JP2001199230A - Temperature expansiion valve - Google Patents

Temperature expansiion valve

Info

Publication number
JP2001199230A
JP2001199230A JP35070199A JP35070199A JP2001199230A JP 2001199230 A JP2001199230 A JP 2001199230A JP 35070199 A JP35070199 A JP 35070199A JP 35070199 A JP35070199 A JP 35070199A JP 2001199230 A JP2001199230 A JP 2001199230A
Authority
JP
Japan
Prior art keywords
expansion valve
valve body
valve
cover
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35070199A
Other languages
Japanese (ja)
Other versions
JP2001199230A5 (en
Inventor
Eiji Fukuda
栄二 福田
Kazuhiko Watanabe
和彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP35070199A priority Critical patent/JP2001199230A/en
Priority to US09/706,780 priority patent/US6354509B1/en
Publication of JP2001199230A publication Critical patent/JP2001199230A/en
Publication of JP2001199230A5 publication Critical patent/JP2001199230A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve installing performance by forming an external shape by installing a cover on a temperature expansion valve used for a vehicular air conditioner. SOLUTION: This temperature expansion valve 100 has a valve chest in a valve body 110 to control a flow rate of a refrigerant from a condenser and a receiver to be sent to an evaporator from a passage 132. The refrigerant returned from the evaporator transmits a temperature of the refrigerant to a temperature sensing bar connected to a power element part 36 while passing through a passage 34. A cover 200 has a head part 220 and a taper part 210, and is installed in an upper part of the valve body 110. A taper outside surface 212 of the taper part 210 of the cover 200 and a taper surface 114 of the valve body 110 form the almost same plane. A recessed part 221 of the head part 220 covers the power element part 36, and a top part forms a curved surface 222.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍サイクルに使用
する温度膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature expansion valve used in a refrigeration cycle.

【0002】[0002]

【従来の技術】一般に、自動車用空気調和装置において
は、冷凍サイクルを構成する各部分のうちエバポレータ
は車室内に配置され、他のコンプレッサなどはエンジン
ルーム内に配置される。この冷凍サイクルには、エバポ
レータ内に流入する冷媒量を制御する温度膨張弁も設け
られている。
2. Description of the Related Art In general, in an air conditioner for a vehicle, an evaporator among components constituting a refrigeration cycle is disposed in a vehicle compartment, and other compressors and the like are disposed in an engine room. This refrigeration cycle is also provided with a temperature expansion valve for controlling the amount of refrigerant flowing into the evaporator.

【0003】この従来用いられている膨張弁としてボッ
クス型膨張弁を自動車用の空気調和装置の冷凍サイクル
中に配置した状態の縦断面図を図26に、概略斜視図を
図27に示す。図26において、膨張弁10は角柱の例
えばアルミニウム製の弁本体30と、冷凍サイクル11
においてコンデンサ5、レシーバ6からエバポレータ8
に向かう冷媒の通る第一の通路32、及びエバポレータ
8からコンプレッサ4に向かう冷媒の通る第二の通路3
4が弁本体30に上下に離間して形成されている。さら
に、第一の通路32に設けられたオリフィス32a及び
弁室35と、このオリフィス32aを通過する冷媒量を
制御する通路32の上流側に配置された球状の弁体32
bと、弁体32bをオリフィス32a方向に弁部材32
cを介して押圧するばね32dの調節ねじ39を有す
る。ねじ部39fを有する調節ねじ39は弁本体30の
下部の端面より第一の通路32の弁室35に連通する装
着穴30aに進退可能にねじ込まれており、Oリング3
9gが調節ねじ39に装着され、弁本体30と気密状態
が確保されている。この調節ねじ39と押圧ばね32d
とにより、弁体32dのオリフィス32aに対する開口
度が調節される。
FIG. 26 is a longitudinal sectional view showing a state in which a box-type expansion valve is arranged in a refrigeration cycle of an air conditioner for a vehicle as a conventional expansion valve, and FIG. 27 is a schematic perspective view thereof. In FIG. 26, an expansion valve 10 has a prismatic valve body 30 made of, for example, aluminum and a refrigeration cycle 11.
At the condenser 5 and the receiver 6 to the evaporator 8
Passage 32 through which the refrigerant flows toward the compressor 4 and second passage 3 through which the refrigerant flows from the evaporator 8 to the compressor 4
4 are formed on the valve body 30 so as to be vertically separated from each other. Further, an orifice 32a and a valve chamber 35 provided in the first passage 32, and a spherical valve body 32 disposed upstream of the passage 32 for controlling the amount of refrigerant passing through the orifice 32a.
b and the valve element 32b in the direction of the orifice 32a.
c has an adjusting screw 39 for the spring 32d which presses through the c. An adjusting screw 39 having a screw portion 39f is screwed from a lower end surface of the valve body 30 into a mounting hole 30a communicating with the valve chamber 35 of the first passage 32 so as to be able to advance and retreat.
9 g is mounted on the adjusting screw 39, and an airtight state with the valve body 30 is secured. The adjusting screw 39 and the pressing spring 32d
Thus, the opening degree of the valve body 32d with respect to the orifice 32a is adjusted.

【0004】なお、321はレシーバ6から送り出され
て、エバポレータ8に向かう冷媒が流入する入口ポート
であり、入口ポート321に弁室35が連続しており、
322はエバポレータ8に流入する冷媒の出口ポートで
ある。また、図27において、50は膨張弁を取り付け
るためのボルト孔であり、弁本体30の下部は薄肉化さ
れている。弁本体30にはエバポレータ8の出口温度に
応じて、弁体32bに対して駆動力を与えてオリフィス
32aの開閉を行うために小径の孔37と、この孔37
より径が大径の孔38が、オリフィス32aと同軸に形
成され、弁本体30の上端には感熱部となるパワーエレ
メント部36が固定されるねじ孔361が形成されてい
る。
[0004] Reference numeral 321 denotes an inlet port through which the refrigerant sent out from the receiver 6 and flowing toward the evaporator 8 flows, and the valve chamber 35 is continuous with the inlet port 321.
322 is an outlet port for the refrigerant flowing into the evaporator 8. In FIG. 27, reference numeral 50 denotes a bolt hole for mounting the expansion valve, and the lower part of the valve body 30 is thinned. The valve body 30 has a small hole 37 for applying a driving force to the valve body 32b in accordance with the outlet temperature of the evaporator 8 to open and close the orifice 32a.
A hole 38 having a larger diameter is formed coaxially with the orifice 32a, and a screw hole 361 is formed at the upper end of the valve body 30 to which the power element portion 36 serving as a heat-sensitive portion is fixed.

【0005】パワーエレメント部36は、例えば、ステ
ンレス製のダイアフラム36aと、このダイアフラム3
6aを挾んで互いに溶接により密着して設けられ、その
上下に二つの気密な感温室を形成する上部圧力作動室3
6b、及び下部圧力作動室36cをそれぞれ構成する。
例えば、ステンレス製の上蓋36dと下蓋36hと、上
部圧力作動室36bにダイアフラム駆動流体となる所定
冷媒を封入するための栓体36kとを備え、下蓋36h
はパッキン40を介してねじ孔361に螺着される。下
部圧力作動室36cは、オリフィス32aの中心線に対
して、同心的に形成された均圧孔36eを介して第2の
通路34に連通されている。第2の通路34には、エバ
ポレータ8からの冷媒が流れ、通路34は気相冷媒の通
路となり、その冷媒の圧力が均圧孔36eを介して下部
圧力作動室36cに負荷されている。なお、342はエ
バポレータ8から送り出される冷媒の入る入口ポート、
341はコンプレッサ4へ送り出される冷媒の出口とな
る出口ポートである。
[0005] The power element portion 36 includes, for example, a diaphragm 36a made of stainless steel and a diaphragm 3a.
Upper pressure working chamber 3 which is provided in close contact with each other by welding and sandwiches 6a and forms two airtight temperature sensing chambers above and below it.
6b and the lower pressure working chamber 36c.
For example, an upper cover 36d and a lower cover 36h made of stainless steel, and a stopper 36k for sealing a predetermined refrigerant serving as a diaphragm driving fluid in the upper pressure working chamber 36b are provided.
Is screwed into the screw hole 361 via the packing 40. The lower pressure working chamber 36c communicates with the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the orifice 32a. The refrigerant from the evaporator 8 flows through the second passage 34, and the passage 34 serves as a passage for the gas-phase refrigerant, and the pressure of the refrigerant is applied to the lower pressure working chamber 36c via the equalizing hole 36e. In addition, 342 is an inlet port into which the refrigerant sent from the evaporator 8 enters,
An outlet port 341 serves as an outlet for the refrigerant sent to the compressor 4.

【0006】さらに下部圧力作動室36c内にダイアフ
ラム36aの下面中央部に当接する大径の皿状に形成さ
れた頂部312を有し、かつ第2の通路34を貫通して
大径の孔38内に摺動可能に配置されて、エバポレータ
8の冷媒出口温度を下部圧力作動室36cへ伝達すると
共に、上部圧力作動室36b及び下部圧力作動室36c
の圧力差に伴うダイアフラム36aの変位に応じて、大
径38内を摺動して駆動力を与えるアルミ製の感温棒3
6fと、小径の孔37内に摺動可能に配置されて、感温
棒36fの変位に応じて弁体32bを付勢手段32dの
弾性力に抗して押圧する感温棒36fより細径のステン
レス製の作動棒37fからなる。感温棒36fは、ダイ
アフラム36aの受け部となる頂部312と下部圧力作
動室36c内で摺動する大径部314とで上端部が形成
され、感温棒36fの下端部は作動棒37fの上端部と
当接し、作動棒37fの下端部は弁体32bと当接して
おり、感温棒36fと作動棒37fとで弁体駆動棒31
8が構成されている。なお、頂部312と大径部314
は一体に構成されていることもある。
Further, the lower pressure working chamber 36c has a large-diameter dish-shaped top 312 in contact with the center of the lower surface of the diaphragm 36a, and the large-diameter hole 38 penetrates through the second passage 34. And slidably disposed therein, to transmit the refrigerant outlet temperature of the evaporator 8 to the lower pressure operating chamber 36c, and also to transmit the refrigerant pressure to the upper pressure operating chamber 36b and the lower pressure operating chamber 36c.
The aluminum temperature sensing rod 3 that slides in the large diameter 38 to provide a driving force in accordance with the displacement of the diaphragm 36a due to the pressure difference
6f and a smaller diameter than the temperature sensing rod 36f which is slidably disposed in the small diameter hole 37 and presses the valve body 32b against the elastic force of the urging means 32d according to the displacement of the temperature sensing rod 36f. Of the stainless steel operating rod 37f. The temperature sensing rod 36f has an upper end formed by a top 312 serving as a receiving portion of the diaphragm 36a and a large diameter portion 314 that slides in the lower pressure working chamber 36c, and a lower end of the temperature sensing rod 36f is formed by the working rod 37f. The lower end of the operating rod 37f is in contact with the valve element 32b, and the temperature-sensitive rod 36f and the operating rod 37f are in contact with the valve element driving rod 31.
8 are configured. The top 312 and the large diameter portion 314
May be integrally configured.

【0007】したがって、均圧孔36eには、ダイアフ
ラム36aの下面から第1の通路32のオリフィス32
aまで延出した弁体駆動棒318が、同心的に配置され
ていることになる。なお、作動棒37fの部分37e
は、オリフィス32aの内径より細く形成されて、オリ
フィス32a内を挿通し、冷媒はオリフィス32a内を
通過する。また、感温棒36fには第1の通路32と、
第2の通路34との気密性を確保するための密封部材と
してOリング36gが備えられる。
Therefore, the orifice 32 of the first passage 32 is inserted into the pressure equalizing hole 36e from the lower surface of the diaphragm 36a.
The valve body drive rod 318 extending to a is concentrically arranged. The portion 37e of the operating rod 37f
Is formed thinner than the inner diameter of the orifice 32a, passes through the orifice 32a, and the refrigerant passes through the orifice 32a. In addition, the first passage 32 is provided in the temperature sensing rod 36f,
An O-ring 36g is provided as a sealing member for ensuring airtightness with the second passage 34.

【0008】圧力作動ハウジング36dの上部圧力作動
室36b中には、公知のダイアフラム駆動流体が充填さ
れていて、ダイアフラム駆動流体には第2の通路34や
第2の通路34に連通されている均圧孔36eに露出さ
れた弁体駆動棒318及びダイアフラム36aを介し
て、第2の通路34を流れているエバポレータ8の冷媒
出口からの冷媒の熱が伝達される。
The upper pressure working chamber 36b of the pressure working housing 36d is filled with a known diaphragm driving fluid, and the diaphragm driving fluid is uniformly communicated with the second passage 34 and the second passage 34. The heat of the refrigerant from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 is transmitted through the valve body driving rod 318 and the diaphragm 36a exposed to the pressure hole 36e.

【0009】上部圧力作動室36b中のダイアフラム駆
動流体は、上記伝達された熱に対応してガス化し、圧力
をダイアフラム36aの上面に負荷する。ダイアフラム
36aは上記上面に負荷されたダイアフラム駆動ガスの
圧力と、ダイアフラム36aの下面に負荷された圧力と
の差により上下に変位する。ダイアフラム36aの中心
部の上下への変位は、弁体駆動棒を介して弁体32bに
伝達され弁体32bをオリフィス32aの弁座に対して
接近または離間させる。この結果、冷媒流量が制御され
ることとなる。
[0009] The diaphragm driving fluid in the upper pressure working chamber 36b is gasified in response to the transferred heat, and applies pressure to the upper surface of the diaphragm 36a. The diaphragm 36a is displaced up and down due to the difference between the pressure of the diaphragm driving gas applied to the upper surface and the pressure applied to the lower surface of the diaphragm 36a. The displacement of the center of the diaphragm 36a up and down is transmitted to the valve body 32b via the valve body drive rod, and makes the valve body 32b approach or separate from the valve seat of the orifice 32a. As a result, the flow rate of the refrigerant is controlled.

【0010】即ち、エバポレータ8の出口側つまりエバ
ポレータから送り出される低圧の気相冷媒の温度が上部
圧力作動室36bに伝達されるため、その温度に応じて
上部圧力作動室36bの圧力が変化し、エバポレータ8
の出口温度が上昇する。つまりエバポレータの熱負荷が
増加すると、上部圧力作動室86bの圧力が高くなり、
それに応じて感温棒36fつまり弁体駆動棒が下方へ駆
動されて弁体32bを下げるため、オリフィス32aの
開度が大きくなる。これによりエバポレータ8への冷媒
の供給量が多くなり、エバポレータ8の温度を低下させ
る。逆に、エバポレータ8から送り出される冷媒の温度
が低下する。つまりエバポレータの熱負荷が減少する
と、弁体32bが上記と逆方向に駆動され、オリフィス
32aの開度が小さくなり、エバポレータへの冷媒の供
給量が少なくなり、エバポレータ8の温度を上昇させる
のである。
That is, since the temperature of the low-pressure gas-phase refrigerant sent from the outlet side of the evaporator 8, that is, from the evaporator, is transmitted to the upper pressure working chamber 36b, the pressure of the upper pressure working chamber 36b changes according to the temperature. Evaporator 8
Outlet temperature rises. That is, when the heat load of the evaporator increases, the pressure of the upper pressure working chamber 86b increases,
Accordingly, the temperature sensing rod 36f, that is, the valve body drive rod is driven downward to lower the valve body 32b, so that the opening degree of the orifice 32a increases. Thus, the supply amount of the refrigerant to the evaporator 8 increases, and the temperature of the evaporator 8 decreases. Conversely, the temperature of the refrigerant sent from the evaporator 8 decreases. That is, when the heat load of the evaporator decreases, the valve element 32b is driven in the opposite direction to the above, the opening degree of the orifice 32a decreases, the supply amount of the refrigerant to the evaporator decreases, and the temperature of the evaporator 8 increases. .

【0011】かかる従来の温度膨張弁においては、感温
棒36fは比較的大径の部材であり、この部材と作動棒
とで弁体駆動棒が構成されている。而して、上記弁体駆
動棒をロッド部材で構成した従来の温度膨張弁もあり、
このロッド部材を用いた従来の温度膨張弁10’を図2
8に示す。図28に示す膨張弁の動作は図26及び図2
7に示す膨張弁と同一であり、図26及び図27と同一
符号は同一または均等部分を示す。
In such a conventional temperature expansion valve, the temperature sensing rod 36f is a member having a relatively large diameter, and this member and the operating rod constitute a valve body driving rod. Thus, there is also a conventional temperature expansion valve in which the valve body driving rod is constituted by a rod member,
A conventional temperature expansion valve 10 'using this rod member is shown in FIG.
FIG. The operation of the expansion valve shown in FIG.
7 and the same reference numerals as those in FIGS. 26 and 27 indicate the same or equivalent parts.

【0012】感温機構を有する感温部318は、感温棒
361fとして作用し、ダイアフラム36aがその表面
に当接し、ダイアフラム36aの受け部となる大径のス
トッパ部312と、ストッパ部312の裏面に一端面が
当接し、かつ他端面の中央部が突起部315に形成され
て下部圧力作動室36c内に摺動自在に挿入される大径
部314と、この大径部314の突起部315の内部に
て一端面が嵌合し、他端面が作動棒に相当する部分37
1fを介して弁体32bに当接して連続する一体構成の
ロッド部材316とからなる。ロッド部材316を構成
する感温棒361fは、第2の通路内に露出して冷媒蒸
気からの熱が伝達される。
A temperature sensing portion 318 having a temperature sensing mechanism acts as a temperature sensing rod 361f, and a large diameter stopper portion 312 serving as a receiving portion of the diaphragm 36a when the diaphragm 36a contacts the surface thereof, and a stopper portion 312 of the stopper portion 312. A large-diameter portion 314 having one end surface in contact with the back surface and a center portion of the other end surface formed in a projection 315 and slidably inserted into the lower pressure working chamber 36c; and a projection of the large-diameter portion 314 A portion 37 in which one end face is fitted inside 315 and the other end face corresponds to the operating rod
And a rod member 316 of an integral structure which is in contact with the valve body 32b via 1f and is continuous. The temperature sensing rod 361f constituting the rod member 316 is exposed in the second passage, and heat from the refrigerant vapor is transmitted.

【0013】感温棒361fであるロッド部材361
は、パワーエレメント部36のダイアフラム36aの変
位に応じて通路34を横切って進退自在に駆動されるの
で、ロッド部316に沿って通路32と通路34間を連
通するクリアランス(隙間)が形成されることとなり、
この連通を防止するため、ロッド部316の外周に密着
するOリング42を大径の穴38’内に配置し、両通路
間にOリングが存在するようにしており、しかも、Oリ
ング42がコイルバネ32d及び通路321の冷媒圧力
により長手方向(パワーエレメント部36の存在する方
向)に作用する力を受けて、移動しないようにするため
戻り止めナットとしてプッシュナット41がOリング4
2に接して大径の穴38’内に配置されるようにロッド
部316に取り付けられている。
A rod member 361 which is a temperature sensing rod 361f
Is driven to move back and forth across the passage 34 in accordance with the displacement of the diaphragm 36a of the power element portion 36, so that a clearance (gap) communicating between the passage 32 and the passage 34 along the rod portion 316 is formed. That means
In order to prevent this communication, an O-ring 42 which is in close contact with the outer periphery of the rod portion 316 is arranged in the large-diameter hole 38 'so that the O-ring exists between both passages. A push nut 41 is used as a detent nut as a detent nut to prevent the coil spring 32 d and the refrigerant pressure in the passage 321 from moving in response to the force acting in the longitudinal direction (the direction in which the power element portion 36 exists) due to the refrigerant pressure.
2 and is attached to the rod portion 316 so as to be disposed in the large-diameter hole 38 ′ in contact with the rod portion 316.

【0014】かかる従来の温度膨張弁の配置位置及び支
持構造については従来から種々提案されている。即ち、
エンジンルームと車室との間を仕切る隔壁に開口を設
け、この開口の車室側に温度膨張弁を位置させ、エバポ
レータに冷媒を供給する冷媒配管をブロック状のコネク
タを介して温度膨張弁に接続し、上記コネクタを上記開
口にパッキン材を介して支持する構造が提案(例えば、
特開平7−223427号公報及び実開平7−3772
9号公報)されている。また、温度膨張弁自体をパッキ
ン材を介して開口に支持する(例えば、特開平7−21
5047号公報参照)構造が提案されている。
Various arrangements and support structures for such conventional thermal expansion valves have been proposed. That is,
An opening is provided in the partition that separates the engine room and the cabin, a temperature expansion valve is located on the cabin side of this opening, and a refrigerant pipe for supplying refrigerant to the evaporator is connected to the temperature expansion valve via a block-shaped connector. A structure has been proposed in which the connector is connected and the connector is supported in the opening via a packing material (for example,
JP-A-7-223427 and JP-A-7-3772.
No. 9). Further, the temperature expansion valve itself is supported at the opening via a packing material (for example, see Japanese Patent Application Laid-Open No. 7-21 / 1995).
A structure has been proposed.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上述の
ような温度膨張弁の支持構造においては、コネクタとパ
ッキンを用いた点で部品コスト及び組立コストの面で不
経済であり、またパッキン材を介して温度膨張弁に直接
支持する場合には、上記開口の内壁と温度膨張弁との間
に隙間が生じ、シールが不充分となるおそれがあるとい
う問題点がある。しかも、従来の温度膨張弁において
は、自動車用空調装置の温度膨張弁自体を上記隔壁の開
口に支持する形状について全く配慮されていなかった。
即ち、温度膨張弁のパワーエレメント部を構成する上蓋
は、ドーム形状でありかつ上蓋の壁部より突出する栓体
を有するため、上記開口の内壁との密着性が問題とな
り、パワーエレメント部の外形形状について配慮されて
いなかった。そこで本発明は、エンジンルームと車室と
の間を仕切る隔壁に設けた開口に、密着性良く温度膨張
弁を支持し、確実にシールすることのできる温度膨張弁
を提供することにある。
However, the above-mentioned structure for supporting the thermal expansion valve is uneconomical in terms of parts cost and assembly cost in that the connector and the packing are used, and also requires the use of the packing material. When the thermal expansion valve is directly supported by the thermal expansion valve, there is a problem that a gap may be formed between the inner wall of the opening and the thermal expansion valve, and the sealing may be insufficient. Moreover, in the conventional temperature expansion valve, no consideration has been given to the shape of supporting the temperature expansion valve of the automotive air conditioner itself at the opening of the partition wall.
That is, since the upper lid constituting the power element portion of the temperature expansion valve has a dome shape and has a plug protruding from the wall portion of the upper lid, adhesion to the inner wall of the opening becomes a problem, and the outer shape of the power element portion is reduced. The shape was not considered. Therefore, an object of the present invention is to provide a temperature expansion valve that supports a temperature expansion valve with good adhesion to an opening provided in a partition wall that partitions between an engine room and a vehicle compartment, and that can reliably seal the temperature expansion valve.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明の温度膨張弁は、弁本体と、上記弁本体の上
端部に設けられてダイアフラムの変位に応じて弁体を駆
動するパワーエレメント部と、上記弁本体の下端部に設
けられて上記弁体の弁開度を調節するばねの押圧力を調
整する調整ねじとからなり、上記パワーエレメント部は
これを囲んで設けられたカバーを有すると共に、上記弁
本体の下部はテーパ面として形成されていることを特徴
とする。
To achieve the above object, a thermal expansion valve according to the present invention comprises a valve body and a power supply provided at an upper end of the valve body for driving a valve body in accordance with displacement of a diaphragm. An element portion, and an adjusting screw provided at a lower end portion of the valve body for adjusting a pressing force of a spring for adjusting a valve opening of the valve body, wherein the power element portion is a cover provided surrounding the same. And the lower part of the valve body is formed as a tapered surface.

【0017】また、本発明の温度膨張弁は、エバポレー
タに送り込まれる冷媒が通る第1の流路と、エバポレー
タから送り出された冷媒が通る第2の流路とが弁本体に
形成され、上記第1の流路の途中に形成されたオリフィ
スに対向して配置された弁体がばねによって閉弁方向に
付勢されると共に、上記第2の流路内を通る冷媒の温度
を感知して動作するパワーエレメントによってロッドを
介して上記弁体が開弁方向に付勢され、それによって弁
開度が制御されるようにした温度膨張弁において、上記
パワーエレメントを囲んで設けられたカバーを具備する
と共に、上記ばねの存在する上記弁本体の下部がテーパ
面に形成されていることを特徴とする。
In the temperature expansion valve of the present invention, a first flow path through which the refrigerant fed into the evaporator passes and a second flow path through which the refrigerant fed from the evaporator passes are formed in the valve body. The valve body disposed opposite the orifice formed in the middle of the first flow path is urged in the valve closing direction by a spring, and operates by sensing the temperature of the refrigerant passing through the second flow path. The temperature expansion valve in which the valve element is urged in the valve opening direction via a rod by the power element to be controlled, thereby controlling the valve opening, is provided with a cover provided around the power element. In addition, the lower part of the valve body where the spring exists is formed in a tapered surface.

【0018】さらに本発明の温度膨張弁における好まし
い具体的態様としては、上記カバーは、内部には凹部が
形成され外部には曲面とこれに連続するテーパ面が形成
され、上部凹部に上記パワーエレメントが収容されると
共に、上記テーパ面が上記弁本体のテーパ面にほぼ連続
して設けられることを特徴とする。
In a preferred embodiment of the thermal expansion valve of the present invention, the cover has a concave portion formed inside, a curved surface and a tapered surface continuous with the curved surface formed outside, and the power element is formed in an upper concave portion. And the tapered surface is provided substantially continuously with the tapered surface of the valve body.

【0019】さらにまた、本発明の温度膨張弁の具体的
態様としては、上記弁本体のテーパ面は上記弁本体の全
高寸法のほぼ中央部から形成されていることを特徴とす
る。また、本発明の温度膨張弁の具体的態様としては、
上記弁本体は、上記パワーエレメント部が設けられる上
面からその全高寸法のほぼ中央部まで、互いに平行な面
と、これに連続する調整ねじの設けられる底面に向かっ
て先細りのテーパ面とからなる外形に形成されているこ
とを特徴とする。
Further, in a specific embodiment of the thermal expansion valve of the present invention, the tapered surface of the valve body is formed substantially at the center of the entire height of the valve body. Further, as a specific embodiment of the temperature expansion valve of the present invention,
The valve body has an outer shape including a surface parallel to each other and a tapered surface tapering toward a bottom surface provided with a continuous adjustment screw from an upper surface on which the power element portion is provided to a substantially central portion of the entire height thereof. It is characterized by being formed in.

【0020】かくの如く構成された本発明によれば、弁
本体が平行な面とテーパ面から形成されるので、上記隔
壁に密着し易く、取付け性が向上する。さらに、パワー
エレメント部に設けられるカバーによりパワーエレメン
ト部の外形形状を整形することができるので、上記隔壁
の開口部との密着性が良く、シール性が良好となる。
According to the present invention constructed as described above, since the valve body is formed of the parallel surface and the tapered surface, the valve body is easily brought into close contact with the partition and the mounting property is improved. Further, since the outer shape of the power element portion can be shaped by the cover provided on the power element portion, the adhesion to the opening of the partition wall is good, and the sealing property is good.

【0021】[0021]

【発明の実施の形態】図1〜図6は、本発明の温度膨張
弁の一実施の形態を示す図であり、図1は正面図、図2
は左側面図、図3は右側面図、図4は背面図、図5は上
面図、図6は下面図である。本発明においては、従来例
の温度膨張弁と同一の作用を行い、従来例の温度膨張弁
とは、弁本体の外形形状が異なっているのみであるの
で、従来例と同一部分には同一の符号を付して、従来例
の説明で述べた部分については説明を省略する。全体を
符号100で示す温度膨張弁は、例えばアルミ合金製の
弁本体110を有する。弁本体110の頂部には、先に
説明したパワーエレメント部36が取り付けられ、パワ
ーエレメント部36内のダイアフラムは感温棒361f
を作動させる。
1 to 6 show an embodiment of a temperature expansion valve according to the present invention. FIG. 1 is a front view and FIG.
3 is a left side view, FIG. 3 is a right side view, FIG. 4 is a rear view, FIG. 5 is a top view, and FIG. 6 is a bottom view. In the present invention, the same operation as that of the conventional temperature expansion valve is performed, and only the outer shape of the valve body is different from that of the conventional temperature expansion valve. Reference numerals are used, and description of the portions described in the description of the conventional example is omitted. The temperature expansion valve generally denoted by reference numeral 100 has a valve body 110 made of, for example, an aluminum alloy. The power element 36 described above is attached to the top of the valve body 110, and the diaphragm in the power element 36 is a temperature sensing rod 361f.
Activate

【0022】弁本体110の底部116の近傍の一側面
には、コンデンサ、レシーバを介して供給される冷媒の
第1の通路32の入口ポート321が設けられる。導入
された冷媒は、感温棒361fにより開度が制御される
オリフィスを通って、弁本体110の他側に設けられた
出口ポート322からエバポレータへ向かう。エバポレ
ータから送出される冷媒は、弁本体110のパワーエレ
メント部36側に設けられた第2の通路34を通る。こ
の間に冷媒の温度は、感温棒361fを介してダイアフ
ラムに伝達される。
An inlet port 321 of the first passage 32 for the refrigerant supplied via a condenser and a receiver is provided on one side near the bottom 116 of the valve body 110. The introduced refrigerant passes through an orifice whose opening degree is controlled by the temperature sensing rod 361f, and flows from the outlet port 322 provided on the other side of the valve body 110 to the evaporator. The refrigerant discharged from the evaporator passes through the second passage 34 provided on the power element 36 side of the valve body 110. During this time, the temperature of the refrigerant is transmitted to the diaphragm via the temperature sensing rod 361f.

【0023】弁本体110には、第2の通路34の軸線
と平行に2個の貫通穴50が形成される。この貫通穴5
0は、本体を他の部材に固着するためのロッド等の通過
のために使用される。また、弁本体110の一方の側面
には、貫通穴50に平行に有底のねじ穴152が設けら
れ、締付用のボルト等が螺合される。
Two through holes 50 are formed in the valve body 110 in parallel with the axis of the second passage 34. This through hole 5
0 is used for the passage of a rod or the like for fixing the body to another member. On one side surface of the valve body 110, a screw hole 152 having a bottom is provided in parallel with the through hole 50, and a tightening bolt or the like is screwed therein.

【0024】弁本体110の冷媒通路140の軸線に平
行な側面112は、パワーエレメント部36が取り付け
られる上面から、底面116にかけて、弁本体110の
全高寸法のほぼ中央部までは、互いに平行な面で構成さ
れる。そして、本体の中央部から底面116に向けて、
平行面に連続する先細りのテーパ面114に形成され
る。弁本体110の底面116には、先に説明した弁室
を封止するナット部材39が取り付けられる。
The side surfaces 112 of the valve body 110 parallel to the axis of the refrigerant passage 140 are parallel to each other from the top surface where the power element 36 is mounted to the bottom surface 116 to almost the center of the entire height of the valve body 110. It consists of. Then, from the center of the main body toward the bottom surface 116,
It is formed on a tapered tapered surface 114 that is continuous with the parallel surface. The nut member 39 for sealing the valve chamber described above is attached to the bottom surface 116 of the valve body 110.

【0025】かかる本発明の温度膨張弁によれば、弁本
体が平行な面と、これに連続するテーパ面から形成され
ているので、上記隔壁に密着し易くしかも取付け性が向
上する。次に、本発明の温度膨張弁を上記隔壁に取付け
る場合の本発明の一実施の形態について説明する。
According to the thermal expansion valve of the present invention, since the valve body is formed of a parallel surface and a tapered surface that is continuous with the parallel surface, the valve body is easily brought into close contact with the partition wall, and the mountability is improved. Next, an embodiment of the present invention in which the temperature expansion valve of the present invention is attached to the partition will be described.

【0026】図7は、図1〜図6の実施の形態に示す温
度膨張弁の弁本体の外側にカバーを装着した状態を示す
温度膨張弁の正面図、図8は左側面図、図9は右側面
図、図10は背面図、図11は上面図、図12は下面図
であり、それぞれ図1〜図6に対応している。図におい
て、全体を符号200で示すカバーは、例えばプラスチ
ック樹脂でつくられる。カバー200は、その内部に形
成したパワーエレメント部36を収容する凹部221を
有する頭部220と、温度膨張弁110の平行面の外側
を覆うテーパ部210を備える。上記凹部221は、パ
ワーエレメント部36を収容し、パワーエレメント部3
6の外周縁に当接する。したがって、カバー200によ
り、パワーエレメント部36の外形形状を整形できるこ
ととなる。テーパ部210の外側面212は、温度膨張
弁の弁本体110のテーパ面114とともに、ほぼ同一
の平面を形成するテーパ面に形成される。テーパ部21
0の内側面214は、弁本体110の平行面に嵌合す
る。
FIG. 7 is a front view of the temperature expansion valve shown in the embodiment of FIGS. 1 to 6 with a cover attached to the outside of the valve body, FIG. 8 is a left side view, and FIG. 10 is a right side view, FIG. 10 is a rear view, FIG. 11 is a top view, and FIG. 12 is a bottom view, which correspond to FIGS. In the drawing, a cover indicated generally by reference numeral 200 is made of, for example, a plastic resin. The cover 200 includes a head portion 220 having a concave portion 221 for accommodating the power element portion 36 formed therein, and a tapered portion 210 covering the outside of a parallel surface of the thermal expansion valve 110. The recess 221 accommodates the power element 36 and the power element 3
6 comes into contact with the outer peripheral edge. Therefore, the outer shape of the power element 36 can be shaped by the cover 200. The outer surface 212 of the tapered portion 210 is formed as a tapered surface that forms substantially the same plane as the tapered surface 114 of the valve body 110 of the thermal expansion valve. Tapered part 21
The inner surface 214 of the zero fits into the parallel surface of the valve body 110.

【0027】カバー200の頭部220の外表面222
は、湾曲面で形成される。そこで、カバー200を装着
した温度膨張弁は、図8,図9に示すような側面形状を
有する。また、正面からみた頭部220の端面224
は、膨張弁本体から突出し、パワーエレメント部36の
全体を覆う。端面224は直交する面226で膨張弁本
体に接する。かくの如く、本発明の温度膨張弁は、テー
パ面と湾曲面の外周面からなる外形を有するように構成
されるので、温度膨張弁とこの取付部との密着性を向上
することが可能となる。
The outer surface 222 of the head 220 of the cover 200
Is formed with a curved surface. Therefore, the thermal expansion valve to which the cover 200 is attached has a side shape as shown in FIGS. Further, the end face 224 of the head 220 viewed from the front.
Protrudes from the expansion valve body and covers the entire power element portion 36. The end face 224 is in contact with the expansion valve body at a plane 226 that is orthogonal. As described above, since the temperature expansion valve of the present invention is configured to have an outer shape formed of the tapered surface and the outer peripheral surface of the curved surface, it is possible to improve the adhesion between the temperature expansion valve and the mounting portion. Become.

【0028】図13は、カバー200の斜視図である。
カバー200は、例えば2分割されており、温度膨張弁
に装着される。分割面は、接着剤やファスナー等の適宜
の手段により固着される。かかるカバー200により、
その凹部をパワーエレメントに挿入し、パワーエレメン
トの外周縁を当接させるだけであるため、カバーと温度
膨張弁とのシール性を向上させ、しかも取付性を改善す
ることができる。
FIG. 13 is a perspective view of the cover 200.
The cover 200 is divided into two parts, for example, and is attached to the temperature expansion valve. The division surface is fixed by an appropriate means such as an adhesive or a fastener. With such a cover 200,
Since the concave portion is simply inserted into the power element and the outer peripheral edge of the power element is brought into contact with the power element, the sealing performance between the cover and the thermal expansion valve can be improved, and the mounting performance can be improved.

【0029】図14は、本発明の温度膨張弁を、例え
ば、自動車のエンジンルームと車室を隔てる隔壁500
に形成された開口部501に取り付けた状態を示す側面
図、図15は正面図である。金属板でつくられる隔壁5
00に形成される取付部となる開口部501に対して、
パッキン材であるシール部材510を介してカバー20
0を装着した温度膨張弁100が保持される。冷媒の配
管600,610は、ブラケット620により温度膨張
弁の本体に接続される。
FIG. 14 shows a temperature expansion valve according to the present invention, for example, a partition wall 500 for separating an engine room and a cabin of an automobile.
15 is a side view showing a state of being attached to the opening 501 formed in FIG. 15, and FIG. 15 is a front view. Partition wall 5 made of metal plate
With respect to the opening 501 serving as an attachment portion formed at 00,
The cover 20 is provided via a sealing member 510 which is a packing material.
The temperature expansion valve 100 with 0 is held. The refrigerant pipes 600 and 610 are connected to the main body of the temperature expansion valve by a bracket 620.

【0030】カバー200が装着された温度膨張弁の正
面形状は、ほぼテーパ面と湾曲面で囲まれた形状を有す
るので、取付部となる開口部に対し、シール部材510
による密着性がよくなり、シール性よく開口部を塞ぐこ
とができる。したがって、エンジンルームと車室の間も
確実にシールされる。
The front shape of the temperature expansion valve to which the cover 200 is attached has a shape substantially surrounded by a tapered surface and a curved surface.
And the opening can be closed with good sealing properties. Therefore, the space between the engine room and the vehicle compartment is securely sealed.

【0031】以上の説明においては、カバー400を分
割して温度膨張弁100に装着する場合について述べた
が、本発明はこれに限らずカバー400を分割すること
なく、例えばプラスチック樹脂で一体に成形したカバー
を温度膨張弁に装着する場合にも適用できるのは勿論で
ある。図16〜図23は、その場合の本発明の他の実施
の形態を示し、温度膨張弁の構成は図1〜図6と同一で
あり、同一部分には同一の符号を付して説明は省略す
る。而して、図16は、温度膨張弁100にカバーを装
着した場合の実施の形態を示す温度膨張弁の正面図、図
17は左側面図、図18は右側面図、図19は背面図、
図20は上面図、図21は下面図、図22はカバーの斜
視図、図23は図22の矢印R方向から見たカバーの斜
視図である。図において、全体を符号400で示すカバ
ーは、例えばプラスチック樹脂で一体につくられる。
In the above description, the case where the cover 400 is divided and attached to the temperature expansion valve 100 has been described. However, the present invention is not limited to this. It is needless to say that the present invention can be applied to a case where the cover is attached to the temperature expansion valve. 16 to 23 show another embodiment of the present invention in that case. The configuration of the temperature expansion valve is the same as that of FIGS. 1 to 6, and the same parts are denoted by the same reference numerals and description thereof will be omitted. Omitted. FIG. 16 is a front view of the thermal expansion valve showing an embodiment in which a cover is attached to the thermal expansion valve 100, FIG. 17 is a left side view, FIG. 18 is a right side view, and FIG. ,
20 is a top view, FIG. 21 is a bottom view, FIG. 22 is a perspective view of the cover, and FIG. 23 is a perspective view of the cover as viewed from the direction of arrow R in FIG. In the drawing, a cover indicated by reference numeral 400 is integrally made of, for example, a plastic resin.

【0032】カバー400の本体410は、両側部41
2と頭部422を有し、両側部412の外面はテーパ面
に、内面は温度膨張弁100の本体に接触する平坦面4
14に形成される。頭部422の外表面は湾曲面に形成
され、その内側に温度膨張弁のパワーエレメント部36
が収容される凹部424,426が形成される。これら
の凹部424及び426に沿ってパワーエレメント部3
6が挿入され、カバー400が温度膨張弁100に装着
される。なお、上記凹部424,426の奥行き寸法
は、カバー400をパワーエレメント部36に被せたと
きに、パワーエレメント部36を収容する位置を考慮し
て選定される。
The main body 410 of the cover 400 is
2 and a head 422, the outer surface of both sides 412 is a tapered surface, and the inner surface is a flat surface 4 that contacts the main body of the thermal expansion valve 100.
14 is formed. The outer surface of the head 422 is formed in a curved surface, and inside the power element 36 of the thermal expansion valve, is formed.
Are formed. Along these recesses 424 and 426, the power element 3
6 is inserted, and the cover 400 is attached to the thermal expansion valve 100. The depth of the recesses 424 and 426 is selected in consideration of the position where the power element 36 is accommodated when the cover 400 is placed on the power element 36.

【0033】カバー本体410の両側部412の内面4
14の後端部には、突出部416が形成される。そこ
で、カバー400を温度膨張弁100に装着したとき
に、膨張弁本体110は、この突出部416に突き当た
り、位置決めされる。突出部416の下端部には、円弧
状の切欠き部418が形成される。この切欠き部418
は、温度膨張弁本体110に設けられる取付用のボルト
穴50との干渉を避けるために設けられるものである。
さらに、図22及び図23に示すカバー400において
は、図13のカバー200において形成された端面22
4の突出部は具備せず、図16に示す如くパワーエレメ
ント部36の一部が凹部426から露出している。
Inner surface 4 of both sides 412 of cover body 410
A protruding portion 416 is formed at the rear end of 14. Therefore, when the cover 400 is attached to the temperature expansion valve 100, the expansion valve main body 110 abuts on the protrusion 416 and is positioned. An arc-shaped notch 418 is formed at the lower end of the protrusion 416. This notch 418
Are provided to avoid interference with the mounting bolt holes 50 provided in the temperature expansion valve main body 110.
Further, in the cover 400 shown in FIGS. 22 and 23, the end face 22 formed in the cover 200 of FIG.
4 is not provided, and a part of the power element portion 36 is exposed from the concave portion 426 as shown in FIG.

【0034】図24は、カバー400が装着された温度
膨張弁100を、例えば自動車のエンジンルームと車室
を隔てる隔壁500に形成された開口部に取り付けた状
態を示す側面図、図25は正面図であって、図14,図
15で説明した構成と同様であるので、同一部分に同一
符号を付して説明を省略する。
FIG. 24 is a side view showing a state in which the thermal expansion valve 100 with the cover 400 is attached to, for example, an opening formed in a partition wall 500 for separating an engine room and a vehicle compartment of an automobile, and FIG. Since the configuration is the same as that described with reference to FIGS. 14 and 15, the same portions are denoted by the same reference numerals and description thereof will be omitted.

【0035】[0035]

【発明の効果】本発明は以上のように、カーエアコン等
の冷凍サイクルに使用される温度膨張弁をカバーで覆う
ことによって、パワーエレメント部の外周縁の形状を整
形することができる。したがって、この温度膨張弁を車
両のエンジンルームと車室の間の隔壁等に装備する際
に、確実な、しかもシール性が良好な温度膨張弁を実現
することができる。
As described above, according to the present invention, the shape of the outer peripheral edge of the power element can be shaped by covering the temperature expansion valve used in the refrigeration cycle of the car air conditioner or the like with the cover. Therefore, when this temperature expansion valve is installed in a partition wall or the like between the engine room and the vehicle compartment of the vehicle, it is possible to realize a temperature expansion valve that is reliable and has good sealing properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の温度膨張弁の正面図。FIG. 1 is a front view of a temperature expansion valve of the present invention.

【図2】本発明の温度膨張弁の左側面図。FIG. 2 is a left side view of the temperature expansion valve of the present invention.

【図3】本発明の温度膨張弁の右側面図。FIG. 3 is a right side view of the temperature expansion valve of the present invention.

【図4】本発明の温度膨張弁の背面図。FIG. 4 is a rear view of the thermal expansion valve of the present invention.

【図5】本発明の温度膨張弁の上面図。FIG. 5 is a top view of the temperature expansion valve of the present invention.

【図6】本発明の温度膨張弁の下面図。FIG. 6 is a bottom view of the thermal expansion valve of the present invention.

【図7】カバーを装着した温度膨張弁の正面図。FIG. 7 is a front view of the temperature expansion valve to which a cover is attached.

【図8】カバーを装着した温度膨張弁の左側面図。FIG. 8 is a left side view of the temperature expansion valve to which a cover is attached.

【図9】カバーを装着した温度膨張弁の右側面図。FIG. 9 is a right side view of the temperature expansion valve with a cover attached.

【図10】カバーを装着した温度膨張弁の背面図。FIG. 10 is a rear view of the thermal expansion valve with a cover attached.

【図11】カバーを装着した温度膨張弁の上面図。FIG. 11 is a top view of the thermal expansion valve with a cover attached.

【図12】カバーを装着した温度膨張弁の下面図。FIG. 12 is a bottom view of the thermal expansion valve with a cover attached.

【図13】温度膨張弁のカバーの斜視図。FIG. 13 is a perspective view of a cover of the temperature expansion valve.

【図14】本発明の温度膨張弁の取付状態を示す側面
図。
FIG. 14 is a side view showing a mounted state of the temperature expansion valve of the present invention.

【図15】本発明の温度膨張弁の取付状態を示す正面
図。
FIG. 15 is a front view showing a mounted state of the temperature expansion valve of the present invention.

【図16】本発明の他の実施の形態を示す温度膨張弁の
正面図。
FIG. 16 is a front view of a temperature expansion valve showing another embodiment of the present invention.

【図17】本発明の他の実施の形態を示す温度膨張弁の
左側面図。
FIG. 17 is a left side view of a temperature expansion valve showing another embodiment of the present invention.

【図18】本発明の他の実施の形態を示す温度膨張弁の
右側面図。
FIG. 18 is a right side view of a temperature expansion valve showing another embodiment of the present invention.

【図19】本発明の他の実施の形態を示す温度膨張弁の
背面図。
FIG. 19 is a rear view of a temperature expansion valve showing another embodiment of the present invention.

【図20】本発明の他の実施の形態を示す温度膨張弁の
上面図。
FIG. 20 is a top view of a temperature expansion valve showing another embodiment of the present invention.

【図21】本発明の他の実施の形態を示す温度膨張弁の
下面図。
FIG. 21 is a bottom view of a temperature expansion valve showing another embodiment of the present invention.

【図22】温度膨張弁のカバーの斜視図。FIG. 22 is a perspective view of a cover of the temperature expansion valve.

【図23】温度膨張弁のカバーの斜視図。FIG. 23 is a perspective view of a cover of the temperature expansion valve.

【図24】従来の温度膨張弁の取付状態を示す側面図。FIG. 24 is a side view showing a mounting state of a conventional temperature expansion valve.

【図25】従来の温度膨張弁の取付状態を示す正面図。FIG. 25 is a front view showing a mounting state of a conventional temperature expansion valve.

【図26】従来の温度膨張弁の縦断面図。FIG. 26 is a longitudinal sectional view of a conventional thermal expansion valve.

【図27】従来の温度膨張弁の他の例を示す概略斜視
図。
FIG. 27 is a schematic perspective view showing another example of a conventional temperature expansion valve.

【図28】従来の温度膨張弁の他の例を示す断面図。FIG. 28 is a sectional view showing another example of a conventional temperature expansion valve.

【符号の説明】[Explanation of symbols]

32 第1の通路 34 第2の通路 36 パワーエレメント部 36f 感温棒 50 貫通穴 100 温度膨張弁 110 弁本体 112 平行面 114 テーパ面 116 底面 200 カバー 210 テーパ部 212 テーパ面 220 頭部 221 凹部 222 湾曲面 32 first passage 34 second passage 36 power element portion 36f temperature sensing rod 50 through hole 100 temperature expansion valve 110 valve body 112 parallel surface 114 taper surface 116 bottom surface 200 cover 210 taper portion 212 taper surface 220 head 221 recess 222 Curved surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弁本体と、上記弁本体の上端部に設けら
れてダイアフラムの変位に応じて弁体を駆動するパワー
エレメント部と、上記弁本体の下端部に設けられて上記
弁体の弁開度を調節するばねの押圧力を調整する調整ね
じとからなり、上記パワーエレメント部はこれを囲んで
設けられたカバーを有すると共に、上記弁本体の下部は
テーパ面として形成されていることを特徴とする温度膨
張弁。
A valve body provided at an upper end of the valve body for driving a valve body in accordance with a displacement of a diaphragm; and a valve provided at a lower end of the valve body and provided at the valve body. And an adjusting screw for adjusting the pressing force of a spring for adjusting the opening, wherein the power element has a cover provided therearound, and the lower part of the valve body is formed as a tapered surface. Characteristic temperature expansion valve.
【請求項2】 エバポレータに送り込まれる冷媒が通る
第1の流路と、エバポレータから送り出された冷媒が通
る第2の流路とが弁本体に形成され、上記第1の流路の
途中に形成されたオリフィスに対向して配置された弁体
がばねによって閉弁方向に付勢されると共に、上記第2
の流路内を通る冷媒の温度を感知して動作するパワーエ
レメントによってロッドを介して上記弁体が開弁方向に
付勢され、それによって弁開度が制御されるようにした
温度膨張弁において、 上記パワーエレメントを囲んで設けられたカバーを具備
すると共に、上記ばねの存在する上記弁本体の下部がテ
ーパ面に形成されていることを特徴とする温度膨張弁。
2. A first flow path through which the refrigerant sent to the evaporator passes and a second flow path through which the refrigerant sent from the evaporator passes are formed in the valve body, and are formed in the middle of the first flow path. The valve body disposed opposite the orifice is urged in the valve closing direction by a spring, and the second
In a temperature expansion valve, the valve element is urged in the valve opening direction via a rod by a power element that operates by sensing the temperature of the refrigerant passing through the flow path, thereby controlling the valve opening. A temperature expansion valve, comprising: a cover provided to surround the power element; and a lower part of the valve body where the spring is present is formed in a tapered surface.
【請求項3】 上記カバーは、内部には凹部が形成され
外部には曲面とこれに連続するテーパ面が形成され、上
部凹部に上記パワーエレメントが収容されると共に、上
記テーパ面が上記弁本体のテーパ面にほぼ連続して設け
られることを特徴とする請求項1又は請求項2記載の温
度膨張弁。
3. The cover has a concave portion formed inside, a curved surface and a tapered surface connected to the curved surface formed outside, and the power element is accommodated in an upper concave portion, and the tapered surface is formed on the valve body. The thermal expansion valve according to claim 1, wherein the thermal expansion valve is provided substantially continuously on the tapered surface of the thermal expansion valve.
【請求項4】 上記弁本体のテーパ面は上記弁本体の全
高寸法のほぼ中央部から形成されていることを特徴とす
る請求項3記載の温度膨張弁。
4. The thermal expansion valve according to claim 3, wherein the tapered surface of the valve body is formed substantially at the center of the entire height of the valve body.
【請求項5】 上記弁本体は、上記パワーエレメント部
が設けられる上面からその全高寸法のほぼ中央部まで、
互いに平行な面と、これに連続する調整ねじの設けられ
る底面に向かって先細りのテーパ面とからなる外形に形
成されていることを特徴とする請求項1又は請求項2記
載の温度膨張弁。
5. The valve body according to claim 1, wherein the power element is provided from an upper surface to a substantially central portion of the entire height thereof.
3. The thermal expansion valve according to claim 1, wherein the thermal expansion valve is formed to have an outer shape composed of surfaces parallel to each other and a tapered surface tapering toward a bottom surface on which an adjusting screw is provided.
【請求項6】 上記カバーは、プラスチック材料で一体
に形成されたことを特徴とする請求項1又は請求項2記
載の温度膨張弁。
6. The thermal expansion valve according to claim 1, wherein the cover is integrally formed of a plastic material.
【請求項7】 上記カバーは、プラスチック材料で2分
割に形成されたことを特徴とする請求項1又は請求項2
記載の温度膨張弁。
7. The cover according to claim 1, wherein the cover is formed of a plastic material in two parts.
The temperature expansion valve as described.
JP35070199A 1999-11-10 1999-12-09 Temperature expansiion valve Pending JP2001199230A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35070199A JP2001199230A (en) 1999-11-10 1999-12-09 Temperature expansiion valve
US09/706,780 US6354509B1 (en) 1999-11-10 2000-11-07 Thermal expansion valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-319892 1999-11-10
JP31989299 1999-11-10
JP35070199A JP2001199230A (en) 1999-11-10 1999-12-09 Temperature expansiion valve

Publications (2)

Publication Number Publication Date
JP2001199230A true JP2001199230A (en) 2001-07-24
JP2001199230A5 JP2001199230A5 (en) 2007-01-25

Family

ID=26569866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35070199A Pending JP2001199230A (en) 1999-11-10 1999-12-09 Temperature expansiion valve

Country Status (2)

Country Link
US (1) US6354509B1 (en)
JP (1) JP2001199230A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344966A3 (en) * 2002-03-15 2004-04-21 Fujikoki Corporation Expansion valve
KR100747326B1 (en) 2006-02-02 2007-08-07 기아자동차주식회사 Expansion valve cover by using elastic parts for preventing corrosion and heat damage
WO2009054211A1 (en) * 2007-10-24 2009-04-30 Fujikoki Corporation Expansion valve
JP2019066064A (en) * 2017-09-29 2019-04-25 株式会社不二工機 Expansion valve
KR20200059371A (en) * 2018-11-20 2020-05-29 우리산업 주식회사 Electronic expansion valve
US10919365B2 (en) 2016-12-23 2021-02-16 Denso Corporation Expansion valve device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868684B2 (en) * 2002-12-17 2005-03-22 Parker-Hannifin Corporation Block valve with integral refrigerant lines
FR2866937B1 (en) * 2004-02-26 2007-03-16 Otto Egelhof Gmbh & Co Kg DEVICE FOR OPENING AND CLOSING A PASSAGE PRESENT IN A CASE
EP1598581B1 (en) * 2004-05-17 2007-06-06 Fujikoki Corporation Expansion valve
CN102758965B (en) * 2011-04-27 2015-11-11 浙江三花股份有限公司 Heating power expansion valve
JP2016099012A (en) * 2014-11-18 2016-05-30 株式会社ヴァレオジャパン Expansion device and refrigeration cycle of air conditioner for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342421A (en) * 1981-02-23 1982-08-03 General Motors Corporation Thermostatic expansion valve for a refrigeration system
US4984735A (en) * 1990-03-19 1991-01-15 Eaton Corporation Sensing refrigerant temperature in a thermostatic expansion valve
USD415564S (en) * 1997-04-01 1999-10-19 Tgk Co., Ltd. Thermostatic expansion valve for vehicle air conditioning systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344966A3 (en) * 2002-03-15 2004-04-21 Fujikoki Corporation Expansion valve
US6824068B2 (en) 2002-03-15 2004-11-30 Fujikoki Corporation Expansion valve
KR100747326B1 (en) 2006-02-02 2007-08-07 기아자동차주식회사 Expansion valve cover by using elastic parts for preventing corrosion and heat damage
WO2009054211A1 (en) * 2007-10-24 2009-04-30 Fujikoki Corporation Expansion valve
JP5227967B2 (en) * 2007-10-24 2013-07-03 株式会社不二工機 Expansion valve
US8806880B2 (en) 2007-10-24 2014-08-19 Fujikoki Corporation Expansion valve
US10919365B2 (en) 2016-12-23 2021-02-16 Denso Corporation Expansion valve device
JP2019066064A (en) * 2017-09-29 2019-04-25 株式会社不二工機 Expansion valve
KR20200059371A (en) * 2018-11-20 2020-05-29 우리산업 주식회사 Electronic expansion valve
KR102170491B1 (en) * 2018-11-20 2020-10-29 우리산업 주식회사 Electronic expansion valve

Also Published As

Publication number Publication date
US6354509B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JPH11351440A (en) Thermal expansion valve and manufacture of the same
JP2001199230A (en) Temperature expansiion valve
JP2001201212A (en) Temperature expansion valve
JPH10170106A (en) Expansion valve
JPH11325660A (en) Expansion valve
JP3545847B2 (en) Expansion valve
JPH1016542A (en) Receiver having expansion mechanism
EP0762063B1 (en) Thermostatic expansion valve
JPH11287536A (en) Expansion valve
JP2002054860A (en) Thermostatic expansion valve
JPH10288424A (en) Temperature type expansion valve
JP2001241808A (en) Expansion valve
JP5227967B2 (en) Expansion valve
JPH11223425A (en) Expansion valve
JP2000304381A (en) Temperature expansion valve
JP3943843B2 (en) Soundproof cover for expansion valve
JP4743926B2 (en) Expansion valve
JP4057378B2 (en) Expansion valve
JPH09159324A (en) Expansion valve
CN108489161B (en) Thermal expansion valve
JP3942848B2 (en) Expansion valve unit
JPH10122706A (en) Expansion valve
JP4081295B2 (en) Expansion valve
JPH11325661A (en) Expansion valve
JP4462813B2 (en) Expansion valve

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013