JPH08210734A - Temperature type expansion valve - Google Patents

Temperature type expansion valve

Info

Publication number
JPH08210734A
JPH08210734A JP7018321A JP1832195A JPH08210734A JP H08210734 A JPH08210734 A JP H08210734A JP 7018321 A JP7018321 A JP 7018321A JP 1832195 A JP1832195 A JP 1832195A JP H08210734 A JPH08210734 A JP H08210734A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
expansion valve
diaphragm
transmission rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7018321A
Other languages
Japanese (ja)
Inventor
Tetsushige Shinoda
哲滋 信田
Hiroki Matsuo
弘樹 松尾
Yasushi Yamanaka
康司 山中
Kenichi Fujiwara
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7018321A priority Critical patent/JPH08210734A/en
Publication of JPH08210734A publication Critical patent/JPH08210734A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE: To provide a temperature type expansion valve which is constituted to perform stable valve operation without increasing a manufacturing cost. CONSTITUTION: A valve block 8 constituting an expansion valve 1 body is provided with a second flow passage 7 through which a refrigerant fed from a refrigerant vaporizer 5 flows. The temperature of the refrigerant flowing through the second flow passage 7 is transmitted through a transmission rod 18 to a diaphragm 12 forming one wall surface of a temperature-sensitive chamber 14. The transmission rod 18 comprises a temperature-sensitive part 18b exposed to a refrigerant flowing through a second flow passage 7, a return part 18c having diameter larger than that of the temperature-sensitive part 18b, and a head part 18a having diameter further larger than that of the return part 18c, and the upper end surface of a head part 18a is adhered to the diaphragm 12. The return part 18c is positioned on the inner periphery of an opening hole 16 communicated with the second flow passage 7, an outer periphery is expanded to a position approaching the inner peripheral surface of the opening hole 16, and a difference in a level is produced between the temperature- sensitive part 18b and the return part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクルの冷媒蒸
発器から冷媒圧縮機へ向かって流れる冷媒の温度変化に
応答して冷媒蒸発器へ送られる冷媒流量を自動的に調節
する温度式膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature type expansion which automatically adjusts the flow rate of the refrigerant sent to the refrigerant evaporator in response to the temperature change of the refrigerant flowing from the refrigerant evaporator of the refrigeration cycle to the refrigerant compressor. Regarding the valve.

【0002】[0002]

【従来の技術】従来より、ダイヤフラムが一壁面を形成
する感温室に飽和蒸気ガスが封入されたガスチャージ膨
張弁がある。この膨張弁は、弁ブロックに形成された低
圧冷媒通路を流れる冷媒(冷媒蒸発器から冷媒圧縮機へ
向かって流れる冷媒)の温度がロッドを介してダイヤフ
ラムに伝達されるが、低圧冷媒通路を流れる冷媒の温度
変化があまりに速くダイヤフラムに伝達されると、冷媒
の過熱度の僅かな変化など冷媒に生じる小さな脈動がそ
のまま弁機構の開閉動作に伝わるため、弁動作がはなは
だ不安定となってしまう。
2. Description of the Related Art Conventionally, there is a gas charge expansion valve in which saturated vapor gas is enclosed in a sensitive greenhouse where a diaphragm forms one wall surface. In this expansion valve, the temperature of the refrigerant (the refrigerant flowing from the refrigerant evaporator to the refrigerant compressor) flowing through the low pressure refrigerant passage formed in the valve block is transmitted to the diaphragm via the rod, but flows through the low pressure refrigerant passage. If the temperature change of the refrigerant is transmitted to the diaphragm too quickly, small pulsation generated in the refrigerant such as a slight change in the degree of superheat of the refrigerant is directly transmitted to the opening / closing operation of the valve mechanism, so that the valve operation becomes very unstable.

【0003】そこで、特開平5−157405号公報に
開示された膨張弁は、低圧冷媒通路から感温室側へ入り
込む冷媒量を規制するために、低圧冷媒通路と感温室
(ダイヤフラム)との間に熱伝導率の低いゴム材または
プラスチック材等から成る中間栓体を設けている。これ
により、低圧冷媒通路を流れる冷媒の温度変化が感温室
に伝達されるまでの時間を遅延させることができるた
め、低圧冷媒通路を流れる冷媒の細かい(小さい)温度
変化に過敏に反応することなく、安定した弁動作を行う
ことができる。
Therefore, the expansion valve disclosed in Japanese Patent Laid-Open No. 157405/1993 has a space between the low-pressure refrigerant passage and the greenhouse (diaphragm) in order to regulate the amount of the refrigerant flowing from the low-pressure refrigerant passage to the greenhouse-sensitive side. An intermediate plug body made of rubber or plastic having low thermal conductivity is provided. As a result, it is possible to delay the time until the temperature change of the refrigerant flowing through the low-pressure refrigerant passage is transmitted to the temperature-sensing greenhouse, so that it is not sensitive to a small (small) temperature change of the refrigerant flowing through the low-pressure refrigerant passage. Therefore, stable valve operation can be performed.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記公報に
開示された膨張弁では、中間栓体を新たに追加すること
になるため、組付け上の手間が掛かることから製造コス
トの増大を招くと言った問題が生じる。本発明は、上記
事情に基づいて成されたもので、その目的は、製造コス
トの増大を招くことなく、安定した弁動作を行うことの
できる温度式膨張弁の提供にある。
However, in the expansion valve disclosed in the above publication, since an intermediate plug is newly added, it takes time and effort for assembling, which causes an increase in manufacturing cost. The problem you said arises. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a thermal expansion valve capable of performing stable valve operation without increasing manufacturing cost.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の構成を採用した。請求項1では、
弁開度を可変して冷媒蒸発器へ送る冷媒流量を調節する
弁機構と、一壁面がダイヤフラムにより形成されて、内
部に飽和蒸気が封入された感温室と、前記冷媒蒸発器よ
り送られた冷媒を通す低圧冷媒通路と、この低圧冷媒通
路から前記ダイヤフラム側へ通じる開口孔に挿通され
て、前記低圧冷媒通路を流れる冷媒の温度を前記ダイヤ
フラムに伝達するとともに、前記ダイヤフラムの変位を
前記弁機構に伝える伝達ロッドとを備えた温度式膨張弁
において、前記伝達ロッドは、前記開口孔の内周を通る
部位に、前記開口孔の内周面に近接するまで外径が拡大
された返し部が設けられていることを特徴とする。
The present invention has the following features to attain the object mentioned above. In claim 1,
A valve mechanism that adjusts the flow rate of the refrigerant to be sent to the refrigerant evaporator by changing the valve opening degree, a sensing chamber in which one wall is formed by a diaphragm, and saturated vapor is enclosed inside, and a sent from the refrigerant evaporator. A low-pressure refrigerant passage through which a refrigerant is passed, and an opening hole communicating from the low-pressure refrigerant passage to the diaphragm side are inserted to transmit the temperature of the refrigerant flowing through the low-pressure refrigerant passage to the diaphragm, and the displacement of the diaphragm is transferred to the valve mechanism. In the temperature type expansion valve having a transmission rod for transmitting to the transmission rod, the transmission rod has a return portion whose outer diameter is enlarged at a portion passing through the inner periphery of the opening hole until it comes close to the inner peripheral surface of the opening hole. It is characterized by being provided.

【0006】請求項2では、請求項1に記載した温度式
膨張弁において、前記伝達ロッドは、前記低圧冷媒通路
内を通る感温部の外周面と前記返し部の外周面との間に
段差が設けられていることを特徴とする。
According to a second aspect, in the thermal expansion valve according to the first aspect, the transmission rod has a step between the outer peripheral surface of the temperature sensing portion and the outer peripheral surface of the return portion that pass through the low pressure refrigerant passage. Is provided.

【0007】請求項3では、請求項1または2に記載し
た温度式膨張弁において、前記伝達ロッドは、前記返し
部より前記ダイヤフラム側の部位が、前記返し部の外径
以上に径方向へ拡大されていることを特徴とする。
According to a third aspect of the present invention, in the thermal expansion valve according to the first or second aspect, a portion of the transmission rod on the diaphragm side of the return portion expands in a radial direction beyond an outer diameter of the return portion. It is characterized by being.

【0008】請求項4では、請求項1または2に記載し
た温度式膨張弁において、前記伝達ロッドは、前記開口
孔より前記ダイヤフラム側の開口部内に、前記返し部の
外径以上に径方向へ拡大された第2の返し部が設けられ
ていることを特徴とする。
According to a fourth aspect of the present invention, in the thermal expansion valve according to the first or second aspect, the transmission rod is radially inside the opening on the diaphragm side of the opening and is larger than the outer diameter of the return portion. It is characterized in that an enlarged second return portion is provided.

【0009】[0009]

【作用および発明の効果】上記構成より成る本発明の温
度式膨張弁は、伝達ロッドが挿通された開口孔を通って
低圧圧力(低圧冷媒通路を流れる冷媒の圧力)がダイヤ
フラムに作用する。但し、伝達ロッドに設けられた返し
部が開口孔の内周面に近接するまで拡大された外径を有
することから、低圧冷媒通路を流れる冷媒が開口孔(返
し部との隙間)を通ってダイヤフラム側へ入り込む量は
少量である。
In the temperature type expansion valve of the present invention having the above-mentioned structure, the low pressure (the pressure of the refrigerant flowing through the low pressure refrigerant passage) acts on the diaphragm through the opening hole through which the transmission rod is inserted. However, since the return portion provided on the transmission rod has an enlarged outer diameter until it is close to the inner peripheral surface of the opening hole, the refrigerant flowing through the low-pressure refrigerant passage passes through the opening hole (a gap with the return portion). The amount that enters the diaphragm side is small.

【0010】即ち、開口孔の内周に形成される隙間(返
し部との隙間)が小さい上に、伝達ロッドに沿って開口
孔を通過しようとする冷媒が返し部で跳ね返されるた
め、前記隙間を通過した冷媒によってダイヤフラム(感
温室)に伝達される冷媒温度の影響は小さいと言える。
従って、ダイヤフラムに伝わる温度は、伝達ロッドを介
して伝わる温度が支配的となるため、低圧冷媒通路を流
れる冷媒の小さな温度変化に過敏に反応することがな
く、安定した弁動作を行うことができる。
That is, since the gap (gap with the return portion) formed on the inner circumference of the opening hole is small, and the refrigerant which tries to pass through the opening hole along the transmission rod is repelled by the return portion, the above-mentioned gap is generated. It can be said that the effect of the refrigerant temperature transmitted to the diaphragm (greenhouse) by the refrigerant passing through is small.
Therefore, the temperature transmitted to the diaphragm is dominated by the temperature transmitted via the transmission rod, so that a stable valve operation can be performed without sensitively reacting to a small temperature change of the refrigerant flowing through the low-pressure refrigerant passage. .

【0011】請求項2では、低圧冷媒通路内を通る感温
部(低圧冷媒通路内を流れる冷媒に晒されている部位)
の外周面と返し部の外周面との間に段差が設けられてい
る。即ち、返し部は、感温部の外周面に対して略直角に
拡大されている。このため、伝達ロッドに沿って開口孔
を通過しようとする冷媒は、殆ど返し部で跳ね返される
ことになる。
In the second aspect, the temperature sensing portion passing through the low pressure refrigerant passage (the portion exposed to the refrigerant flowing inside the low pressure refrigerant passage).
A step is provided between the outer peripheral surface of the and the outer peripheral surface of the return portion. That is, the return portion is enlarged substantially at right angles to the outer peripheral surface of the temperature sensing portion. For this reason, most of the refrigerant that attempts to pass through the opening along the transmission rod is repelled by the return portion.

【0012】請求項3では、返し部よりダイヤフラム側
の部位が、返し部の外径以上に径方向へ拡大されてい
る。即ち、伝達ロッドの容積が増加して熱容量が大きく
なることから、伝達ロッドを介してダイヤフラムに伝達
される冷媒温度の伝達時間が長くなる。その結果、より
安定した弁動作を行うことが可能となる。
According to the third aspect of the present invention, the portion closer to the diaphragm than the return portion is enlarged in the radial direction beyond the outer diameter of the return portion. That is, since the volume of the transfer rod increases and the heat capacity increases, the transfer time of the refrigerant temperature transferred to the diaphragm via the transfer rod becomes longer. As a result, more stable valve operation can be performed.

【0013】請求項4では、開口孔の内周に設けられた
返し部で侵入を防げなかった冷媒を第2の返し部で防ぐ
ことができる。即ち、伝達ロッドに沿ってダイヤフラム
側へ侵入しようとする冷媒を返し部と第2の返し部との
2段階で防止することができる。また、第2の返し部を
設けたことで、請求項3と同様に伝達ロッドの容積が増
加して熱容量が大きくなることから、伝達ロッドを介し
てダイヤフラムに伝達される冷媒温度の伝達時間が長く
なる。その結果、より安定した弁動作を行うことが可能
となる。
In the fourth aspect, the second return portion can prevent the refrigerant that could not be prevented from entering the return portion provided on the inner periphery of the opening hole. That is, it is possible to prevent the refrigerant, which tends to enter the diaphragm side along the transmission rod, in two stages of the return portion and the second return portion. Further, since the volume of the transmission rod is increased and the heat capacity is increased by providing the second return portion, the transmission time of the refrigerant temperature transmitted to the diaphragm via the transmission rod is increased. become longer. As a result, more stable valve operation can be performed.

【0014】以上のように、本発明の温度式膨張弁によ
れば、伝達ロッドに返し部を設けるだけの簡単な構成に
よって安定した弁動作が得られる。つまり、従来のよう
な別部品を新たに追加する必要がなく、従って組付け上
の問題も生じないことから、製造コストの増加を抑える
ことができる。
As described above, according to the temperature type expansion valve of the present invention, stable valve operation can be obtained with a simple structure in which the return portion is provided on the transmission rod. In other words, there is no need to newly add another component as in the conventional case, and therefore, there is no problem in assembling, so that an increase in manufacturing cost can be suppressed.

【0015】[0015]

【実施例】次に、本発明の温度式膨張弁の実施例を図面
に基づいて説明する。 (第1実施例)図1は温度式膨張弁の全体断面図であ
る。本実施例の温度式膨張弁1(以下膨張弁と言う)
は、図1に示すように、冷媒圧縮機2、冷媒凝縮器3、
レシーバ4、および冷媒蒸発器5とともに冷凍サイクル
を構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the thermal expansion valve of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is an overall sectional view of a thermal expansion valve. Thermal expansion valve 1 of the present embodiment (hereinafter referred to as expansion valve)
Is a refrigerant compressor 2, a refrigerant condenser 3,
A refrigeration cycle is configured with the receiver 4 and the refrigerant evaporator 5.

【0016】膨張弁1は、第1流路6および第2流路7
が形成された略直方体形状の弁ブロック8を有する。第
1流路6は、レシーバ4より導かれた冷媒を減圧膨張し
て冷媒蒸発器5へ送る通路で、弁ブロック8の下部側
(図1の下部側)に設けられており、レシーバ4の出口
側に通じる高圧通路6a、冷媒蒸発器5の入口側に通じ
る低圧通路6b、および高圧通路6aと低圧通路6bと
を連通する連通孔6cより成る。
The expansion valve 1 includes a first flow path 6 and a second flow path 7.
The valve block 8 has a substantially rectangular parallelepiped shape. The first flow path 6 is a passage for decompressing and expanding the refrigerant guided from the receiver 4 and sending it to the refrigerant evaporator 5, and is provided on the lower side of the valve block 8 (the lower side in FIG. 1) and The high pressure passage 6a communicates with the outlet side, the low pressure passage 6b communicates with the inlet side of the refrigerant evaporator 5, and the communication hole 6c communicates the high pressure passage 6a with the low pressure passage 6b.

【0017】高圧通路6aは、弁ブロック8の一側端面
(図1の右端面)から弁ブロック8の中程まで穿設さ
れ、低圧通路6bは、弁ブロック8の他側端面から弁ブ
ロック8の中程まで穿設されている。但し、高圧通路6
aと低圧通路6bとは、弁ブロック8の長手方向(図1
の上下方向)にずれて設けられている。
The high pressure passage 6a is bored from one end surface (right end surface in FIG. 1) of the valve block 8 to the middle of the valve block 8, and the low pressure passage 6b is formed from the other end surface of the valve block 8 to the valve block 8. Has been drilled up to the middle. However, the high pressure passage 6
a and the low pressure passage 6b are in the longitudinal direction of the valve block 8 (see FIG.
(Up and down direction) of the.

【0018】連通孔6cは、第1流路6のオリフィスを
形成するもので、高圧通路6aと低圧通路6bとを弁ブ
ロック8の長手方向に連通する。この連通孔6cの高圧
通路6a側には、下述の弁体9とで弁機構を構成する円
錐状の弁座6dが形成されている。第2流路7は、冷媒
蒸発器5で蒸発した冷媒が通過する低圧冷媒通路で、一
端が冷媒蒸発器5の出口に連絡されて、他端が冷媒圧縮
機2の入口に連絡される。この第2流路7は、弁ブロッ
ク8の上部側で、弁ブロック8の一側端面から他側端面
まで貫通して設けられている。
The communication hole 6c forms an orifice of the first flow passage 6, and connects the high pressure passage 6a and the low pressure passage 6b in the longitudinal direction of the valve block 8. A conical valve seat 6d that forms a valve mechanism with the valve body 9 described below is formed on the high pressure passage 6a side of the communication hole 6c. The second flow path 7 is a low-pressure refrigerant passage through which the refrigerant evaporated in the refrigerant evaporator 5 passes, one end of which is connected to the outlet of the refrigerant evaporator 5, and the other end of which is connected to the inlet of the refrigerant compressor 2. The second flow path 7 is provided on the upper side of the valve block 8 so as to penetrate from one end surface to the other end surface of the valve block 8.

【0019】弁ブロック8の上端部には、Oリング10
を介して受け座11が取り付けられ、この受け座11に
対してダイヤフラム12とハウジング13とで形成され
る感温室14が設けられている。受け座11は、弁ブロ
ック8の上端中央部に穿設された開口部15の内周面に
螺着されている。なお、開口部15は、その底面中央部
に開口する開口孔16を介して第2流路7に通じてい
る。受け座11とハウジング13は、共に厚い金属板製
で、両者の外周部がダイヤフラム12の周縁部を挟持し
て気密に接合されている。
At the upper end of the valve block 8, an O-ring 10 is provided.
A receiving seat 11 is attached via the through hole 11, and a greenhouse 14 formed of a diaphragm 12 and a housing 13 is provided to the receiving seat 11. The receiving seat 11 is screwed onto the inner peripheral surface of an opening 15 formed at the center of the upper end of the valve block 8. The opening 15 communicates with the second flow path 7 through an opening 16 that opens at the center of the bottom surface. The receiving seat 11 and the housing 13 are both made of a thick metal plate, and their outer peripheral portions sandwich the peripheral edge portion of the diaphragm 12 and are airtightly joined.

【0020】ダイヤフラム12は、可撓性のある金属製
薄板(例えば、0.1mm程度のステンレス鋼板)により
設けられて、感温室14内の圧力変動に応じて変位可能
に支持されている。なお、感温室14には、封入管17
により飽和蒸気(例えば、冷凍サイクルに使用される冷
媒ガスと同じ)が封入されている。封入管17は、飽和
蒸気ガスの封入が完了した後、先端部が密封される。
The diaphragm 12 is provided by a flexible thin metal plate (for example, a stainless steel plate having a thickness of about 0.1 mm), and is supported so as to be displaceable according to the pressure fluctuation in the greenhouse 14. It should be noted that the sensitive room 14 has a sealed tube 17
The saturated vapor (for example, the same as the refrigerant gas used in the refrigeration cycle) is enclosed by. The end portion of the sealing tube 17 is sealed after the saturated vapor gas is completely sealed.

【0021】弁ブロック8には、第2流路7を流れる冷
媒の温度をダイヤフラム12に伝達する伝達ロッド1
8、この伝達ロッド18および連結棒19を介してダイ
ヤフラム12の変位に連動する弁体9、この弁体9を付
勢するスプリング20、およびスプリング20の取付け
荷重を調節する調節螺子21等の部品が組み込まれてい
る。
The valve block 8 has a transmission rod 1 for transmitting the temperature of the refrigerant flowing through the second flow path 7 to the diaphragm 12.
8, components such as a valve body 9 that interlocks with the displacement of the diaphragm 12 via the transmission rod 18 and the connecting rod 19, a spring 20 that urges the valve body 9, and an adjusting screw 21 that adjusts the mounting load of the spring 20. Is built in.

【0022】伝達ロッド18は、熱伝導性に優れた材料
(例えば、真鍮、アルミニウム等)より成り、前述の開
口部15から開口孔16および第2流路7を通って、弁
ブロック8の中央部に穿設された縦孔22にOリング2
3を介して摺動自在に嵌挿されている。
The transmission rod 18 is made of a material having excellent thermal conductivity (eg, brass, aluminum, etc.), passes through the opening 15 and the opening hole 16 and the second flow path 7, and passes through the center of the valve block 8. O-ring 2 in the vertical hole 22 formed in the
It is slidably inserted through 3.

【0023】この伝達ロッド18は、径方向に拡大され
て開口部15内に収まる頭部18a、第2流路7を流れ
る冷媒に晒される感温部18b、および頭部18aと感
温部18bとの間で開口孔16の内周に位置する返し部
18cを有する。但し、返し部18cは、感温部18b
より外径が大きく、外周が開口孔16の内周面に近接す
るまで拡大されて、感温部18bとの間に略直角の段差
を有する。頭部18aは、返し部18cよりさらに外径
が大きく、その外周が開口部15の内周面に近接するま
で拡大されて、返し部18cとの間に略直角の段差を有
する。
The transmission rod 18 is enlarged in the radial direction and is accommodated in the opening portion 15, a temperature sensing portion 18b exposed to the refrigerant flowing through the second flow path 7, and the head portion 18a and the temperature sensing portion 18b. And a return portion 18c located on the inner periphery of the opening hole 16 between and. However, the return part 18c is the temperature sensing part 18b.
The outer diameter is larger, the outer circumference is enlarged until it is close to the inner circumferential surface of the opening hole 16, and there is a substantially right-angled step with the temperature sensing portion 18b. The outer diameter of the head portion 18a is larger than that of the return portion 18c, the outer circumference of the head portion 18a is enlarged until the inner peripheral surface of the opening portion 15 is close to the return portion 18c, and the head portion 18a has a substantially right-angled step.

【0024】なお、頭部18aの上端面は、第2流路7
を流れる冷媒の温度をダイヤフラム12へ伝達するため
に、ダイヤフラム12の下面に密着している。また、頭
部18aの上端外周は傘上に拡がっており、受け座11
に当接することで図示下方への移動(即ちダイヤフラム
12の変位)が規制される。
The upper end surface of the head portion 18a has the second flow path 7
In order to transmit the temperature of the refrigerant flowing through to the diaphragm 12, it is in close contact with the lower surface of the diaphragm 12. Further, the outer periphery of the upper end of the head portion 18a is spread over the umbrella, and the receiving seat 11
By contacting with, the downward movement in the figure (that is, the displacement of the diaphragm 12) is restricted.

【0025】弁体9は、伝達ロッド18に連結された連
結棒19の下端に取り付けられて、連通孔6cの上流側
(高圧通路6a側)に配されている。この弁体9は、伝
達ロッド18および連結棒19と一体に変位して、連通
孔6cの開度、即ち弁開度を可変する。連結棒19は、
縦孔22から低圧通路6bまで貫通する貫通孔(図示し
ない)を通って低圧通路6bを横切り、さらに連通孔6
cを通り抜けて高圧通路6a側へ至る。なお、第2流路
7と低圧通路6bとの間は、縦孔22に配されたOリン
グ23によって気密にシールされている。
The valve body 9 is attached to the lower end of a connecting rod 19 connected to the transmission rod 18, and is arranged upstream of the communication hole 6c (high pressure passage 6a side). The valve body 9 is integrally displaced with the transmission rod 18 and the connecting rod 19 to change the opening degree of the communication hole 6c, that is, the valve opening degree. The connecting rod 19 is
The low pressure passage 6b is traversed through a through hole (not shown) which penetrates from the vertical hole 22 to the low pressure passage 6b, and the communication hole 6
It passes through c and reaches the high pressure passage 6a side. An O-ring 23 arranged in the vertical hole 22 hermetically seals between the second flow path 7 and the low-pressure passage 6b.

【0026】スプリング20は、弁ブロック8の下端部
に取り付けられた調節螺子21に保持されており、弁受
け部材24を介して弁体9を上方へ(弁開度が小さくな
る方向へ)付勢している。調節螺子21は、Oリング2
5を介して弁ブロック8の下端部に螺着され、弁ブロッ
ク8への取付け位置(螺合位置)を調節することで開弁
圧(スプリング20の取付け荷重)を可変する。
The spring 20 is held by an adjusting screw 21 attached to the lower end of the valve block 8 and attaches the valve body 9 upward (in a direction in which the valve opening becomes smaller) via a valve receiving member 24. I am energetic. The adjusting screw 21 is an O-ring 2
The valve opening pressure (mounting load of the spring 20) is variable by being screwed to the lower end of the valve block 8 via 5 and adjusting the mounting position (screwed position) to the valve block 8.

【0027】次に、本実施例の膨張弁1の作動を説明す
る。連通孔6cを通って高圧通路6aから低圧通路6b
へ流れる冷媒流量は、弁開度、即ち弁座6dに対する弁
体9の位置によって決まる。その弁体9は、ダイヤフラ
ム12を図示下方へ付勢する感温室14の圧力と、ダイ
ヤフラム12を図示上方へ付勢するスプリング20の付
勢力および低圧圧力(第2流路7を流れる冷媒の圧力)
とが釣り合った位置に移動する。なお、低圧圧力は、第
2流路7に開口する開口孔16および開口部15を通じ
てダイヤフラム12の下面に作用している。
Next, the operation of the expansion valve 1 of this embodiment will be described. High pressure passage 6a through low pressure passage 6b through communication hole 6c
The flow rate of the refrigerant flowing to is determined by the valve opening, that is, the position of the valve body 9 with respect to the valve seat 6d. The valve body 9 has a pressure of the greenhouse 14 that urges the diaphragm 12 downward in the drawing, a biasing force of a spring 20 that biases the diaphragm 12 upward in the drawing, and a low pressure (pressure of the refrigerant flowing in the second flow path 7). )
And move to a balanced position. The low-pressure pressure acts on the lower surface of the diaphragm 12 through the opening hole 16 and the opening 15 that open to the second flow path 7.

【0028】いま車室内の温度が上昇して、冷媒蒸発器
5で急速に冷媒が蒸発すると、冷媒蒸発器5出口の過熱
度が高くなって、膨張弁1の第2流路7を流れる冷媒の
温度が上昇する。その結果、冷媒温度が伝達ロッド18
およびダイヤフラム12を介して感温室14に伝達され
て、感温室14の温度が上昇することにより、その上昇
した温度の飽和圧力まで感温室14の圧力が上昇する。
これにより、ダイヤフラム12が押し下げられて、伝達
ロッド18および連結棒19を介して弁体9が図示下方
へ移動し、弁開度が大きくなる(弁体9と弁座6dとの
隙間が大きくなる)ことで、冷媒蒸発器5へ送られる冷
媒流量が増加する。
When the temperature inside the passenger compartment rises and the refrigerant evaporates rapidly in the refrigerant evaporator 5, the superheat degree at the outlet of the refrigerant evaporator 5 increases and the refrigerant flowing through the second flow path 7 of the expansion valve 1 increases. Temperature rises. As a result, the temperature of the refrigerant is changed to the transmission rod 18
Further, the temperature of the greenhouse 14 is transmitted to the greenhouse 14 via the diaphragm 12 and the temperature of the greenhouse 14 rises, so that the pressure of the greenhouse 14 rises to the saturated pressure of the elevated temperature.
As a result, the diaphragm 12 is pushed down, the valve body 9 moves downward in the drawing via the transmission rod 18 and the connecting rod 19, and the valve opening increases (the gap between the valve body 9 and the valve seat 6d increases. Therefore, the flow rate of the refrigerant sent to the refrigerant evaporator 5 increases.

【0029】また、車室内の温度が低下して冷媒蒸発器
5出口の過熱度が低くなると、第2流路7を流れる冷媒
の温度が低下して感温室14の温度が低下するため、上
述の作動とは逆に、感温室14の圧力が低下してダイヤ
フラム12が押し上げられ、弁体9が図示上方へ移動し
て弁開度が小さくなる(弁体9と弁座6dとの隙間が小
さくなる)ことで、冷媒蒸発器5へ送られる冷媒流量が
減少する。
When the temperature inside the vehicle compartment decreases and the superheat at the outlet of the refrigerant evaporator 5 decreases, the temperature of the refrigerant flowing through the second flow path 7 decreases and the temperature of the greenhouse 14 decreases. Conversely, the pressure in the greenhouse 14 is lowered and the diaphragm 12 is pushed up, the valve body 9 moves upward in the drawing and the valve opening becomes small (the gap between the valve body 9 and the valve seat 6d is reduced). As a result, the flow rate of the refrigerant sent to the refrigerant evaporator 5 decreases.

【0030】(第1実施例の特徴および効果)上記の作
動において、第2流路7の冷媒圧力(低圧圧力)が開口
孔16および開口部15を通じてダイヤフラム12の下
面に作用するが、伝達ロッド18に設けられた返し部1
8cが開口孔16の内周面に近接するまで拡大された外
径を有することから、第2流路7を流れる冷媒が開口孔
16(返し部18cとの隙間)を通ってダイヤフラム1
2側へ入り込む量は少量である。
(Characteristics and effects of the first embodiment) In the above operation, the refrigerant pressure (low pressure) of the second flow passage 7 acts on the lower surface of the diaphragm 12 through the opening hole 16 and the opening portion 15. Returning part 1 provided at 18
Since 8c has an outer diameter enlarged until it comes close to the inner peripheral surface of the opening hole 16, the refrigerant flowing through the second flow path 7 passes through the opening hole 16 (a gap between the return portion 18c) and the diaphragm 1
The amount that enters the 2 side is small.

【0031】即ち、開口孔16の内周に形成される隙間
(返し部18cとの隙間)が小さい上に、伝達ロッド1
8に沿って開口孔16を通過しようとする冷媒(主に液
相冷媒)が返し部18cで跳ね返されるため、前記隙間
を通過した冷媒によってダイヤフラム12(感温室1
4)に伝達される冷媒温度の影響は小さいと言える。特
に液相冷媒の方が気相冷媒より熱伝達の影響が大きいた
め、液相冷媒の浸入が防止できる効果は大きいと言え
る。
That is, the gap formed in the inner periphery of the opening 16 (the gap with the return portion 18c) is small, and the transmission rod 1
Since the refrigerant (mainly the liquid-phase refrigerant) that is about to pass through the opening hole 16 along 8 is repelled at the return portion 18c, the diaphragm 12 (the greenhouse 1
It can be said that the influence of the refrigerant temperature transmitted to 4) is small. In particular, since the liquid-phase refrigerant has a larger influence of heat transfer than the gas-phase refrigerant, it can be said that the effect of preventing the infiltration of the liquid-phase refrigerant is large.

【0032】従って、感温室14に伝わる温度は、伝達
ロッド18を介して伝わる温度が支配的となる。そし
て、伝達ロッド18は、径方向に拡大された頭部18a
の熱容量が大きいこともあって、第2流路7を流れる冷
媒の温度がダイヤフラム12に伝達されるまでの時間が
長くなる。この結果、第2流路7を流れる冷媒の小さな
温度変化に過敏に反応することがなく、安定した弁動作
を行うことができる。
Therefore, the temperature transmitted to the greenhouse 14 is dominated by the temperature transmitted via the transmission rod 18. The transmission rod 18 has a radially expanded head portion 18a.
Because of the large heat capacity, the time taken for the temperature of the refrigerant flowing through the second flow path 7 to be transmitted to the diaphragm 12 becomes long. As a result, stable valve operation can be performed without hypersensitivity to a small temperature change of the refrigerant flowing through the second flow path 7.

【0033】(第2実施例)図2は第2実施例に係わる
温度式膨張弁1の全体断面図である。本実施例では、伝
達ロッド18の途中で、開口孔16に対応する部位のみ
に返し部18cが設けられているだけである。本実施例
では、伝達ロッド18の熱容量が低減する分だけダイヤ
フラム12に伝達されるまでの時間が若干短縮される
が、熱容量による効果の違いは、返し部18cによる効
果と比して小さいため、実用上殆ど問題はない。
(Second Embodiment) FIG. 2 is an overall sectional view of a thermal expansion valve 1 according to the second embodiment. In the present embodiment, the return portion 18c is provided only in the portion corresponding to the opening hole 16 in the middle of the transmission rod 18. In the present embodiment, the time until the heat is transferred to the diaphragm 12 is slightly shortened as the heat capacity of the transfer rod 18 is reduced, but the difference in the effect due to the heat capacity is smaller than the effect due to the return portion 18c. There is almost no problem in practical use.

【0034】即ち、第2流路7を流れる冷媒の温度がダ
イヤフラム12に伝達されるまでの時間は、開口孔16
を通ってダイヤフラム12側へ流入してくる冷媒の量が
多くなる程、短時間となる。従って、本実施例において
も、伝達ロッド18に設けた返し部18cによって開口
孔16を通過しようとする冷媒(主に液相冷媒)を跳ね
返して、ダイヤフラム12側へ入り込む冷媒量を少なく
することができるため、第1実施例と同様に、第2流路
7を流れる冷媒の小さな温度変化に過敏に反応すること
がなく、安定した弁動作を行うことができる。
That is, the time until the temperature of the refrigerant flowing through the second flow path 7 is transmitted to the diaphragm 12 is the opening hole 16
The greater the amount of the refrigerant flowing through to the diaphragm 12 side, the shorter the time. Therefore, also in the present embodiment, the return portion 18c provided on the transmission rod 18 can bounce off the refrigerant (mainly the liquid-phase refrigerant) that is about to pass through the opening 16 to reduce the amount of the refrigerant entering the diaphragm 12 side. Therefore, similar to the first embodiment, stable valve operation can be performed without hypersensitivity to a small temperature change of the refrigerant flowing through the second flow path 7.

【0035】(第3実施例)図3は第3実施例に係わる
温度式膨張弁1の全体断面図である。本実施例では、第
2実施例で説明した返し部18cの他に、開口部15内
にも第2の返し部18dを設けたものである。この第2
の返し部18dは、返し部18cより外径が大きく、開
口部15の内周面に近接するまで拡大されている。これ
により、返し部18cを越えて開口孔16を通過する冷
媒があっても、第2の返し部18dでダイヤフラム12
側への冷媒の侵入を抑えることができるため、開口孔1
6を通過した冷媒によってダイヤフラム12(感温室1
4)に伝達される冷媒温度の影響を小さくすることがで
きる。また、第2の返し部18dを設けることにより伝
達ロッド18の容積が増加して熱容量が大きくなる(第
2実施例と比較して)ことから、伝達ロッド18を介し
てダイヤフラム12に伝達される冷媒温度の伝達時間が
長くなって、安定した弁動作を行うことができる。
(Third Embodiment) FIG. 3 is an overall sectional view of a thermal expansion valve 1 according to the third embodiment. In this embodiment, in addition to the return portion 18c described in the second embodiment, a second return portion 18d is provided inside the opening 15. This second
The return portion 18d has a larger outer diameter than the return portion 18c and is enlarged until it comes close to the inner peripheral surface of the opening 15. As a result, even if there is a refrigerant that passes through the return hole 18c and passes through the opening hole 16, the diaphragm 12 is not discharged by the second return portion 18d.
Since the invasion of the refrigerant into the side can be suppressed, the opening hole 1
The diaphragm 12 (the greenhouse 1
It is possible to reduce the influence of the refrigerant temperature transmitted to 4). Further, since the volume of the transfer rod 18 increases and the heat capacity increases by providing the second return portion 18d (compared to the second embodiment), the heat is transferred to the diaphragm 12 via the transfer rod 18. The transmission time of the refrigerant temperature becomes long, and stable valve operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度式膨張弁の全体断面図である(第1実施
例)。
FIG. 1 is an overall sectional view of a thermal expansion valve (first embodiment).

【図2】温度式膨張弁の全体断面図である(第2実施
例)。
FIG. 2 is an overall sectional view of a thermal expansion valve (second embodiment).

【図3】温度式膨張弁の全体断面図である(第3実施
例)。
FIG. 3 is an overall sectional view of a thermal expansion valve (third embodiment).

【符号の説明】[Explanation of symbols]

1 温度式膨張弁 5 冷媒蒸発器 6d 弁座(弁機構) 7 第2流路(低圧冷媒通路) 9 弁体(弁機構) 12 ダイヤフラム 14 感温室 15 開口部 16 開口孔 18 伝達ロッド 18b 感温部 18c 返し部 18d 第2の返し部 1 Temperature Expansion Valve 5 Refrigerant Evaporator 6d Valve Seat (Valve Mechanism) 7 Second Flow Path (Low Pressure Refrigerant Passage) 9 Valve Body (Valve Mechanism) 12 Diaphragm 14 Greenhouse 15 Opening 16 Opening Hole 18 Transfer Rod 18b Temperature Sensitive Part 18c Return part 18d Second return part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 健一 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Fujiwara, 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】弁開度を可変して冷媒蒸発器へ送る冷媒流
量を調節する弁機構と、 一壁面がダイヤフラムにより形成されて、内部に飽和蒸
気が封入された感温室と、 前記冷媒蒸発器より送られた冷媒を通す低圧冷媒通路
と、 この低圧冷媒通路から前記ダイヤフラム側へ通じる開口
孔に挿通されて、前記低圧冷媒通路を流れる冷媒の温度
を前記ダイヤフラムに伝達するとともに、前記ダイヤフ
ラムの変位を前記弁機構に伝える伝達ロッドとを備えた
温度式膨張弁において、 前記伝達ロッドは、前記開口孔の内周を通る部位に、前
記開口孔の内周面に近接するまで外径が拡大された返し
部が設けられていることを特徴とする温度式膨張弁。
1. A valve mechanism for adjusting a flow rate of a refrigerant to be sent to a refrigerant evaporator by varying a valve opening degree, a greenhouse in which one wall is formed by a diaphragm, and saturated vapor is sealed inside, and the refrigerant evaporation. A low-pressure refrigerant passage through which the refrigerant sent from the container is passed, and an opening hole communicating from this low-pressure refrigerant passage to the diaphragm side, and transmitting the temperature of the refrigerant flowing through the low-pressure refrigerant passage to the diaphragm, and In a thermal expansion valve including a transmission rod that transmits displacement to the valve mechanism, the transmission rod has an outer diameter that increases at a portion passing through the inner circumference of the opening hole until the outer diameter approaches the inner circumference surface of the opening hole. A thermal expansion valve, characterized in that it is provided with an inverted return section.
【請求項2】請求項1に記載した温度式膨張弁におい
て、 前記伝達ロッドは、前記低圧冷媒通路内を通る感温部の
外周面と前記返し部の外周面との間に段差が設けられて
いることを特徴とする温度式膨張弁。
2. The thermal expansion valve according to claim 1, wherein the transmission rod is provided with a step between an outer peripheral surface of the temperature sensing portion passing through the low pressure refrigerant passage and an outer peripheral surface of the return portion. The temperature type expansion valve is characterized by having.
【請求項3】請求項1または2に記載した温度式膨張弁
において、 前記伝達ロッドは、前記返し部より前記ダイヤフラム側
の部位が、前記返し部の外径以上に径方向へ拡大されて
いることを特徴とする温度式膨張弁。
3. The thermal expansion valve according to claim 1, wherein a portion of the transmission rod that is closer to the diaphragm than the return portion is radially expanded to be larger than an outer diameter of the return portion. A temperature type expansion valve characterized in that
【請求項4】請求項1または2に記載した温度式膨張弁
において、 前記伝達ロッドは、前記開口孔より前記ダイヤフラム側
の開口部内に、前記返し部の外径以上に径方向へ拡大さ
れた第2の返し部が設けられていることを特徴とする温
度式膨張弁。
4. The thermal expansion valve according to claim 1 or 2, wherein the transmission rod is expanded in the opening on the diaphragm side of the opening in the radial direction more than the outer diameter of the return portion. A temperature type expansion valve characterized in that a second return portion is provided.
JP7018321A 1995-02-07 1995-02-07 Temperature type expansion valve Pending JPH08210734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7018321A JPH08210734A (en) 1995-02-07 1995-02-07 Temperature type expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7018321A JPH08210734A (en) 1995-02-07 1995-02-07 Temperature type expansion valve

Publications (1)

Publication Number Publication Date
JPH08210734A true JPH08210734A (en) 1996-08-20

Family

ID=11968352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7018321A Pending JPH08210734A (en) 1995-02-07 1995-02-07 Temperature type expansion valve

Country Status (1)

Country Link
JP (1) JPH08210734A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322435A (en) * 2002-04-30 2003-11-14 Fuji Koki Corp Expansion valve
WO2004036125A3 (en) * 2002-10-18 2004-06-10 Parker Hannifin Corp Refrigeration expansion valve with thermal mass power element
CN103016830A (en) * 2011-09-28 2013-04-03 杭州三花研究院有限公司 Thermal expansion valve
JP2020165441A (en) * 2019-03-28 2020-10-08 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle system
JP2021042844A (en) * 2019-09-13 2021-03-18 株式会社不二工機 Expansion valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322435A (en) * 2002-04-30 2003-11-14 Fuji Koki Corp Expansion valve
WO2004036125A3 (en) * 2002-10-18 2004-06-10 Parker Hannifin Corp Refrigeration expansion valve with thermal mass power element
US6848624B2 (en) 2002-10-18 2005-02-01 Parker-Hannifin Corporation Refrigeration expansion valve with thermal mass power element
CN103016830A (en) * 2011-09-28 2013-04-03 杭州三花研究院有限公司 Thermal expansion valve
JP2020165441A (en) * 2019-03-28 2020-10-08 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle system
JP2021042844A (en) * 2019-09-13 2021-03-18 株式会社不二工機 Expansion valve

Similar Documents

Publication Publication Date Title
JP3637651B2 (en) Thermal expansion valve
JPH0571860B2 (en)
JP2006266660A (en) Expansion device
US6474088B2 (en) Thermal expansion valve
JP3995828B2 (en) Temperature expansion valve
JPH1073344A (en) Temperature type expansion valve
JP2002054861A (en) Thermostatic expansion valve
JP3949417B2 (en) Expansion valve
US4632305A (en) Expansion valve
JPH11287536A (en) Expansion valve
JP2018115799A (en) Expansion valve
JPH08210734A (en) Temperature type expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP5369259B2 (en) Expansion valve
JPH10122706A (en) Expansion valve
JP3987983B2 (en) Thermal expansion valve
JPH05196324A (en) Expansion valve for refrigerating cycle
JPH02254270A (en) Temperature actuating type expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
JP4081295B2 (en) Expansion valve
JP2018004234A (en) Expansion valve
JPH10170105A (en) Expansion valve
JPH08135841A (en) Temperature type expansion valve
JPH09113072A (en) Expansion valve