部
材とを備えた膨張弁において、上記棒状の部材は、第1
と第2の通路間に存在する穴内に摺動自在に配設される
と共に、上記穴の内面にシール部材があらかじめ具備さ
れて構成されたことを特徴とする温度式膨張弁。4. A first passage through which a liquid refrigerant flows toward an evaporator.
And a valve body having a second passage through which a gas-phase refrigerant flowing from the evaporator to the compressor passes; an orifice provided in the first passage; and a valve body for adjusting the amount of refrigerant passing through the orifice; A power element provided on the valve body having a diaphragm that senses and displaces the temperature of the gas-phase refrigerant, and a rod-shaped member having a temperature sensing rod function for driving the valve body by displacement of the diaphragm. In the expanded valve, the rod-shaped member is a first member.
A temperature type expansion valve, which is slidably disposed in a hole existing between the first and second passages and a seal member is provided in advance on an inner surface of the hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11163321A JP2000346494A (en) | 1999-06-10 | 1999-06-10 | Temperature type expansion valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11163321A JP2000346494A (en) | 1999-06-10 | 1999-06-10 | Temperature type expansion valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000346494A true JP2000346494A (en) | 2000-12-15 |
Family
ID=15771630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11163321A Pending JP2000346494A (en) | 1999-06-10 | 1999-06-10 | Temperature type expansion valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000346494A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185826B2 (en) | 2003-12-05 | 2007-03-06 | Fujikoki Corporation | Expansion valve |
EP2482010A3 (en) * | 2011-01-31 | 2014-03-12 | Fujikoki Corporation | Expansion valve |
US12092382B2 (en) | 2019-04-01 | 2024-09-17 | Parker-Hannifin Corporation | Power element for refrigerant modulating valve |
-
1999
- 1999-06-10 JP JP11163321A patent/JP2000346494A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185826B2 (en) | 2003-12-05 | 2007-03-06 | Fujikoki Corporation | Expansion valve |
EP2482010A3 (en) * | 2011-01-31 | 2014-03-12 | Fujikoki Corporation | Expansion valve |
US12092382B2 (en) | 2019-04-01 | 2024-09-17 | Parker-Hannifin Corporation | Power element for refrigerant modulating valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10253199A (en) | Thermal expansion valve | |
JPH11351440A (en) | Thermal expansion valve and manufacture of the same | |
KR20060041893A (en) | Expansion valve | |
JPH10170106A (en) | Expansion valve | |
JP3785229B2 (en) | Expansion valve | |
JPH11325660A (en) | Expansion valve | |
EP1118822B1 (en) | Thermal expansion valve | |
KR100496203B1 (en) | Thermal expansion valve | |
JPH11287536A (en) | Expansion valve | |
JP2005164208A (en) | Expansion valve | |
JP2001199230A (en) | Temperature expansiion valve | |
JP2000346494A (en) | Temperature type expansion valve | |
JPH11223425A (en) | Expansion valve | |
JP2001241808A (en) | Expansion valve | |
KR20040038804A (en) | Expansion valve | |
KR20030074134A (en) | Expansion valve and a case for the same | |
JP2000304381A (en) | Temperature expansion valve | |
JPH09159324A (en) | Expansion valve | |
JPH10122706A (en) | Expansion valve | |
JP4081295B2 (en) | Expansion valve | |
JPH11325661A (en) | Expansion valve | |
JPH11325307A (en) | Temperature expansion valve | |
JPH1089811A (en) | Expansion valve | |
JP2000097522A (en) | Expansion valve | |
JPH11182982A (en) | Expansion valve |